ON THE MIXTURE OF DISTRIBUTIONS*
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Summary. If § = {F} is a family of distribution functions and u is a measure
on a Borel Field of subsets of & with u(¥) = 1, then [ F(-) du(F) is again a
distribution function which is called a p-mixture of . In Section 2, convergence
questions when either F, or ux (or both) tend to limits are dealt with in the
case where § is indexed by a finite number of parameters. In Part 3, mixtures
of additively closed families are considered and the class of such u-mixtures is
shown to be closed under convolution (Theorem 3). In Section 4, a sufficient
as well as necessary conditions are given for a u-mixture of normal distributions
to be normal. In the case of a product-measure mixture, a necessary and sufficient
condition is obtained (Theorem 7). Generation of mixtures is discussed in
Part 5 and the concluding remarks of Section 6 link the problem of mixtures
of Poisson distributions to a moment problem.

1. Introduction. Let § = {F} be a family of one! dimensional cumulative
distribution functions (c.d.f.’s), and let M = {u} be a class of measures defined
on @, a Borel Field of subsets of &, with u(F) = 1, all u £ M. (@ may be taken
to be the smallest sigma-Algebra containing sets 4., = {F | F(z) < y, F £ 5}).
Then, [9], [11], [ g(F) du(F) is defined in the usual manner for measurable
mappings ¢ of F into the real line. If g = ¢.(F) = F(z), this becomes

1) H = H(z) = /; F(z) du(F).

The resultant distribution function H will be called a “mixture” or more spe-
cifically a p-mixture of § providing the “mixing measure” u does not assign
measure one to a particular member of . Thus, the term mixture’, as employed
here, signifies a genuine weighted average of c.d.f.’s.

For a stipulated &, the family 3¢ = 3¢(F) of mixtures H, swept out as u varies
over 9N, will be called the class of M-mixtures of F or (if I is definitive in some
sense) simply the class of mixtures of &.

In particular, the family § may be indexed by a finite number of parameters
ar, oz, -+, an €ach a; varying over the real line, that is,

g = {F(x;alya2’ ”',am)}-
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Let ¢ = {G(a1, a2, -, am)} denote the class of m-dimensional c.d.f.’s and
F(z; 1, as, -+, an) be measurable on (m + 1)-dimensional Euclidean space
R™. Then, 9 may be taken to be the class of Lebesgue-Stieltjes measures
{ug} on R™ induced by G € G and (1) becomes

@  HG@) = [ F@e, e, o) dGla, o, o, o).

Similarly, ¥ may be {F(z; a1, -+, am)} = {F(x; o)} where now
o = (a1, -+, an) is restricted to BT, some measurable subset of R™. However,
since pe will assign zero measure to R™ — RT, one may define F(z; o) to be
an arbitrary c.df. for « ¢ R™ — RT. Then (1) again takes the form (2), the
class G (or 911) being suitably restricted.

If {F(x; a)} is a discrete family whose discontinuity points are independent
of @, ++, am, then the resultant distribution under mixture on a will be
discrete, inheriting the common points of discontinuity. The situation may be
otherwise if the discontinuity points vary with a. Thus, if m = 1 and F(z; «)
has unit saltus at z = «, H(z) is continuous if, and only if G is, since H = G.
In general, x is a discontinuity point of H(x) if and only if the a-set for which
F(z; a) is discontinuous at o has positive u-measure.

On the other hand, if F(z; &) is absolutely continuous for every a € R™ then
f(x; @) = 8/8zF(x; ) is measurable on R™", whence, by Fubini’s theorem,
the resultant mixture H(z) is absolutely continuous with a density h(x) given
by [amf(z; @) dG(e). In other words, for an absolutely continuous family
{F(z; @)}, h is a pe (or simply G)-mixture of {f(z; )}.} Conversely, if a proba-
bility density function (p.d.f.) h(z) is (merely almost everywhere) a G-mixture
of a family of p.d.f.’s {f(z; @)}, with f(z; «) measurable on R™*, its c.d.f. H(z)
will be a G-mixture of the corresponding family of c.d.f.’s {F(z; a)}.

Tt follows directly from Theorem 5 of [13] or the fact that F(z; ) and G(e)
determine a joint distribution that if H is a G-mixture of ¥ (of the form (2)),
then its characteristic function ¢(¢) is a G-mixture® of the class * = {o(t; o)}
of Fourier transforms of the elements of §. Similarly, any existing moment of
H is a G-mixture of the family of moments (of the same order) of § (which
exist except perhaps for a set of pe-measure zero). If G(en, ---, oam) = [[Ma
G.(a:), the mixture will be termed a “product measure” mixture. Analogously,
we may speak of a discrete or absolutely continuous mixture according as
G(ay, -+, am) (or ) is a discrete or absolutely continuous c.d.f. (measure).
Finally, a finite (countable) mixture is one for which u is discrete and assigns
measure one to a finite (countable) set of points.

A question of importance concerning mixtures is that of unique characteriza-
tion. That is, for a specific family ¥, which distributions H uniquely determine
the mixing measure u. In this connection, we give the following

Defingtion: A p-mixture of &, say H, will be called “identifiable” if, for ‘any

3 Here, we have tacitly extended the terminology ‘u-mixture of F”’ to cases where the
family & has as elements functions f(z; «) which, for each « & B™, are not c.d.f.’s in the
remaining variable.
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probability measure u*, the relationship H(z) = [ F(z) du(F) = [ F(z) du*(F)
implies p = u*. If every member of a class 3¢ of p-mixtures of § is identifiable,
3¢ itself will be called identifiable.

