MINIMUM VARIANCE UNBIASED ESTIMATION AND
CERTAIN PROBLEMS OF ADDITIVE NUMBER THEORY!

By G. P. PaTiL
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0. Introduction and summary. Let T be a subset of the set I of non-negative
integers. Define f(8) =Y a(x)6” where the summation extends over T and
a(z) > 0, = 0 with ¢ O, the parameter space, such that f(6) is finite and
differentiable. One has ® = {#:0 < 0 < R} where R is the radius of convergence
of the power series of f(6). Then a random variable X with probability function

(1) Prob{X = z} = p(x, 0) = a(z)6°/f(9) zeT

is said to have the generalized power series distribution (GPSD) with range T
and the series function f(0). It may be observed that the range T could be a
countable subset of the real numbers. The GPSD is thus an exponential-type
discrete distribution; whereas the power series distribution (PSD) as defined
by Noack [5], is a special case of a GPSD..The author [7], [8], [9], [10], {11] has
discussed some problems of statistical inference associated with the GPSD and
some of its particular forms. Roy and Mitra [14] and Guttman [2] have studied
the problem of the minimum variance unbiased (MVU) estimation for the
PSD’s.

In this paper, we investigate the problem of the existence of the MVU esti-
mator for the parameter 8 of the GPSD in terms of the number theoretic struc-
ture of its range T. We further provide the MVU estimators for the probability
and distribution functions of the GPSD and consider a few special cases of some
practical significance.

1. Notation and terminology.
(i) Let A = {0, a1, @z, --- } be a subset of the set I of the non-negative
integers. The Schnirelmann density d(A) of the set A is defined by

(2) ‘ d(4) = glb. A(m)/m

where A (m) denotes the number of positive integers in the set A which do not
exceed m. It is easy to see that 0 < A(m) < m and therefore 0 < d(4) =
Note that the Schnirelmann density is defined only for such sets in I whlch
contain zero.

(ii) Let A® = {af?, as?, ---},4 = 1, 2, - - - n be arbitrary subsets of I.
The sum A, = 2 iu A(') of the n given subsets is defined as the set of all in-
tegers of the form Y iy a®® where a® e A®. If A® = 4, A, =3 A is denoted
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by n[A] The difference A® — A® is defined as the set of all integers of the form
a @ _ (2) where a(t) A(i)

(111) The set A is called a basis of the set I if n[A] = I for some n. In such
a case 7 is called the order of the basis A.

(iv) Set A = {a} denotes the singleton, the set of only one member, namely a.

(v) A subset T of I is said to_be the tail-set of a if T = {z:x = a} where
a ¢ I and is denoted by S, . Clearly, S, = I.

(vi) A subset T of I is said to be the index-set of the function f(8) if f(0) =

> a(x)6” with a(z) % 0, z & T and is denoted by
(3) T = wif(e)l

Clearly, the range of a GPSD is also the index-set of its series function.
(vii) A real-valued parameter g(8) is called MVU estimable if it has minimum
variance unbiased estimator based on a random sample of some size n.

2. The MVU estimation of 6. For the PSD’s whose parameter space contains
zéro (one can easily deduce for such PSD’s that their range also contains zero)
Guttman [2] has given a necessary and sufficient condition for a function of the
parameter 6 tobe MVU estimable. He has obtained the condition in terms of
some relationship between the power series expansions involved. Here we shall
obtain. conditions in terms of the structure of the range T of a GPSD.

TuroREM 1. A necessary and sufficient condition for the parameter 0 of the
GPSD given by (1) to be MVU estimable is that for some n,

(4) n[T] = Suinmim) -

Proor. We need the following lemma.

LeMMA. A necessary and sufficient condition for the parameter 0 of the GPSD
given by (1) to be MVU estimable on the basis of a single observation is
that T = Swin(r) or equivalently T + {1} S T.

