ON THE NONRANDOMIZED OPTIMALITY AND RANDOMIZED
NONOPTIMALITY OF SYMMETRICAL DESIGNS!

By J. KIEFER?

Cornell University

0. Summary. Many commonly employed symmetrical designs such as Bal-
anced Incomplete Block Designs (BIBD’s), Latin Squares (LS’s), Youden
Squares (YS’s), etc., are shown to have optimum properties among the class of
non-randomized' designs (Section 3). This represents an extension of a property
first proved by Wald for LS’s in [1]; a similar property demonstrated by Ehren-
feld for LS’s in [2] (as well as a third optimum property considered here) is shown
to be an immediate consequence of the Wald property, and the Wald property is
shown to be the more relevant when one considers optimality rigorously (Sec-
tion 2). Surprisingly, all of these optimum properties fail to hold if randomized!
designs are considered (Section 4); the results of Sections 2 and 3, as well as those
appearing previously in the literature (as in [1], [2], [3]) must be interpreted in
this sense. Generalizations of the BIBD’s and YS’s, for which analogous results
hold, are introduced.

1. Introduction. Wald [1] stated an optimality criterion (called E-optimality in
Section 2) for designs used in testing hypotheses in the setting of two-way soil
heterogeneity where LS’s are commonly employed, and succeeded in proving
that a slightly different criterion (called D-optimality in Section 2) is satisfied
by the LS design. Wald also stated that an analogous result holds for Graeco-
Latin Squares and higher Latin Squares. This statement gives rise to speculation
when one considers that, in a 3 X 3 Graeco-Latin Square (or, more generally, in
an n X n square of order n — 1), there are no degrees of freedom for error: this
implies that any test (e.g., of the hypothesis H, that there are no treatment
effects) whose size (= supremum of the power function under Hp) is «, has a
power function whose infimum over any of the contours usually considered
W)/ o® = constant, as discussed in the sequel) is Sa. It is easy to construct a
better design, i.e., one for which the infimum of the power function of some test
over such a contour is > the size of the test; for example, for each of the two
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1 One of the referees of this paper felt that the following remark on nomenclature should
be included: Throughout this paper, the term randomized design is used in describing a
statistical procedure which chooses according to a prescribed probability mechanism a
member of a given class of ordinary designs, the chosen design being the one actually used;
a precise definition is given in the text. The properties of such a procedure take into account
the probabilities of the various possible choices. A nonrandomized design chooses one member
of the given class with probability one. The customary usage of the phrase randomized design
in the design of experiments can be viewed as a special ease of the decision-theoretic usage
employed here, but the reader is warned not to interpret the phrase in that narrower sense.

2 Research sponsored by the Office of Naval Research.
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676 J. KIEFER

factors, with probability 3 use an ordinary LS design on the three levels of that
factor holding the level of the other factor fixed.?

The phenomenon just described makes one wonder whether the optimality
result for ordinary LS’s also fails to hold if one permits comparison with ran-
domized designs.' At the same time, the question arises whether an analogue of
the limited optimality property of the LS (or Graeco-LS) design holds in a wide
class of design settings for designs with suitable symmetry properties, and
whether these designs fail to be optimum when compared with randomized
designs." This paper answers these questions affirmatively.

In Section 2A we define four optimality criteria ( D-, E-, M-, and L-optimality)
for designs (especially, for the normal case); Wald [1] and Ehrenfeld [2] proved
D- and E-optimality, respectively, for the LS design. It is indicated why M-
optimality, the strongest and least artificial of the four, seems very difficult to
verify in most problems (although L-optimality, which is a local version of M-
optimality, can sometimes be verified). At the same time, we list briefly for later
reference the known results on the Analysis of Variance Test which are used in
optimality considerations, and point out the incorrectness of tacitly assuming
(as previous work in this area has done) that one should use that test, whatever
design is chosen. In Section 2B we indicate by example why E-optimality seems,
at least in the present state of knowledge indicated in 2A, the least satisfactory
of the criteria considered; the connection of D-optimality with Isaacson’s notion
of type D tests [11] is examined. In Section 2C it is shown in a general setting
where there is suitable symmetry that D-optimality implies E-optimality and
L-optimality.