In numerous problems in probability and statistics, one is interested in the
distribution of a random variable X but knows only the conditional distributions
of X given the values of some auxiliary random variable Y. Then the desired
distribution of X is simply a mixture of the known conditional distributions.
Similarly, one may know the limit of a sequence of distributions of random
variables X, for all fixed values of other random variables Y, as well as the
limiting distribution of the Y. (say G), whereas one requires the limiting distri-
bution of the X, . Under certain conditions, (see especially Theorem 2 and
propositions A, B of Section 2) the latter will be a G-mixture of the former.

It is surprising, therefore, that, except for the special case F(z;a) = F(z — a)
of convolution, general properties of mixtures have received relatively little at-
tention. A treatment of mixtures appears in [13] and specific mixture problems
are dealt with in [8] and [14]. The compound Poisson distributions (see e.g. [8])
are precisely mixtures of Poisson distributions which are necessarily (by a prior
remark) discrete distributions with jumps at the non-negative integers.

Mixtures of distributions are of interest for reasons other than those already
cited. For example, in the course of determining limit distributions of sums of
interchangeable random variables [2] mixtures of normal distributions are en-
countered and this provides one of several motivations for a study of such
creatures.

2. Convergence of mixtures. If G(a), Gi(a), k = 1, 2, ---, is a sequence of
c.d.f.’s such that Gi(a) converges to G(a) on all continuity intervals of G
(equivalently, lims.,, [ f(a) dGi(a) = [ f(a) dG(a) for every bounded continu-
ous function f(a)), we write G, = G.

Let F(z; @), Fu(x; @), n = 1,2, -+ | be a sequence of families of c.d.f.’s
(all functions of z, a are supposed measurable on R™') such that F.(z; a) =
F(z; a), all @ € R™; similarly, let Gx(e) = G(a) and define H,. (H) to be a
ue, (pe)-mixture of {Fa(z; @)} ({F(x; @)}), that is,

Hou(z) = f Fo(z; a) dGu(a), H(z) = ] F(z; @) dG(a).

Incase G = G (F, = F), we write H,. (H.;) for H, . As indicated in Section 1,
it is the convergence of the diagonal sequence H,, = H that is of special interest
in probability and statistics. However, it seems pertinent to cite more general
results. (A related but different convergence question is treated in [17a].)

We first consider the simple cases of H,. and H. . It follows from the domi-
nated convergence theorem and a remark of the preceding section concerning
the relationship between discontinuities of H and those of the family § that
H..= H.On the other hand, H ., need not converge to H as the following example
shows:

Take m = 1 and let Gi(a) be a step function with jumps of ke /1 at the
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points = —k + j/k, 7 = 0,1, 2, --- . By a classical result,

limk—boo Gk(a) = (1/\/2—.”,)1‘ e“'l/’/z dy-

Choose & so that F(z; a) = Fi(z) or Fo(x) as « is rational or irrational. Clearly
H., = F,,while H = F,. Thus if F; ## F,, H., > H. The source of trouble
is thereby indicated, leading to

TuroreMm 1: If, for each continuity point x, of H(x),

pela | F(xo 5 @) is discontinuous} = 0, then H., = H.

Proor: The theorem is an immediate consequence of an extension of the
Helly-Bray theorem, which, in turn, follows directly from known results. For
example, Theorem 2.1 of [1] (see also [4]) insures that if, for a sequence of
random vectors X, defined on a probability space,

Gi(a) = P{Xy < o} = G(a) = P{X < a},

then Fi(a) = P{h(X:) < o = P{h(X) < a} = F(a), provided only that the
set of discontinuities of the measurable function h has pe-measure zero. But if
h is also bounded, the rth moments of h(X:) converge to the rth moments of
h(X). For r = 1, this shows, for any bounded measurable function h(a) whose
discontinuity set has ps-measure zero, that Gx = G implies

lim [ h(e) d6i(e) = lm [ yar(y) = [ yaF@) = [ h(e) d6(a).
k>0 YRM k->w JR1 R1 R™
Applying this result to h(a) = F(x ; a), the theorem follows.

In the double sequence case, it follows along the lines of [10, Theorem 26,
p. 284] that, if the total variation V[Gy — G] — 0, then Hy, = H (n, k — «).
But, as in the example, Gx = @ is compatible with V|G, — G] = 2.

Now if ® denotes the class of Borel sets of R™ and G(a), Gi(a) are abso-
lutely continuous with densities g(a), gx(a), & = 1, 2, --- | such that

gi(a) — g(a)

pointwise, then
ViGy — Gl = 2 sup | woy(B) — wo(B) | = 2 sup |f gu(e) da —f g(a) da| — 0
Be® Be® B B

since [15] limy_.,, [5gx(a) da = [sg(a) da uniformly in B. Consequently,
A If F.(z;a) = F(z; a) and gi(a) = G;(a) — @ (a) = g(a) forall a e R,
then H,., = H.
B. Let G(a), Gi(a) be discrete c.d.f.’s with Gi(a) = G(a), Fa(z; a) =
F(z; a) all a. If, for every point o’ of positive mass of G, the mass of Gy
at o converges to that of G, then H.. = H.
Proposition B follows in the same fashion as A since a slight extension of Scheffé’s
theorem [15] yields an analogue for discrete c.d.f.’s under the stated assumption.
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We note that the additional proviso is automatically insured by prior assump-
tions if the discontinuity points of G have no finite limit point and are not
themselves limit points of discontinuities of [Gy].

Next, the rather stringent condition V[Gx — G] — 0 may be replaced as
follows:

THEOREM 2: Let Gi(a) = G(a), and let RT be a measurable set of R™ with
welRT} = 1. In order that Ha = H(n, k — ) 4t is sufficient that for each conti-
nuity point x, of H(x)

(1) wela | F(=xo ; @) 1s discontinuous] = 0

(ii) liMpse Fa(2o ; &) = F(20 ; @) uniformly in S-RY for every closed bounded

a-rectangle S of R™.