Proor or THE LEMMA. Since z is complete sufficient for 6, it follows that an
unbiased estimator k(z), if any, of 6 is the MVU estimator for 8. Conversely,
if 0 is not MVU estimable on the basis of a single observation, § does not have
any unbiased estimator either.

To prove the necessity, suppose h(z) denotes an unbiased estimator for 6.
One has therefore for all 8¢ © the 1dent1ty > h(z)a(z)6® = ‘a(z — 1)6°
where Y extends over z ¢ T and ), extends over z e T + {1}. It follows that
h(z) = a(x — 1)/a(z) for xe T + {1} and =0 otherwise and further 7' +
{1} .C T, because, otherwise, it contradicts the fact that a(z) > 0 for x e T.
The sufficiency follows if one considers h(z) as defined above to be an estimator
for 0.

To prove the theorem, one has only to see that z = Z?,.l Z; , wherex; ,x2 * + * Zp
is a random sample of size n drawn from the GPSD given by (1), follows a
GPSD with range »n[T] and the series function

(7 f2(0) = [F(O)]" = 2 b(z, n)6°
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where the summation extends over n[T] and b(z, n) is the coefficient of 6° in
the expansion of f,(6). Clearly, b(z, n) > 0 for z & n[T]. Also z is complete suffi-
cient for . Because of the lemma, the theorem now follows.

CoROLLARY 1. 0 is not MVU estimable if. T is finite.

This follows from the finiteness of n[7] inherited from T. To cite a few ap-
plications one may note that § is MVU estimable for every sample size n for
complete or left-truncated Poisson and logarithmic series distributions. It is
interesting to observe the statements of Tate and Goen [16], Patil [6], [7], [12]
and Roy and Mitra [14] to this effect. One may note further that the right-
truncated Poisson and logarithmic series distributions do not have unbiased
estimators for 4. Tate and Goen [16] have observed this result for the right-
truncated Poisson distribution.

COROLLARY 2. When it exists, the MVU estimator of 0 is given by

h(z,n) = b(z — 1,n)/b(z, n) zen[T] + {1}.

=0 otherwise

(8)

where symbols carry usual sense.

3. Some comments on the MVU estimation of 6. Theorem 1 brings out that
the MVU estimability of 8 depends only on the structure of the range T of the
GPSD and it is curious to note that it has nothing to do with the specific form
of the GPSD as determined by the coefficients a(z). The natural and fruitful
questions-to ask then are:

(i) What should be the structure of 7' so that Equation (4) holds for some
n? The statistical basis for this question is to know if a criterion on 7 can be
devised to examine the MVU estimability of 4 for a given GPSD.

(ii) Given T, how can one find the value of n (if it exists) so that Equation
(4) holds? The statistical basis for this question is to find a sample-size which
guarantees the MVU estimator for 6 of a GPSD in case it is shown to be MVU
estimable.

(iii) If there are several solutions of the Equation (4) for a fixed T, how can
one find the smallest solution? The statistical basis for this question is to know
the smallest sample size which guarantees the MVU estimator of 8 for a given
GPSD.

Curiously enough these three questions that are pivotal for our purposes have
been of great interest to the specialists of additive number theory. Question (i)
has been solved by Schnirelmann [15], [4] for such sets which contain zero whereas
questions (ii) and (iii) do not seem to have been solved in any generality.

4. A characterization of the MVU estimability of 6 in terms of the range
T. We have the following:

THEOREM 2. A" necessary and sufficient condition for the parameter 8 of the
GPSD given by (1) to be MVU estimable is that the set T — {min(T)} be a basis
of 1.
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Proor. Let ¥ = X — min (T) where X follows the GPSD given by (1).
It can be verified that Y follows a GPSD with range T — {min (7')} and the
series function £(68)/6™>™. Therefore, based on a random sample &, , 2z, - - - , &a
of size n drawn from the GPSD given by (1), or equivalently, based on a random
sample y1, ¥z, - -+, Y» drawn from the GPSD of Y where y; = 2; — min (T),
it follows from Theorem 1 that 6 is MVU estimable if and only if
n[T = {min (T)}] = Sy = I because min (n[T — {min (7)}]) = 0. The state-
ment of the theorem follows from the definition of the basis as given in (iii) of
Section 1.