In Section 3A it is indicated why the treatment of LS’s is much simpler than
that of YS’s, BIBD’s, etc., and the general treatment of incomplete block designs

3 Tt should be evident that the example of the 3 X 3 Graeco-Latin square, as well as the
example discussed in the fourth paragraph below wherein two observations are taken, are of
no practical importance; these simple examples are given to illustrate the general principles
of Section 4. Those principles show that a precise study of certain optimality criteria for
designs associated with familiar problems of testing hypotheses, can lead to the unexpected
conclusion that certain intuitively unappealing randomized designs are superior to certain
intuitively appealing nonrandomized symmetrical designs. The principles are less trans-
parent (although applicable) in the context of applicationally meaningful problems such as
those of Section 4, than in the simple examples; hence, the latter examples are discussed
first. The present comments are included because two referees apparently read these simple
examples as practical suggestions. In the same light, it is clear that the design § in the
fourth paragraph below, as well as its analogues in Section 4, is not suggested to the prac-
tical worker who wants estimates of all treatment effects; for these designs illustrate a non-
optimality property of classical nonrandomized symmetrical designs in hypothesis testing,
and a local property at that (see Section 6.4). In fact, the results of Section 4 are not even
relevant for most estimation problems (see Section 5.2). To the practical worker who objects
(as at least one has) to the conclusions of Section 4 on the grounds that one should not use a
design which does not estimate all treatment effects, it should be pointed out that (1) the
classical nonrandomized symmetrical design may still possibly possess certain global
optimality properties (see Section 5.4), aud (2) perhaps his problem is not really one of
testing hypotheses.
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of Bose [4] is briefly recalled ; this treatment proves more useful in Section 3C than
the more direct least squares approach used in [1] and [2] would be. In Section
3B several algebraic propositions (epmphasizing the role of symmetry) are
verified, which can be used to prove D- and E-optimality in important examples.
Several such examples are considered in Section 3C, including generalizations of
the BIBD’s and the YS’s.

Section 4 contains two theorems the consequences of which are that non-
randomized symmetrical designs are not optimum if randomization is permitted.
In Section 4B it is shown that, whether or not the variance is known, for «
sufficiently small there is a randomized design whose power function is uniformly
larger than that of the symmetrical design in some neighborhood of the hypoth-
eses H, that all treatment effects are the same. This is slightly less transparent
than the result of Section 4A, which gives an analogous result for all « when the
above H, is replaced by the hypothesis that all treatment effects are equal to
some specified value. The latter result can best be understood by considering the
simplest example®: Suppose X;; normal with unit variance and mean u; and that
all X,;; are independent (¢, j = 1, 2). Our problem is to select (before observation)
exactly two of the X;; and use them to test u; = u; = 0 against some class of
alternatives. The symmetrical design d(say) selects Xy and X3 and uses the
usual x” test, and obviously has constant power > o on the contour ui + us =
¢ > 0, while either of the designs d; (z = 1, 2), where d; uses X;; and X, has
a for the infimum of the power function on this contour. Let 6 be the randomized
design' obtained: by using d; or d; with probability % each. It is easily seen that,
for u1 and pg near 0, the power function of 8 is & + ¢;(uf + uj) + terms of higher
order, where ¢; > 0. Thus, on the contour ui + uj = ¢ > 0 with ¢ small, the
power functlon of 6 is almost constant and hence approximately equal to the
value at w = (c/2) Thus, in comparing d and 6 near H,, we may to a
first approximatlon assume u; = up . But § is clearly optimum for testing u; =
w2 = 0 assuming w1 = uo, while d (whose test is based on X% 4 X3) is not.
This explains why, for ¢ small, § has a power function greater than that of d.

Many of the results of this paper have counterparts for problems of point and
interval estimation, for other distributions, etc. Such extensions and generaliza-
tions, as well as various other remarks, are stated in Section 5.

In design settings where no suitably symmetric design exists, it is often tedious
algebraically to show that a design which is “closest to symmetrical’’ is optimum
(if it 7s optimum: see the example of Section 2B), and we omit such consider-
ations here. On the other hand, the conclusions of Section 4 have little to do with
whether or not symmetrical designs are being considered.

Throughout this paper, except where explicitly stated to the contrary, ¥ will
denote an N element column vector whose components Y; are independent
normal random variables with common Varlance o® (it will be explicitly stated
whenever o is assumed known; whether or not ¢” is known has very little effect
on obur results); u is an unknown m-vector, X is a known N X m matrix de-
pending on an index d (the ‘“design’’) and which will be described further below,
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and the expected value of ¥ when u and ¢® are the parameter values and when
the design d is used is

(1.1) B, .dY = Xgp.

X, is, within limits, subject to choice by the experimenter. (In many applications
it is a matrix of zeros and ones.) We denote by A the set of chéices of the index d
which are available to the experimenter. A randomized design' § is a probability
measure on A (the latter will usually be finite in this paper, and measurability
considerations will be trivial otherwise) which is used by selecting a d from A
according to this measure and then using the selected d. We denote the class of
available § by Az .