Proor: For arbitrary ¢ > 0, choose the “continuity rectangle” A such that
pe(A) > 1 — e and let A denote its closure. Then if B = R™ — A-R7,

| Hi(20) —H (20) | = l [[Fn(xo ;a) —F(xo ) )] dG(a) |
+ | fF(xo;a) dGr(a) —fF(xo ;a) dG(a) | é[m’{' | Fu(2o; @) —F(20;) |dGi(a)

+2deGk(a)+ ]fF(xo;a) dGy(a) —fF(xo;a) dG(a) | S e+ 4e+ e = 6e

for sufficiently large » and %k by Theorem 1 and (ii).
3. Mixtures of additively closed families. We recall [18] that a family § =

{F(z; @)} = {F(x; au, -+, an)} where a; varies over an additive abelian
semi-group D;, J=12, .-, m,is called “additively closed” if for every ad-
missible «, 8,

(3) F(z;a) x F(z;8) = F(z;a + B)

where, as usual, * denotes the convolution operation. The families of normal,
Poisson, binomial and many other distributions are encompassed within this
definition.

Suppose that D; denotes either R' or some measurable subset of R' that is
an additive Abelian semi-group, j = 1, 2, - -, m, and that us assigns measure
oneto D = Dy X D; X -+ X D, . Then, under (3), [, F(z; o) dG(a) is a
mixture of the additively closed family § = {F(x; a)}.

TrEOREM 3: Let H; be a Gi-mizture of the additively closed family ¥, 1 = 1, 2.
Then the convolution Hy * Hp is a (Gy * Gy)-mixture of . Conversely, if for some
r = 1 and all Gy, Gy having exactly r points of positive mass, the convolution of a
Gr-mizture of F with a Gy-mizture of § is a (Gy * Gy)-mixture of F, then ¥ is addi-
tively closed.

Proor: Let H = Hy * Hy, G = Gy * G; and denote by ¢(2), ¢1(t), ¢2(t) and
¢(t; &) the characteristic functions (c.f.’s) respectively of H, H; , H; and F(z; a).
Since, as remarked earlier, ¢;(¢) is a G;-mixture of {¢(¢; a)}, 7 = 1, 2, we have
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o(t)

@) ex®) = [ olt; 0) dGi(a) - [ et ) acui®)

/;fbw(t;a + B) dGi(a) dG=(B)
= foDsO(t;v) dGi(y — B) dGy(B)

= sto(t; v) dG (),

employing (3) and Theorem 5 of [13]. In view of the one-to-one correspondence
between c.d.f.’s and c.f.’s, this implies that H is a G-mixture of § = {F(x; a)}.

In proving the converse, we suppose 7 = 2 (and the distributions discrete)
for brevity’s sake. By hypothesis,

[ ot a6 [ ot 8) daue) = [ otev) aaty),

where we may choose

”'Gx(ao) = 1 —% = 1 - #Gl(al)
pos(B) = 1= = = 1 = oy(B).

Since G = Gy * G, o(t; a; + Bj), 1, = 0, 1, belongs to the class of transforms
of g, i.e., the domain D of « is an Abelian semi-group and

[n 1t w) + %¢(t; al):| [n =1t 80) + ;llsa(t; Bx):l

n n

2
- (n " 1) olt; a0 + 80) + 2oL lp( @ + 8) + o6 a1 + B0)]

nZ
1 .
I n2¢’(ty [231 l 61)0

Letting n — «, we see that ¢(¢; o) -0(¢; Bo) = ¢(t; a0 + Bo). The conclusion
now follows from the fact that a, and B8, are arbitrary points of R™ (or some
measurable sub-region D thereof).

CoORROLLARY 1: An infinitely divisible mizing (G) of an additively closed family
(F) yrelds an infinitely divisible mixture (H).

CoroLLARY 2: The convolution of two compound Poisson distributions (see
Section 1) is again a compound Poisson distribution whose mixing c.d.f. vs the
convolution of the two given mixing c.d.f.’s.

This was proved by Feller [8] and follows from Theorem 3 by taking m = 1,
D, = [0, »), o(t; @) = exp {a(ei* — 1)}. For this same choice of ¢(¢; a), Corol-
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lary 1 appears in [11a]. Similarly, for m = 1,
Dy = [0, ©), o(t; @) = exp{—a|t|?, 0 <8 =2

we have

CoROLLARY 3: The convolution of two mixtures of symmetric stable distributions
of fized exponent B is again a mixture of the same type with mixing c.d.f. the con-
volution of the given mixzing c.d.f.’s.

Let m = 2, D, = R,

D, = [0, @), ¢(t; a1, @) = ¢(t; 8, ) = exp {0t — o'1'/2}.

By an extension of terminology, a mixture of normal distributions (on both
parameters) might be called compound normal. Then Corollary 2 remains valid
if everywhere therein the word ‘“Poisson” is replaced by the word ‘“normal”.

In [18], it was shown that, except for a pathological case (arising when «
varies in a continuum and which may be excluded by a slight additional assump-
tion), if § = {F(z; &)} is additively closed, then ¢(¢; ) is of the form

=1, [fi(D]%;
specifically, for m = 1,
(4) e(t;a) = [0())]°, az20,

where ¢(t) is a c.f. independent of «. In order to avoid detailing the conditions,
let us say that § ¢ 1 if (4) holds. Most of the classical one-parameter families
of distributions belong to Cf .