CoroLLARY 3. If 0 s MVU estimable for a sample of size n, it is MVU estimable
for every sample size exceeding n.

Proor. The corollary follows from Theorem 2 and an elementary fact that a
basis of order n is also a basis of order n + 1.

TaEoREM 3. The necessary and sufficient condition for the parameter 0 of the
GPSD given by (1) to be MVU estimable is that the Schnirelmann density of the
set n[T — {min (T)}] be unity for some n.

Proor. This theorem follows directly from Theorem 2 and a theorem of the
additive number theory which states that a necessary and sufficient condition
for a set A of non-negative integers to be identical with I is that d(4) = 1,
where d stands for the Schnirelmann density as defined in (i) of Section 1.

CoROLLARY 4. A sufficient condition for the parameter 8 to be MVU estimable is
that the Schnirelmann density of the set T — {min (T')} be positive.

Proor. The corollary follows by applying Schnirelmann’s theorem to Theorem
2 where Schnirelmann’s theorem states that every set of positive density is a
basis of I.

That the sufficient condition of the corollary is not necessary can be seen
from the following example. Consider a GPSD with range S = {z*:x ¢ I}. One
can easily verify that d(S) = 0. On the other hand, Lagrange’s theorem, claim-
ing every non-negative integer to be the sum of squares of at most four non-
negative integers, insures that for n = 4, n[S — {min (S)}] = I and therefore
from Theorem 2, 6 is MVU estimable.

6. The MVU estimation of an arbitrary function of 4. Let g(d) be a given
function of 6 which is such that ¢(0) -f.(8) admits a power series expansion in
6 where f,(8) is defined by (7). Proceeding on the same lines as in Section 2,
one has the following:

THEOREM 4. The necessary and sufficient condition for g(6) to be MVU esti-
mable on the basis of a random sample of size n from the GPSD given by (1) is
that Wig(0) -f2(0)] € WIf(6)] where W is defined by (3). Also, whenever it exists,
the MVU estimator for g(8) 7s given by h(z, n) = c(z, n)/b(z, n) for
z2e Wig(8)-fa(6)] and =0, otherwise, where c(z, n) is the coefficient of 6° in the
expansion of g(0)-fu(8) and z and b(z, n) are defined as in Section 2.

One may observe that the variance of h(z,n) is given by V{h(z,n)} =
E({h(z, n)}*) — {g(8)}’. Writing ¢,(8) = {g(6)}’, the MVU estimator of gs(0)
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to be denoted by h2(z, n) can be written down on the usual lines whenever it
exists.

It is clear that, because z is complete sufficient for 6, the MVU estimator of
the variance of the MVU estimator of g(6) is given by {k(z, n)}* — hs(z, n)
which, when ¢g(8) = 0, reduces to h(z, n)[h(z, n) — h(z — 1, n)], where h(z, n)
is defined by (8). The advantage of this form, first obtained by Roy and Mitra
[14], is obvious.

It may be of some interest here to record that g(6) = 1/£(8) is MVU estimable
if and only if the range 7" of a GPSD contains zero, whereas g(8) = 1/6 is not
MYVU estimable (and hence in the case of a GPSD, as it is here, it does not have
an unbiased estimator either) of any GPSD. From this follows that the pa-
rameter @ = 1/f(0) where f(§) = —log (1 — 8) of the logarithmic series dis-
tribution does not have an unbiased estimator. Also one may note the result of
Quenouille as stated on page 5 and 34 of [13] as a special case which states that
the reciprocal of the parameter of the Poisson distribution does not have an
unbiased estimator.

It is easy to see that, on'the basis of an observation from the binomial dis-
tribution with parameters p = 6/(1 + 6) and »n, a polynomial in p is MVU
estimable if and only if the degree of the polynomial does not exceed n. For the
negative binomial distribution, however, p' = 1 — 6 and a polynomial of every
degree in p is MVU estimable.

