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Let {X,, n = 1} be a sequence of independent and identically distributed

random variables such that each X, » assumes only non-negative integral values
with P{X, = ¢} = pifori = 0,1,2, ---.Let 8, = > iy X;and let m > 0

and & = 0 be rational. In this paper we give a procedure for evaluating
(1) Q(m,k)=P{Sn<mn+k,n=1,2,...}

(i.e. for evaluating the probability of the collection of random walks in the plane
which start at the origin and at the nth step move one unit to the right and
X, units up and remain strictly below the line y = ma + k).

Withm = 1, k = 0, and the assumption that £X, = p < 1, the solution was
obtained by Meyer Dwass (unpublished) who showed using mainly a combina-
torial argument that P{S, < n,n = 1,2, ---} = 1 — u. Note that if we set
Yi=X:—mand T, = X iy Yithen g(m, k) = lim,, P{max;<.<; T < k}.
A number of papers have dealt with the problem of evaluating the probabilities
P{max;<i<; T: < k}. We mention only a few here. Baxter and Donsker [2] and
Pyke [4] treat instead of a discrete time parameter, a continuous time parameter
where {T;} is a separable process with stationary independent increments (for
Pyke {T4} is Poisson). Kinney [3] considers probabilities related to those of in-
terest here. Spitzer [5] gives the explicit formula g(m, 0) = exp [— D s az/k]
where a, = P{T, > 0}, without any restrictions other than that the random
variables Y1, Y, --- are independent and identically distributed. However it
is difficult to see how his formula reduces to the simple one we shall give for
the class of random variables we consider.

Throughout we shall make certain assumptions which do not affect the gener-
ality of our result as is easily verified:

(i) m and k are integers.
(i) po > 0.
(2) (i) If r = 2is an integer with m = 0(mod r) then there exists an integer
1 # 0(mod r) such that p; > 0.
(iv) » < m (and consequently it follows from the strong law of large
numbers that q.(m) = limg,. q(m, k) = 1).

With regard to (iv) we shall see below that ¢(m, k) = 0if p = m.

We take as the starting point of our investigation the infinite system of equa-
tions satisfied by the numbers q(m, k), i.e.

m+k—1

(3) Q(m,k) = ;} PzQ(m,k'l'm“i), k=0; L.
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Note that the equations (3) define the numbers q(m, k) completely once the values
g(m, 0), -+, q(m, m — 1) are given, and our problem reduces to computing
these numbers. In the remainder of the paper we shall hold m fixed and use the
notation gz = q(m, k), go = gw(m). Let P(t) and Q(¢) be the generating func-
tions corresponding to the sequences {p;} and {q.} respectively, i.e.

P(t) = gop.;t‘ and Q) = gqiti.

As functions of the complex variable ¢, P and @ are analytic for |¢{] < 1 and
P is uniformly continuous for [t| = 1. Let S(f) = P()Q(t) and let s; be the
coefficient of ¢* in the expansion of S(¢). Then the equations (3) take the form

4) Q. = Sk+m — Q0Pk+m » k=01,.--

Let o; = s; — qop: for all 4. After manipulating (4) appropriately we see that
P(t) and Q(¢) # 0 must satisfy the functional equation

m—1

(5) QP(t) + ; ol = QU)[P(t) — "], [t < 1.

Now let ¢ approach one from below through real values. Then it is easily verified
that lim,, 1 Q(£) (1 — &) = gw, lim;y, [P(¢) — t"]/(1 — &) = m — p. Since
P(1) = 1 we have

m—1

(6) Q0 + i;() o0 = qo(m — u).

Dwass’ result follows at once from (6) since oo = 0 by definition, and if m = 1
and g < 1 then ¢, = 1 giving g0 = 1 — u. Another consequence of (6) is the
remark made above that we may assume that u < m. Note that ¢; = 0 for all
iand if u = m then go = 0o = 0y = -+ = gny = 0 and an inspection of (3)
shows that in that case ¢. = 0 for all k.

THEOREM. Suppose (2) holds. Then P(t) — t™ has precisely m — 1 zeros
t, o+, tmain [t| < 1. Setting to = 0 we have: (a) go = (m — u)/ ) § iy (1—1t).

(®) ¢+, @m—1 may be solved for successively from the equations o; = 30 DiGini
i=1,---,m — 1;where a1, - - - , om— are obtained by equating coefficients in the
equation

m—1 m—1

@™+ 2 o' = q JICt — ).

= =1

Proor. The fact that P(t) — t™ has m — 1 zeros in |{| < 1 involves fairly
standard analytic techniques and is similar to the argument given by Bailey
[1]. Let h() = g™ + > iz ot . Then (5) reduces to

(7) af (1) + th(t) = QOf(D).
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Unless Q(¢) = 0 (which is impossible) h(¢) must have the same zeros as f(t) in
[t} < 1 and since the degree of h is m — 1, we can write

® M) = o]l ¢~ 1),

Taking the limit as t — 1 in (7) gives (a). (b) follows from (8), the definition
of h, and the definition of o; .
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