We pose the question whether a G-mixture of &, with § ¢ Ci, may itself be
an element of §. If § is the additively closed family of unitary distributions,
ie. o(t; @) = [€"]° all real a, then the very definitions of c.f. and mixture show
that any non degenerate c.d.f., H, is a mixture (in fact an H-mixture) of § and
hence not an element of §. The following theorem shows this situation to pre-
vail under considerably less trivial circumstances.

THEOREM 4: Take m = 1 and let § = {F(z; a)} £ Cy . If

(1) ¢(¢; &) s real-valued (for real t) and lim.., ¢(t) = O for t, finite or in-
Sfinate or

(ii) {F(x; @)} has finite second moments and non-zero first moments then no
G(a)-mixture of F belongs to F.

Proor: If a G-mixture of & is an element of &, say with c.f. ¥(¢) = [¢(?)]",
v = 0, we have

(4.) [ br @ =¥ = bor
or

(42) = " (1 d6(a) + [ tewr aate)
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In case (i), if G(y +) = 0, letting t — ¢, in (4.2), we reach the contradiction
1 = 0. Since G(y +) — G(y —) = 1 is precluded, G(v —) = p > 0and we
may choose ¢, 0 < ¢ < v such that G(y — €) > 0. Also, if ¢ is finite, we may
take it to be the smallest (positive) zero of ¢(t¢) in which case ¢(¢) > 0 for
|[t| < t whether ¢, is finite or infinite. Thus, for |¢| < ¢, from (4.2)

| > fo T 01 4G (a) 2 (O] Gy — €

which is clearly impossible for ¢ sufficiently close to ¢ .
In case (ii), since the c.d.f. of ¥(¢) has finite second moment and the first
and second moments of F(z; a) are — ia¢’(0) and

— ¢ (0) + ale”(0) — (¢/(0))]},

it follows that G' has its first two moments finite whence differentiation under
the integral sign in (4.1) is permissible. Thus, for ¢’(#) = 0,

W)/ (O] = [ ale()]*7dG(a)
and for ¢(t)-¢'(¢) # 0,

ay XL X (BN - [tor a6 - ([ dor aot).

l¢']? ep
When ¥ = ¢, (4.3) becomes

) 70 = b OF = [ d6(a) - ( [alo a6}

for all ¢ such that ¢(2)-¢'(t) # 0.
Since ¢'(0) = 0, we may substitute ¢ = O directly in (4.4) obtaining

0= [[a— [adG(a)] dG(a)

which implies that G is a unitary distribution.

In the case ¢'(0) = 0 but [ o’ dG(a) < o, there exists an interval [0, ¢)
in which ¢'(¢) # O since the contrary would imply ¢(¢) = 1 in [0, €), hence
(1) =1 = o(; a) and uge degenerate. Consequently, (4.4) holds for a sequence
of t-values approaching zero and, by continuity, at zero also, again yielding the
prior contradiction.

Note that Theorem 4 does not preclude [ [¢(1)]* dG(a) = ¢(at) for some
real a; here G(a) = G.(a). Taking ¥(t) = ¢(at) in (4.3), we see that under
(ii), @ = 1 (with equality rendering G' degenerate). Example 1 of section 5
illustrates this possibility.

CoROLLARY: No mizture of symmetric stable distributions with fized exponent 8,
(0 < B = 2) is a symmetric stable distribution with exponent B.

On the other hand, Wintner [20] has shown that any symmetric stable dis-
tribution of exponent 8 (0 < B8 < 2) is a “mixture” of symmetric stable dis-
tributions of some fixed larger exponent v (with a non-finite “mixing measure”).
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When m = 2, there is much greater latitude for a G-mixture of {F(z; a)}
since in the representation of ¢(¢; @), fi(¢) and f(¢) need not both be c.f.’s and
even when they are, a; or a; may assume both positive and negative values.
The next section deals with this case when ¥ is the two-parameter family of
normal distributions.

4. Mixtures of normal distributions. On occasion, the underlying population
(distribution) of interest to the statistician is not prescribed to be normal but
rather is generated by selecting one of a collection of alternative normal distri-
butions according to some probability mechanism or scheme. If the resulting
mixture of normal distributions is itself normal, many classical results may be
utilized.

Consider, therefore, mixtures of the two-parameter family of normal distri-
butions and under what circumstances, i.e. for what measures u, such mixtures
may themselves be normal.

Define ®(z) = (1/4/27) [ ¥ dy and ®(z; 6, ¢*) = ®(z — 0)/c, where
fcR' and o ¢ (0, ). The question arises whether “degenerate normal distri-
butions” (viz., ¢ = 0 which is interpreted as ®(z; 6, 0) = 0, =< 6 and
®(z;0,0) = 1, z > 6) should be mixed; these will be banned because if u as-
signs measure one to {o° = 0} an arbitrary distribution may be thereby obtained.

If G(6, o°) is a c.d.f. which is zero on the lower half and boundary (¢ = 0)
of the (6, ¢") plane and u(6, 0*) = pug is the corresponding measure on the Borel
sets of R, let

(5) H(z) = fR2<I>(x; 8, c*) dG(6, ¢*) = fRz P <$ : 0) dp.

The class 3¢ of mixtures (5) of normal distributions is by no means identi-
fiable (see section 1 for definition); this will be apparent momentarily if it is not
already so. On the other hand, the class 3C, (respectively, 3C,) of mixtures on
means only (respectively, on variances only) is identifiable.

For 3¢, may also be characterized as the class of c.d.f.’s containing a fixed
normal factor with mean zero and specified variance, say unity. Since the normal
c.f. is non-vanishing, ® * G; = & x G, implies G; = G, which is therefore tanta-
mount to the identifiability of 3C,. (Of course, ®(z; 0, i) * Gi(z) =
®(2; 0, o5) * Go(z) has solutions Gy 3 G if o1 # o, but this is not the issue).