6. The MVU estimation of the probability and distribution functions of a
GPSD. Let g(6) = p(k, 6), where k ¢ T' is known and p(z, 6) is defined by (1).
One has W(g(0) -f»(0)] = (n — 1)[T] + {k}, whereas W[{.(6)] = n(T). Clearly
the conditions of Theorem 4 are satisfied. Thus the probability function of a
GPSD has a MVU estimator for every sample size n and it can be verified that
it is given by h(z, n; k) = ¢(z, n;'k)/b(2, n) for ze (n — 1)[T] + {k} and =0,
otherwise, where ¢(z, n; k) = a(k)b(z — k,n — 1).

Further, the MVU estimator of the variance of the MVU estimator under
consideration always exists and is given by h(z, n; k){h(z, n; k) —
h(z — k,n — 1; k)}. The advantage of this form may be obvious.

In order to estimate the distribution function of the GPSD given by (1),
let g(9) = F(r, 6) = > p(k, 6) where the summation extends over T, =
{z:x < r,z e T}. Note that T, is finite. It is easy to see that F(r, §) has a MVU
estimator for every sample size and it is given by X ez, h(z, n; k) where h(z, n; k)
is as defined in this section, because z is complete sufficient for § and hence the
MVTU estimator of a sum of a finite number of MVU estimable functions of ¢
is given by the sum of the. md1v1dual MVTU estimators.

In general, one may note that g(0) = m(8)/f(8) where Wm(8)] c T =
WIf(8)] is MVU estimable for every sample size and for every GPSD with range
T. Its MVU estimator can be easily written down on the usual lines.

One may record below a few applications of the results of this section to the
following GPSD’s of some practical importance.

(i) Poisson distribution: One has a(k) = 1/k, k= 0,1,2,--- ; b(z2, n) =
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n*/z!. Therefore the MVU estimator for p(k, 8) = ¢ ’6°/k! can be obtained as
a binomial probability

h(z;ny k) = ('Z) <1 — %)Hc(%)k forz = k

=0, otherwise

(ii) Zero-truncated Poisson distribution: One has a(k) = 1/k\, k=1,2, -+ ;
b(z, n) = (nl/z!)8; where 8; is the Stirling number of the second kind with
arguments n and z. Therefore the MVU estimator for p(k, 8) = ¢ °6*/k![1 — ¢”°
can be obtained as

h(z,n; k) = (Z) Sr /N8y,
(iii) Binomzal distribution: One has

a(k) = (g) , k=01,2---m; b(z,n) = (w;n) .

Therefore the MVU estimator for

w0 = () () ()

can be obtained as a hypergeometric probability

m\ [(mn — m mn
e = (1) (20 /(7).
One may note here that for k = m = 1, h(z, n; 1) = 2/n which is well-known.
(iv) Negative binomial distribution: One has

a(k) = (m +kk _1> , k=012 ---; b(z,n) = <mn +zz— 1).

Therefore the MVU estimator for
o0 = (" ET e a0

is obtained as a hypergeometric probability

Wz, k) = <m+]ic— 1) (mn—mz-l;zk—k—1>/<mn+zz— 1>.

One may note here that for k = 0, m = 1, h(z,2;0) = (n — 1)/(n 4+ 2 — 1)
which has been obtained by Haldane [3] and by Girshick, Mosteller and Savage
(1].

(v) Logarithmic series distribution: One has a(k) = 1/k, k = 1, 2,---;
b(z, n) = (n!/2!)|S;| where S; is the Stirling number of the first kind with
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arguments n and z. Therefore, the MVU estimator for p(k, 8) = «6"/k where
1/a = —log (1 — 6) is obtained as
h(z, n; k) = [e/nk(z — k)02 1/1S7])-

The MVU estimators of the variances of the MVU estimators of the above
probability functionr can be easily obtained by using the relevant formulae of
this section.
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