In many problems, one imposes an additional assumption of the form I'u = v,
where T and v are known g X m and ¢ X 1 matrices. Such an assumption can be
absorbed into (1.1) and we suppose this to have been done, with no loss of
generality.

A hypothesis H, will in this paper be of the form Ru = 0, where R is a specified
r X m matrix (r £ m) which we can take to be of rank r with no loss of gener-
ality. For simplicity, we can think of the class H; of alternatives as being all u
for which Ru # 0. (For simplicity, we assume that ¢ is either known exactly or
else is known only to be positive, under both Hy and H,.) A hypothesis of the
form Ry = p is easily reduced to the above form by letting p satisfy Rp = p
and replacing Y by Y* = ¥ — Xgp and u by u* = p — pin (1.1).

We introduce some notation to be used in Section 2. We denote the & X £
identity matrix by I, . The transpose of a matrix A is written A’. It may or may
not be that all r elements of Bu are estimable when a given design d is used.
Suppose that there are s; linearly independent linear combinations of the ele-
ments of Ry which have unbiased estimators when d is used, but not sq + 1
such combinations. Then there is an s; X r matrix @ such that there exist linear
unbiased estimators of all components of Q:Ru when design d is used; let #; be
the ss-vector of such estimators with minimum variance (‘best linear estimators”
or b.le.’s), and let ¢’V,; be the convariance matrix of the components of f;.
When s; = r, we may take Q. to be the identity; for this choice of Qs , we shall
denote V; by V. Let bs be the rank of X,. Then there are b, linearly inde-
pendent combinations of the components of ¢ which are estimable when d is used.
Of these, s; of them can be taken to be the elements of QsRu; thus, there exists a
(ba — sa) X m matrix J, of rank b; — s; whose rows are orthogonal to those of
QsR (i.e., JiQ:R = 0) and such that all components of Ju have unbiased es-
timates when d is used. Let L; be the by X m matrix whose first by — s rows are
Ja and whose last s; rows are QqR. Let S, be the usual best unbiased estimator of
o® (if it is unknown), so that (N — bs) Sa/ ¢ has the x’-distribution with h; =
N — by degrees of freedom (it may be that ks = 0 and there is no S). For any
test ¢a associated with d, let By,(s, o’) be the power function of ¢4 (of course,
Bs, actually depends on u only through Lau). For 0 < a < 1 we denote by
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H(a) the class of all ¢4 of size a, i.e., all ¢, for which
(1.2) Bsa(n, 6°) < a whenever Ry = 0;

and by HJ (a), the class of similar tests of size a, i.e., those for which (1.2) holds
with the inequality sign replaced by equality. Finally, let Fg, denote the usual
F-test of Hy of size o with s; and hy degrees of freedom, based on £V i't:/34Sa
(if o* is known, this is replaced by the appropriate x’-test).

The symbol g;,;(a) is used to denote the derivative at H, of the power function
of the F-test of size a and 1, j degrees of freedom, with respect to (a common
choice of) the parameter on which it depends; specifically, if r = m = 3, N —
r = j, the matrices R Qa, and V; are the identity, and the true values of x and
o" are such that p'u/o® = A, then, as A — 0, the power function of Fj, . is

(1.3) a + gi (@ + OQD).

The results of this paper can be stated in a very general setting involving
invariance of A, of the restriction Ry = 0, and of a generalization of the function
¥ considered below, as well as of certain designs, under an appropriate group of
permutations of the components of u. However, in order to make our proofs
(and, in particular, the role of symmetry) as transparent as possible, we will
carry them out in two cases; the reader will not find it difficult to state our results
more generally by making appropriate linear transformations, etc. The two cases
(A and X, being further specified in particular examples; the role of the function
¥ which distinguishes contours on which the power function is examined, will be
seen in Section 2A) are:

Case I: Y =2 uland R = Ry ;
1
Case II: ¥() = 2" (wi — @)’ and R = Ry ;
1
here we have written u’ = (w1, -+, um), and @ = D1 ui/u, while R; is the

u X u.identity followed by m — u columns of zeros (so Rz = 0 means p; =
<oo = p, = 0),and Ryyisa (v — 1) X umatrix P followed by m — u columns of
zeros, where P consists of the last v — 1 rows of a u X u orthogonal matrix O
whose first row elements are all 1/ v/u (s0 Ryu = 0 means puy = --- = p,).
The optimality results which hold in Case I are usually much more trivial to
obtain than those of Case II, and Section 3B will therefore be mainly devoted
to results applicable to the latter case, it being clear how to obtain the corres-
ponding results in the former case.