If H ¢ 3¢, , we may suppose without loss of generality that its mean is zero,
so that its cf. is [§ exp {—#¢°/2} dG(s"), whence the identifiability of 3c, is
an immediate consequence of the uniqueness theorem for Laplace transforms.

In returning to a consideration of 3¢, we note that by integrating (5) over the
regions 8 < z and 6 = x, u{f < 2} < 2H(z), p{6 = 2} < 2[1 — H(z)]; that
is, the “tails” of the distribution of means () are dominated by those of H.*

Since 6 and o are Euclidean “random variables”, a conditional distribution
of 6 given ¢ exists. Denote it by G.2(8) and let ¢,2(¢) be the corresponding c.f.;

4 If the distribution of means is degenerate, equality may hold in the second relation-
ship for some z.
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also, define Gy(¢’*) = u{d’ | ¢ < ¢’*}. Then (5) may be rewritten as

a@ = [ [ e (’” - )dG.:(e) dGy(o")

- fo T 18020, o) 5 Goa(2)] dGr(o).

(6)

Since H is a Gi-mixture of the bracketed family of c.d.f.’s its c.f., say ¢(¢), is
given by

(7) o(t) = [’ ¢ 00 (t) dGi(d%).

Equating the real parts of (7), we note that, if H is a symmetric c¢.d.f., i.e.,
¢(t) is real-valued (e.g. normal) and a w-mixture of {®(z; 6, ¢°)}, it is also a
u-mixture of {®(z; 6, o)}, where u is such that the c.d.f.’s G,2(8) are symmetric.

We turn directly to the case H(z) = ®(x; 6, o3) for fixed 6, oo > 0. The
fact that ¢° then has a bounded spectrum (see Theorem 6), together with the
domination of the tails of the 6 distribution by those of the normal (see the
paragraph preceding (6)), insure that G(6, o’) has finite moments of all orders.

If &(z; 6o, og) is a G-mixture of {®(z; 6, ¢°)}, then, replacing z by ooz + 65,

® 2@ =[ 2 [“‘ = ("0703")/ ("")] a6, ) = [ (x = ") 4G (o, %),

and we therefore suppose without loss of generality that 6, = 0, oo = 1. Taking
(bilateral) Laplace transforms in (8), we have

(9) et = [ e, o).
R

Multiplying (9) by exp {8s°/2}, replacing s by s(1 + g)* and changing integra-
tion variables shows that, if ®(z) is a G-mixture of {®(z; 6, ¢°)}, it is likewise a
Gg-mixture of {®(x; 6, ¢°)}, where Gs(6, *) = G(67/1 + B, * (1 + B8) — B),
8 = 0. (Note that since the mass of G is contained in the strip 0 < ¢* < 1
(Theorem 6), the mass of Gg is constrained to lie in the strip 8/(1 4 8) =
o £ 1.) Thus, contrary to the Compound Poisson case, specification of H by
no means determines the mixing measure u.

Now the representation (6), with H(z) = ®(z), elicits the obvious ‘solu-
tions” G,2(8) = &(0;0,1 — ¢°), Gy(o*) = arbitrary c.d.f. on (0, 1). On the other
hand, the following easily proved

Lemma: ¥(z) = (1 + d)®(z; 61, 01) — d®(x; 6;, 03), d > 0, s a c.d.f. if
and only if 02 < 01, and

1 (6 — 61)
d?t = ﬂexp{—-————'—(i 12 }—— 1,

g2 2 gy — 02

shows that



MIXTURE OF DISTRIBUTIONS 65

©

O é g1
Gl(az) = ( +d)7 e < Lo
1, > o
G(0) = (1+ d)®(6;0,1 — o1) — d®(6; 6;, 05 — o})
0,0 < 6,
G2(8) =
1,6 > 6,

also constitute solutions when d, 6., o1, o2 are as prescribed. We have thus
proved (with the exception of the parenthetical statement which follows from
Theorem 6)

THEOREM 5: Suppose (as the conclusion requires) that ule?|¢® > o3} = 0.
Then a sufficient but unnecessary condition that a u-mixture of normal distributions
be normal with mean 6y and variance oy is that the conditional distribution of 6
given o* be normal with mean 6y and variance oy — o for all values of o for which
it s defined.

Naturally, (8) imposes contraints on the distributions of means 6 and vari-
ances o> and we now proceed to establish some of these.

THEOREM 6: In order that a p-mixture of normal distributions be normal with
mean 6y = 0 and variance o5 = 1, it zs necessary that

(1) u{a‘ |cr > 1} =0 = u{6 ¢’ |c® =1, 0 = 0}. Hence it may be supposed
thatua la =1 =0.

(11) p{ﬂ, g T—-—f—c—ré > C} . u{ﬂ, 7

8 <« _clsoanc>o,
1 — o2

(/]
(iii) j; exp 2(T—_)] dy = o,
(iv) u{0||6’| < e ufo, o |0 < ¢’ log. 1/4°} > 0,
(v) the 6-spectrum of p not be confined to a subset of numbers in arithmetic
progression; further, for all integers m (all real b) and all integers n = 1,

n—1 . .
_ &+1&+3]
‘%“Vﬂg[ g 8n b
where ¥ signifies the fractional part of v and eithery = 6 — m/n or y = b6.
Proor: Rewrite (9) as

(6.1) 1 =f pl@3—De2 /210 du.
R2

Suppose now that for some ¢ > 0, B, = {¢’ | ¢°

g
ure. Then for sufficiently large C, so does A
s real, (6.1) implies

2 2 — 29—
1 g ‘/;e[(a' 1)s2 /2] —0s let g ees 12 Clsl}l,{A}.

