Open Access
March, 1961 A Unified Theory of Estimation, I
Allan Birnbaum
Ann. Math. Statist. 32(1): 112-135 (March, 1961). DOI: 10.1214/aoms/1177705145


This paper extends and unifies some previous formulations and theories of estimation for one-parameter problems. The basic criterion used is admissibility of a point estimator, defined with reference to its full distribution rather than special loss functions such as squared error. Theoretical methods of characterizing admissible estimators are given, and practical computational methods for their use are illustrated. Point, confidence limit, and confidence interval estimation are included in a single theoretical formulation, and incorporated into estimators of an "omnibus" form called "confidence curves." The usefulness of the latter for some applications as well as theoretical purposes is illustrated. Fisher's maximum likelihood principle of estimation is generalized, given exact (non-asymptotic) justification, and unified with the theory of tests and confidence regions of Neyman and Pearson. Relations between exact and asymptotic results are discussed. Further developments, including multiparameter and nuisance parameter problems, problems of choice among admissible estimators, formal and informal criteria for optimality, and related problems in the foundations of statistical inference, will be presented subsequently.


Download Citation

Allan Birnbaum. "A Unified Theory of Estimation, I." Ann. Math. Statist. 32 (1) 112 - 135, March, 1961.


Published: March, 1961
First available in Project Euclid: 27 April 2007

zbMATH: 0163.40301
MathSciNet: MR126307
Digital Object Identifier: 10.1214/aoms/1177705145

Rights: Copyright © 1961 Institute of Mathematical Statistics

Vol.32 • No. 1 • March, 1961
Back to Top