2. Optimality criteria.

2A. Preliminaries. For a fixed design d, the test Fy . is known to have several
optimum properties, which we now list (there are obvious analogues when
o’ is known):
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(a) If s = 1 (and only then), among tests in H(a) which are unbiased (this
implies that the tests are in Hj(a)), Fa. is uniformly most powerful (UMP).
See [5] (a trivial completeness argument characterizing similar tests is all that is
required to allow the Jau which is not present in [5] to be introduced, carrying
through the argument there for each fixed value of the b.l.e. of Jau).

(b) Among tests in Ha(a), Fa4,. is UMP invariant (under the usual group of
transformations when the problem is reduced to canonical form). See [5].

(¢) (Wald’s theorem) Among tests in Hj (a), for each ¢ > 0, ¢ > 0, and
value of Jau, the test F, . maximizes the Lebesgue integral of v4,(», Jau, ¢°) on
the sphere »'» = ¢, where v = G;Q:Ru with G4 nonsingular s; X sqg is such that
the b.l.e.’s of the components of » have ¢* times the identity for their covariance
matrix (i.e., » is the vector of parameters about which H, is concerned in the
canonical form of the problem), and where v4,(GiQiRy, Jau, 0°) = Bos(n, o°).
See [6] or [7] (the parenthetical remark at the end of (a) is relevant to [7] here).

(d) (Hsu’s theorem, a consequence of (c)) Among tests in H4(a) whose power
function depends only on As = u'R'Q;Vi*Q.Ru/s" (this implies that the tests are
in Hj (), Fa,« is UMP. See [8].

(e) Among tests in Hy(a), Fq,. is minimax (over H,) for a variety of weight
functions, e.g., any nonnegative function of the As of (d); in particular, Fg .
maximizes the minimum power on the contour Ay = ¢ for each ¢ > 0. See [9] or
[10] (the result follows from (c) if we restrict consideration to Hy (a)).

(f) (A special case of (e)) Fa . is most stringent in Hg(e). See [9] or [10].

(2) (A consequence of (¢)) Fa,. is of type D in H(a). (See [11] or Section 2B
below for definition of type D, and Section 2B for a proof.)

It is to be noted that all the above criteria of optimality of the test Fa . are
relative to the design d. Thus, it is an error to assume (as has been done in pre-
vious papers on optimum designs) in a logical approach to optimum design
problems that one should automatically use the test Fa,, , whatever the chosen d,
when a reasonable criterion for optimality of a design, or of a test for a given design,
may dictate the use of a test other than Fgi,. . In fact, the example of Section 2B
really illustrates that the use of F4,, need not lead to an optimum design or test
for many reasonable definitions of optimality; and the fact that it seems diffi-
cult (for many reasonable optimality criteria such as M-optimality, and for
many common design problems) to characterize the appropriate test, is what
makes it much harder than it has been thought to give a rigorous demonstration
of the optimality of various common designs. We now list four optimality cri-
teria for designs (there are many other obvious similar ones); the discussion of
their meaning immediately follows the fourth definition.

M-optimality: For ¢>0and0 < a < 1, a design d* is said to be M a,c-Optimum
in A if, for some ¢+ in Hye (),

2.1) lnf Boras (u, ¢’) = max sup inf By (u, ),

deA ¢eHg (a) r,

where T, is the set of all x, o® for which ¢ ()/s’ = ¢
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L-optimality: A design is said to be L.-optimum in A if, for some ¢+ in Hye (@),

(2.2) lim [agss (©) — a)/[ble) — o] =1,

where age;s (c) and b(c) are the expressions on the left and right sides of (2.1),
respectively. A design is said to be L-optimum in A if it is L.-optimum in A for
0 <a<l

D-optimality: A design d* is said to be D-optimum in A if
(2.3) det V4« = min det V4,

dsA’

where A’ is the set of d in A for which sq = 7, and if d* ¢ A".

E-optimality: A design d* is said to be E-optimum in A if

(24) 7(Va) = ;18131,1 (V)

and if d* is a member of A’, where 7(V,) is the maximum eigenvalue of V.

The above definitions will also be used with A replaced by Az . In that case,
for any 8, ;" is defined to be the expected value under & of V7', the latter being
replaced by the inverse of the covariance matrix of the b.le. of the estimable
‘components of Bu (with zeros adjoined to this inverse in appropriate places to
make it r X r) if 84 < 7 Ay is then the set of & for which V' is nonsingular.
(This V;"' appears in computing certain 34, near H,.)