= 1 4+ € has positive u-meas-
B, - {0[ | 6] £ C}, whence, for

§ The writer cordially thanks his colleague Prof. Michael Golomb for helpful conversa-
tions relating to an early version of (ii).
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For sufficiently large s, this is manifestly impossible. Thus p{BJ} = 0, all ¢ > 0,
which implies the first equality in (i); the second follows in similar fashion from
(6.1). Further, if ue assigns measure po > 0 to the point 6§ = 0, o = 1, sub-
tracting pe®(z) from both sides of (8) and dividing by 1 — po, a new related
mixture p* is obtained for which p, = 0. Generality is clearly maintained in
supposing u = p*.

To prove (ii), let W = {6, ¢" |0 < ¢ < 1} and observe from (6.1) and (i)

that for all real s
0 2
1 — 0_2] } d#l )

f - 2-0s du = f exp{ 1-—-y¢ )[
w w 2

exp {6°/2(1 — &)} du. If, now, for some C > 0,
ulf, 0" 6/(1 = o) > C} =
then s; < 8 < — C would imply

foof=05 2 s 2o
YRR A

in violation of (6.2). The remaining part of (ii) is analogous.

If (iii) did not obtain, it would be legitimate to let s — o within the second
integral of (6.2) and conclude that 1 = 0.

As remarked in a more general context in Section 1, (8) implies a correspond-
ing relationship for densities (here multiplied by +/2), namely

(6.3) e = f le"(x—o)zlzﬂ du,
R

20

(62) 1

where du;

which, evaluated at £ = 0, becomes

1 2202
_60/20 d}l,.
R2 O

(6.4) 1=

The integrand of (6. 4) cannot be less than one on a set of u-measure one which
is equivalent to u{f, o | 6 < o° log. ¢} > 0. The remaining portion of (iv)
follows by noting that the first part implies u 0[ 10] = ¢!} > 0, and conse-
quently uf 0] 16| < £ ~H > 0, since the negation of the latter would entail
| |6 = ¢? o' = ¢} = 1, which is easily seen to be incompatible With
(6 3) (iv) also follows from [ [®[(z + 8)/0] + ®[(z — 0)/0] — 2®(z)] du =
Next, set s = ¢ in (9), obtaining

(65) e—ﬂ/? — f e(~62t2/2)+iw dG'(G, 0_2).

If, in violation of the first statement of (v), the 8 spectrum is concentrated at
points @ + kb where a, b # 0 are real (b = 0 requires a = 0; this case is ruled
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out by the corollary to Theorem 7) and k varies over some subset of the integers,
take t = 27 n/b in (6.5) obtaining

(6.6) 1 = fem""z)"z"%—z cos 2mn a/b du

for all integral values of n. If a/b is rational, say a/b = m;/m, where m; and m;
are relatively prime integers, (6.6) is contradicted by choosing n = m. and
n = 2ms . On the other hand, if a/b is irrational, n may be selected such that
the fractional part of na/b lies in (%, £) thereby rendering the integrand of (6.6)
negative.

To demonstrate the second part of (v), take { = 27 n in (6.5) obtaining

1= fexp {2r"n*(1 — ) + 2nwi(o — m/n)} du

= fexp (20°n°(1 — o) + mi(2nj + 2k + €)} du,

where j, k, n, are integers and ¢ = (0) lies in [4, 2]. Since the real part of the
integrand is non-positive on a set of measure one, there is a gross contradiction.
If v = b0, set £ = 27 nb after which the argument is the same. Q. E. D.

For any c.d.f. G satisfying (8), let ¢e(t, u) denote the corresponding c.f. In
view of the domination of the tails of the 8 distribution by those of ®(x), ¢e(Z, 0)
is defined and convergent for all complex Z. Also, since o has a bounded spec-
trum, ¢¢(0, w) is an entire function of w. But then (see e.g. Theorem 2 of
[19]) ve(Z, w) is jointly analytic in Z and w. Thus, from (6.5) we see that
0e(Z,12°/2) = e~2" for all complex Z but this is insufficient to characterize
Pe(z,w).

In the case of product measure, the class of measures u satisfying (5) is given
by

TaEOREM 7: A product-measure mixture of normal distributions is normal with
mean 6, and variance o5 if and only if for some o} in (0, o5), Go2(8) =
®(6; 6, o5 — 03) and G1(a*) is degenerate at o3 .

Proor: Sufficiency is obvious and subsumed in Theorem 5. To prove necessity
note that, since G,2(8) is constant with respect to ¢°, (6) simplifies to

®(x; 00 ,00) = Goa(z)* [§ B(x; 0, 0°) dGi(d”).
By the theorem of Cramér-Lévy this requires that both factors be normal with
moments which add to 6y, o5 . By the identifiability of ¢, , the second factor is
normal if and only if G; is degenerate.

CoROLLARY: A mixture of normal distributions with identical means cannot be
normal’.

It follows immediately from (ii) or (iii) of Theorem 6 that a finite mixture of
normal distributions cannot be normal (recall that finite here signifies at least
two). Furthermore, as a direct consequence of Theorem 7, a countable product-

¢ This corollary and the fact that G, is degenerate also flow from Theorem 4. The former
is also implicit in a theorem of [2].
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measure mixture of normal distributions is non-normal. It seems intuitively
plausible that no countable mixture of normal distributions {®(z; 8;, o3)} is
normal and if the variances ¢} have a minimum, this is indeed the case. This
follows from a somewhat more general proposition.

