TWO-SAMPLE TESTS FOR MULTIVARIATE DISTRIBUTIONS!
By LioneErL Wriss

Cornell Unaversity

1. Introduction and summary. X (1), X(2), - -- , X(m), Y(1), Y(2), - - -, Y(n)
are independent k-variate random variables. The distribution of X (¢) has pdf
f(z), say, where x denotes a k-dimensional vector throughout this paper, and the
distribution of Y(j) has pdf g(z), say. We assume that f(z) and g(x) are piecewise
continuous, and that each has a finite upper bound, which it is not necessary to
specify.

Denote by 2R; the distance from X (z) to the nearest of the points X (1), - - °
X(¢—1),X(:+ 1), ---, X(m), and denote by S; the number of points Y (1),
*++, Y(n) contained in the open sphere {z: |z — X () | < RJ}. Clearly, the
joint distribution of S;, S; is the same as the joint distribution of S;- , 8j, for
any subscripts with ¢ 7, ' % j'. Let r be a non-negative integer, and « any
fixed positive value. Q(r) denotes the Lebesgue integral
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where E, denotes Euclidean k-space. We will show that
1imm—mo,m/n=a Pm,n[Sl =&, S2 = 82] = Q(SI)Q('S?))

for any non-negative integers s,,5, the approach being uniform in s, s, . Thus,
in the limit Sy, S, are independently distributed, with

limm—»w,m/n=a Pm,n[Sl = sl] = Q(sl)-

In [1], which discussed the univariate case, S; was defined as the number of
Y’s closer to X (7) than to any other X to their right. In the present paper, S; is
defined as the number of ¥’s in another neighborhood of X (7). Our present
definition of S; does not become for £ = 1 the same as the definition of S; in
[1]. Rather, in the univariate case, our present definition of S; is the number
of Y’s lying within a distance E; on either side of X(¢). However, if

limm-—»oo,m/n=a Pm,n[Sl = 8, Sz = 32]

is computed for the univariate case using the definition of S; given in [1], the
only way in which it differs from Q(s;)Q(s:) is that « is replaced by /2. Thus
it seems reasonable to treat the S; as defined here as k-dimensional analogues
of the S, as defined in [1], at least for large samples. An intuitive reason for a
being replaced by a/2 is that in our present case, ), S; may be less than n,
whereas in [1] this sum must always equal n. Thus in our present case, we are
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160 LIONEL WEISS

in a sense discarding some of the Y’s, which lowers n relative to m and thus
raises a by a certain factor (2, as it happens). In our present case, )_S; may
be less than n because the R; are chosen to make the spheres around the X’s
non-overlapping, thus simplifying the analysis. The R; were chosen to give the
largest possible non-overlapping spheres because it would seem intuitively that
the larger the spheres, the more rapid the approach of the probabilities to their
limiting values.

2. Derivation of the limiting distribution of S; , S: . Let pn(r1, 72 | (1), 2(2))
denote the joint conditional pdf of R;, R. given that X (1) = z(1) and
X(2) = x(2). Denote [jz—a<bf(x) dz by V(a, b; f), where a & Ex and b is a
positive scalar. If f(x) is continuous in an open region containing the open
sphere {z: |z — a| < b}, then 8V (a, b; f)/db is equal to the surface integral
[s:j2—a1=0 f(x) dS, which we denote by S(a, b; f).

PRy 2 nand R, = | X(1) = z(1) and X(2) = z(2)]
= [l — V(z(1), 2r;f) — V(2(2), 2r: ; HI"

other values of 71, 2, (1), 2(2). If f(z) is continuous in an open region con-
taining the points x with |z — z(¢) | £ 2r; for ¢ = 1, 2, then

Pm(r1, 2| 2(1),2(2))

ifry 20,720, |2z(1) — 2(2)| = 2max (n, r2); and is equal to zero for

— 9 PRz Rz n|X1) =a(l) and X(2) = x(2)]
67‘167‘2
=(m — 2)(m — 3)[1 — V(x(1),2r;f) — V(x(2),2r; H"

1111 28(x(7), 2r:5 f)

ifry 20,7 20,|2(1) — 2(2)| 2 2max (r, 72); and is equal to zero for

other values of r;, 72, £(1), (2). From our continuity assumption on f(z) we
have

V(x(0), 2rs 5 ) = f(x(0))[x*(2r)*/T(3k + 1)] + 7% e(x(3); 2rs),
and
8(z(3), 2ri 5 ) = f(x(3))kat*(2r)* /T (3k + 1) + i a(2(5); 2r2),

where e( ) and &( ) approach zero as r; approaches zero. Furthermore, these
quantities approach zero uniformly over any set G' of points in (z(1), z(2))
space such that f(z) is uniformly continuous over the projection of G on the
z(1) hyperplane and on the z(2) hyperplane and |z(1) — z(2)| > & > 0
over (.