Suppose that u is such that for some real 6, and oo > 0, pfe’ |6 < o3} = O
while

=6\ _
2=a’«2)}—p0>0'

I {0, o 9
d

Then from (6.5) for any u satisfying (8)

—t2/2 —o2e2/2+ith —02¢2/2+it0
e /=poe"o/+‘°+fe“ i gy,
s

o = 0(2),0?500
or ¢ > ot '

where S = {0, 7

2 . 2 .
— (1~ t2/2 to — (02— t2/2+it
Thus, ¢~ """ = pye* + fse (oo B0 g

Since both terms on the right hand side are (to within constants) c.f.’s, this
would imply that a continuous c.d.f., namely, ®(z; 0, 1 — ¢3) was a mixture of
a discrete and some other distribution, which is patently false. Thus, if a u-mix-
ture of {®(x; 6, ¢°)} is normal, the mixing measure cannot be as supposed here.
In particular, if the infimum of the variances is attained, a countable mixture
of normal c.d.f.’s is non-normal. If it is not attained, we may suppose that a
subsequence of variances approaches zero, whence from (iv) of Theorem 6, it
follows that the same conclusion holds if zero is not a value or a point of accumu-
lation of {6;}.

According to (v) of Theorem 6, a countable mixture of normal ¢.d.f.’s cannot
be normal if the means are a set of numbers in arithmetic progression (or a sub-
set there of); the case of only finitely many different means can be disposed of
by a number-theoretic argument but the question of an arbitrary countable
mixture remains open.

Given any bounded sequence {¢3} of (distinct) positive real numbers, say in
(0, 1) and arbitrary positive e, there exist sequences {6,}, {c¢;} with ¢; > 0,
> %1 ¢; = 1 such that

sup. | Dpe1 ¢(x; 85, 07) — ®(z) | < e

This statement follows from Theorems 1 and 5 and shows that a countable
mixture of normal distribution can be arbitrarily close to a normal distribution.
The known relationship

° 1 -z2/4a] o )
e e “da=2c¢e
fo [2\/1ra *T3

reveals that an exponential-mixture of normal distributions (with identical
means) has the so-called Laplace distribution.

b. Generation of mixtures. If (X, ) have a joint distribution in R™"" then



MIXTURE OF DISTRIBUTIONS 69

H(z) = [F(z|a) d@(a) and (dually) G(a) = [ K(a|z) dH(z). Moreover,
if for some measure » on R™ (independent of z), dK/dv = k(a | z) exists, then
the Radon-Nikodym derivative dG/dv = g(a) = [Zsk(a|z) dH(z) likewise
exists and H is representable in the form

k(e | y) dH(y)

" o | y) dH() ’
(10) H(z) =f '['” g(a) dv =f '[: du.
" o(e) " ke | y) dH(y)

Since H is a c.df., du = gdv represents a probability measure. If, in addition,
h(z) = dH/d\ exists for some linear measure X\, dF/d\ = f(z|a) =
k(a|z)h(z)/g9(a) whence

g(a)
When m = 1, a concentrates on 0, 1, 2, «--- and » is counting measure, the

preceding reduces to
(12) h(z) = Xiogif(x]g) with f(z|5) = k(i|2)h(z)gi"

and (dually) g; = [k(j|2)h(z) d\ with k(j | 2) = gif(z |5)R(2)]"

In particular, if k(a|z) = 1 for zels = (@a, Gat1) and zero otherwise where
Gy = —®, liMpwp @ = +» and @o < Gui1, @ = 0, 1, 2, --- then g(a) =
H(@ap1) — H(a.) and (10) exhibits any non-degenerate c.d.f. H as a finite or
countable mixture of c.d.f.’s H, formed by truncating the distribution H out-
side I, If ay = -+ » for some finite integer N > 0, the mixture is necessarily
finite. This method of splitting apart and splicing together a c.d.f. is somewhat
artificial but other choices of k(e | ) yield more interesting mixtures.

A slightly altered formulation leading to (12) (or (11)) starts with the
selection of non-negative measurable functions g;(z) and constants a; = 0 for
which g(z) = D i ajg;(x) is positive and finite on a set S of positive Lebesgue
measure. If h(z) is any p.df. with spectrum S and such that 0 <
[sgi(@)h(2)[g(x)] " dx = b; < »,j =0,1,2, ---, then h is a ¢;mixture of
{fi(z)} where ¢; = a;b; and fij(z) = g:(z)h(z)[big(2)]™, x ¢ S and zero else-
where. Note that k(j | ) = aig;(z)lg(x)]™" ‘

An interesting particularization arises from taking g;(z) = |z|’, a0 > 0.
Thus, if g(z) = D0 a; |z |’ converges for z ¢ S and & is as just indicated, the
prior conclusion holds with f;(z) = (|2 I’n(2))/(big(x)), x ¢ S and zero else-
where.

Ezample 1: Gamma distribution as a negative binomial mixture of commonly
scaled but differently exponented Gamma c.d.f.’s.

Let @ > 1, A > 0 and choose g(z) = e p(z) = ¢ [T(\)] on
S = (0, ®).Thenb; = a **T(\ +HICT Y ¢j = (—;\) aMa™ — 1) and

-1 -
5 e az

x
f,(x) = m on S.



70 HENRY TEICHER

In the earlier notation, k(5 |z) = 1/5l¢“"*[(a — 1)z]’. This example appears
in [14] with A = n/2 and a change of scale.