Now introduce the random variables Z; , Z, by the relationship R; = (Z;/m
for ¢ = 1, 2. Denote by hn(21, 22| (1), (2)) the joint conditional pdf of Z, ,

1/k
>
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Z, given that X (1) = z(1) and X(2) = 2(2). By substitﬁting in
pm(rl y T2 I 27(1), x(z))

and using the facts developed above, we have

k k
fm s, 2(0),2(2)) = I8V 16600) omp{ ~ 2V o)
uniformly over any set G in (z(1), z(2), 21, %) space such that f(x) is uni-
formly continuous over the projection of G on the z(1) hyperplane and on the
z(2) hyperplane, | (1) — z(2) | > 6 > 0 over G, and the projections of G on
the 2 and 2, axes are bounded from above. We need consider only positive 2 , 2 .

Next, denote by Du(s1, 82 |21, 22, (1), 2(2)) the conditional probability that
Si=sand S; = s, , given that Z, = 2,, Z, = 2., X(1) = 2(1), X(2) = z(2).
Then

Du(s1, 82|21, 20, 2(1),2(2))

c (1 = V(D)3 0) = V(a(2),m3.0))™7"

- 81!82!(71, — 8 — 82)! N
: I_I1 Vi(z(4), 1:5 9)

if |[2(1) — «(2) | > 2max (r1, ;). It is easily verified that

lim Dm(vS‘l, s2|zly 22, x(l)y x(z))

m/n=a
1 [ r*29@) T T2 9(z(3))
= st [ar( Ik + 1)] e"p{"ar(%k ¥ 1)}
uniformly over any set G of pointsin (z(1), (2), 21, 2;) space such that g(z)
is uniformly continuous over the projection of G; on the (1) hyperplane, and
over the projection of G on the z(2) hyperplane, and the projections of G; on
the 2; and 2 axes are bounded from above.

Given any positive ¢, we can find a subset K(e) of (2(1), 2(2)) space such
that P(X (1), X(2) in K(e)) = 1 — ¢, f() is uniformly continuous on the pro-
jection of K(e) on the z(¢) hyperplane (¢ = 1,2), and | (1) — 2(2) | > é(e) > 0
at each point of K(e).

Since

P,,.,,.(Sl = 8,8 = 32)
= [ oot tonsn, 50, 5@, 21200, 2020 s ]
S@W)I)) (1) da(2),
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we have

PanSi =S =) = [[ [ [7[7 Dl ol ) denda
1@(1)f(2(2)) da(1) da(2)

< e

for all values of m and n. From our discussion above, it can be seen that

00

mlwﬁm)m)%m=f lim Dol Vhn( ) des des

m,n->0 0 mno>w
m/n=a min=a

_ 17 2o @@= (@)1
=1 [g(() + 2af(x(2)]H

uniformly over K(e). This means

dim [T [ Dal el ) e |1 00S(@) dot1) do(2)

m/n=a

b 2% (2(4))[g(x(4))]"
= a 1 2)) dz(1) dz(2).

[ T Gty + mrtatonies 0 ((2) (1) ()
This last expression differs from Q(s;1)@Q(s;) by less than ¢, and this completes
the demonstration, since € can be taken arbitrarily close to zero. The uniformity
of approach follows from the equalities

2 2 Pan(Si= 81,8 =) =2 2 Qs)Q(s) =1,

81,82 81,82
the summations extending over all non-negative integers.

3. Applications. For each non-negative integer r, let @.(r) denote the propor-
tion of the values S;, ---, S, which are equal to . We will show that Q..(r)
converges stochastically to Q(r) as m, n increase with m/n = a«. Define the
random variable U; to be equal to one if S; is equal to r, and to be equal to zero
if S; is not equal to r. Then Q,(r) = (U, + -+ + U,)/m, and

E{Qn(r)} = E{U)} = P(8 = 1),

Variance {Q.(r)} = (1/m) Var{U} + ((m — 1)/m) Cov{U,, Us}. But
Variance { Uy} is equal to P(S; = r)[1 — P(S; = r)], and Cov {U;, Uy} is equal
to P(S; = rand S: = r) — P(8; = r)P(S; = r). Since we showed above
that S; and S; are asymptotically independent, it follows that Variance {Q.(r)}
approaches zero. It has also been shown that P(S; = r) approaches Q(r), so
it follows from Chebyshev’s inequality that Q. (r) converges stochastically to
Q(r).