Ezample 2": Select g(z) = o exp {(&*/2)(1 — ¢°)/d%}, 0 < o* < 1 and
h(z) = ®'(z). Then

21 5
- iﬁ) o ay = '2] ((1 = &%) /%), Gy = 0,

j 27 i )
whence
— 2j 2\J zj].!(zﬂ’)‘% 2j -—:c2/2<72 >
/ — 2 2j ’ | — J J L.
¥() = 52 (F) o oty | IO, = 3 edita),
expressing the normal density function as a discrete mixture of the bracketed
densities f;(x).
The c.f. (see appendix) of f;(x) is
sz(t) ~g2t2/2
t e s
pi(t) = o)
where
22 25 d2 »—t2/2 2j . 2(j—1)
Hyy(t) = e (=1) 256 Z( o ) (13 <+ (20 = D¢

is one version of the Hermite polynomial of order 2;j. The preceding bracketed
expression is defined to be one for 7 = 0.

The restatement of the mixture in terms of c.f.’s yields an exponential expan-
sion in terms of even degree Hermite polynomials, viz.,

o exp {—f/z (L;f"f» > (;,1) (M2M> Ho(0),

which is virtually that of [12, p. 580].

Example 3: () as a more elaborate mixture of normal distributions.

Let {Q:(x)} be a sequence of positive definite quadratic forms with D2, Q,»(x)
= w. Take k(j|z) = exp { =12 71 Qiz)} — exp|— ijéQ (2)}
j=0,1, -+ and define constants ¢; , 0;,s;,j = 0by ® (z) exp{ —31 > 10 Q; (x)
= ¢;/s; ¥ ((x — 6;)/s;). It follows that g, = ¢; — ¢;41 > 0, and letting d;
= cin/(¢; — ¢j41),

F(,’C ‘.7) = (1 + dJ)cb(x> 05, S?) - de)(I, 011 13?+1)-

Now {s;} is decreasing and positive and if ¢; is sufficiently small, F(z | ) con-
tains the factor ®(z; 0, ¢7) and is thus representable as

F(x|j)
= (23 0, 3)*[(1 + d;)®(x; 05, §f — o}) — dB(; 141, Sfa — o5)].

L\ he leieree has pointed out that example 2 may be obtained directly from example 1.
He has also suggested a reformulation of the main idea of this section, leading to greater

cohesion.

(13)
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If the o} are distinct, the bracketed term may be regarded as the value at o = o
of a conditional distribution function G,2(z) and the mixture D _j-og; F(x |j)
has the structure (6), viz.,

®(z) = D70gil®(2/0;)+G}(2))]

with Gy(¢*) discrete.

In particular, if Q:(z) = (2° — 2z — 2In a) where 0 < a < e"*, calculations
yield 0, = j/(j + 1), s§ = 1/(j + 1) and d; = ¢;/(1 + ¢;) where g
=a((j + /G + 2)! expld — 1/(2G + DG + 2))}. Finally, if o]
< (1 — d’%)/(j(1 — d’) + 2 — d’e), the bracketed quantity in (13) will be a
c.d.f.

6. Remarks on the compound poisson distribution. It seems of interest to

note that the problem of mixtures of Poisson distributions is intimately linked
to the moment problem. Since, as mentioned earlier,

Hiz) = fz“e.adma)

i<z

is a discrete c.d.f. with saltuses at the non-negative integers, it is completely
characterized by the probabilities

P = j=0’1’2""
Let G*(a) = 1/po [§ ¢ ¥ dG(y). Then G* is a c.d.f. and
Ny o
J_-Bz=f o dG*(a), i=01,2 -
Po (]

Consequently, in order that a discrete distribution characterized by mass p; atj
(j = 0,1,2, --+) be a mixture of Poisson distributions, it is necessary that the
sequence {7!p;/po} be a moment sequence for the Stieltjes moment problem. In
partlcular it is necessary that the determinants (¢, j = 0, 1, --- n) A,
= |+ 7)pi+il, An = |(i'+ j 4+ 1)!piy;n | be non-negative for every non-
negative integer n. Conversely, if {;!p;/po} is a moment sequence on (0, ) and
the corresponding distribution G*(a) is such that [§ e*dG*(a) = 1/py < =,
then D_jc.p; is a compound Poisson distribution with mixing ec.d.f. G(a)
= po [0 e* dG*(u).
It is easy to see (and pointed out in [8]) that the class of compound Poisson
distributions is identifiable. Thus, a mixture of Poisson distributions cannot be
Poisson. ‘

APPENDIX

We show by induction that the c.f. of f;(x) of example 2 of Section 5 is

oy - Haiat) —oriape
¢](t) = Hz,(()) 4 )
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where

. 22 _1)\% d” —t2/2 3 _1)¢ 2j . 2(j—1)
Hyi(t) = e"'*(—=1) 7 € _.;o( 1) Py [1.3...(2 — 1)]¢

is a version of the Hermite polynomial of order 2;. The preceding bracketed ex-
pression is defined to be 1 for ¢ = 0.

This is evident for j = 0 and (supposing ¢ = 1 for simplicity) follows, for
j = 1 from

T [xze—zz/z] T I:e_""zl2 + _‘?_‘; e—z2/2] =t tze—zzlz,
vV 2r Vor  dx? /2x

where T denotes the operation of Fourier transformation. In general, it suffices
to verify that for j = 2, '

(14) T [\7}2]_ e—-zz/z:l _ (—l)jH2j(t)e—‘2/2,

27
Now
2, 23—z d’ o

—t“T[x"e 2]=T[%5xe ]

= T — (45 + )27 + 25 (25 — 1)2" %=/,
Hence, if (14) holds forj — 1 and j(j = 1), it holds for j + 1, since
Tz ™" = (1) (£ — 45 — 1)Hai(t) — 2i(2% — 1) Hasa(t)}

= (=1)""Haja(t)e""
in view of the recursion relation (verified by direct substitution)
(8 — 45 — 1)Hpi(t) — 2j(2] — 1)Hzjea(t) = Hajua(t),§ Z L.
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