Take the case r = 0. In evaluating Q(0), [¢(x)]’ is taken to be unity even if
g(z) = 0. Then

[ [ VZaf@) V2 V@) +2‘ka"f<x‘>‘]2dx > 0
5 LVg(@) + 2%af(z) 1+ 2a -




TWO-SAMPLE TESTS 163

with equality holding if and only if f(x) = g(z) almost everywhere. Expanding
the integrand and integrating, we find that Q(0) = (2«)/(1 + 2*a), with
equality holding if and only if f(z) = g(z) almost everywhere.

If it were desired to test the hypothesis that f(z) = g(z) almost everywhere,
a reasonable test procedure would seem to be to reject if @,(0) is ‘“too far”
above (2'a)/(1 4 2%«). In [1] it was shown that the Wald-Wolfowitz run test
[2] is equivalent to rejecting the hypothesis when Q,,(0) is “too large’’, where
Q,(0) is defined using the S; of [1]. If we accept the analogy between the S;
as defined in this paper and the S; as defined in [1], we see that the test which
rejects when @,.(0) is “too large” is a multivariate analogue of the Wald-
Wolfowitz run test.

However, there are certain difficulties in the way of using the test based on
Qx(0). Even if f(z) = g(z) almost everywhere, so that the hypothesis is true,
the distribution of @.,.(0) depends on the common density function f(z). This
is seen from an examination of the expression for the variance of @,(0). Thus
the test based on @,.(0) is not similar to the sample space, so the level of sig-
nificance must be defined as the least upper bound of probabilities of rejecting
the hypothesis when it is true. To be more precise, suppose we want the proba-
bility of a type I error to be no greater than a preassigned value 8 (0 < 8 < 1).
Fixing m, n, with m/n = «, we can write our critical region as

Qn(0) = (2a)/(1 + 2%) + 8.(8),
where §,,(8) is chosen so that when g(x) = f(z) almost everywhere,
Luwb.s@ PI@n(0) 2 (22)/(1 + 2*a) + 8.(8)] < 6.

We can satisfy this inequality trivially by choosing 6,.(8) equal to 1 — (2°a)/
(1 4 2*a), but then our level of significance is zero, and the test is of no interest.
What we want, of course, is to have 8,(8) small so that the power of the test
is good. One way of guaranteeing a reasonably small value of §,(8) is to limit
the class of density functions under consideration in some way. One such way
is to assume that all the possible density functions have the following property:
given any positive e, there is a positive y(e) so that the variation of the density
function over any sphere of k-dimensional volume v(e) is no greater than ¢, and
lime,oy(e)/e = ¢ > 0. Then an examination of the argument of Section 2 will
show that when g(z) = f(z), and f(x) has the continuity property just de-
scribed,

| B{Qn(0)} — (2°2)/(1 + 2%a) | £ Au(c, m), Variance {@n(0)} = As(c, m),

where Ai(c, m) and As(c, m) approach zero as m increases with m/n = «, for
any fixed positive ¢. Chebyshev’s inequality gives

PIQA(0) = (22)/(1 + 2%) + Ailc, m) + #] S (1/t)As(c, m),
and setting ¢ = (1/8)Asx(c, m) gives
PIQ.(0) 2 (2%a)/(1 + 2"a) 4+ Ai(c, m) + (1/8)Au(c, m)] < 8.
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Thus 6.(8) = Ai(c, m) + (1/8)Ax(¢c, m), and this upper bound for 8,,(8) ap-
proaches zero as m increases with m/n = a, so that if the hypothesis is not true,
the probability of rejection approaches one as m, n increase. The actual compu-
tation of the functions A;(c, m), A:(c, m), though possible, would be quite in-
volved, and will not be carried out here.

The test based on @..(0) is, as has been noted, not similar to the sample space.
To the author’s knowledge, no test of the hypothesis under discussion which
has reasonable power properties has been shown to be similar to the sample
space. The quantities @, (r) are invariant under translations and rotations of
k-dimensional space, or under linear stretching of each of the k axes by the same
factor. Intuitively, then, one would expect tests based on @,.(r) to be closer to
similarity than such tests as the chi-square test or the Kolmogorov-Smirnov test,
in the multivariate case.

Professor W. Kruskal has pointed out a lack of symmetry in the test based on
Q.,(0) described above, in that interchanging the roles of X and Y gives a test
statistic that is not in one-one correspondence with @, (0). Most other two-
sample tests that have been proposed do not exhibit this lack of symmetry. A
test which does not suffer from this lack of symmetry is one based on the average
of @.(0) and the corresponding quantity given by interchanging the roles of X
and Y.
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