D-optimality and E-optimality have been discussed in [1] and [2] and will also-
be discussed in Section 2B, where it will be seen that they have to do with local
properties (near Ho) or optimum properties assuming the use of Fa,,. Unfortu-
nately, M, optimality in A (or, better, M. optimality in A simultaneously
for all ¢) seems very difficult to verify, even in many simple problems, although
it does not require much temerity to conjecture that it holds in such cases as
those discussed in Section 2C. A similar remark applies to L-optimality (see,
however, Lemma 2.2), a local version (near Ho) of M-optimality. The source of
this difficulty in verifying M-optimality is illustrated by the example of Section
2B; it is simply that for fixed d the test which achieves the supremum over ¢
on the right side of (2.1) need not be Fq,, and is generally hard to compute (as is.
therefore the right side of (2.1)).

2B. D- and E- optimality. We begin by describing the meaning of E-optimality
(which criterion is stated in [1] and is verified for the LS design in [2]). Suppose
for fixed a, that we agreed to restrict ourselves to using Fa,., whatever d is
chosen. The power function of Fg,. is then a strictly increasing function of A
(defined in Section 2A(d)). Now, in either Case I or II, for any ¢ > 0, if we
want a design d for which F;,, maximizes the minimum power on the contour
Y(w)/d* = ¢ (ie., which is M, -optimum in A under the additional restriction that
we use Fg ), we may restrict our attention to A’ (since, for s < r, the infimum
of Br,, on the contour Y(u)/d® = ¢ is a; if A’ is empty, there is no problem).
F; . has the same number of numerator degrees of freedom for all d in A’; if also
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ba is the same for each d in A’ (this is often the case in important examples such
as those of Section 3C) so that the denominator degrees of freedom are the same
for all Fy, ., then a design which maximizes the minimum power on ¢/(u)/¢’ = ¢
stmultaneously for all ¢ is precisely one which maximizes the minimum of A\,
subject toy(u)/o” = c. Since Y(u) = (Ru)’(Ru) in both Cases I and II, this means
maximizing minge; £V = 1/x(V4). This is precisely the criterion of E-op-
timality.

One can cite many practical examples to illustrate that the restriction to using
Fai,o, which is imposed in order to make E-optimality meaningful, can have
serious detrimental consequences. The simplest possible situation will suffice as
an example: Suppose N > 2, r = m = 2, R = R;, and A’ to consist of two

designs with
- 10 1+e€¢0
le = ( O ) y de = < 0 € e) )

where ¢ > 0. Clearly, d, is E-optimum. Moreover, if d; is used, optimum property
(e) above states that, for every ¢, Fq,,. maximizes the minimum power on the
contour (i + u3)/0° = ¢ among all tests in Hq,(a). However, if d; is used, Fa,.q
does not have this property. For example, if d. is used, let ¢’ be the test which
with probability (1 4+ €)/(1 + 2¢) uses the F-test (with 1 and N-2 degrees of
freedom) of size a of the hypothesis u; = 0, and which with probability e/(1 4+ 2¢)
uses the F-test of size a of the hypothesis y» = 0. The power function of ¢’ near
(ui + w2)/0” = 0 is then

a + guns(e) (ud 4w/ + 26)0* + o(lud + wil/oD,
while that of Fg,, is

2 2
o + go,x—2(a) (1 By &) /o + o(lui + uil/a").
+ ¢ €

The infimum of the expression multiplying g¢:~_2(a), taken on the contour
(i + w3)/d* = ¢, is ¢/(1 + ¢), compared with ¢/(1 + 2¢) for the coefficient of
g1.v—2(a); since g1,v_s(a)/gzn_2(a) — 2 as @ — O (see Lemma 4.3 below) the
assertion three sentences above regarding F,, . is verified. Moreover, since the
power function of Fy, .

a + gev-a(@)(ui + u3)/0" + o(lul + wzl/o”),

we see similarly that, at least for «, ¢, and ¢ sufficiently small, d; is not M. .-
optimum or L,-optimum, ¢’ being locally uniformly more powerful than Fy, . ;
thus, the assertion of the first sentence of this paragraph regarding E-optimality
is verified.

Of course, for any fixed a, ¢, and ¢ we have not asserted that the test ¢’ (con-
sidered above only for illustrative purposes) is M optimum. If one uses d; ,
the power functions of ¢’, Fa,.., etc., are not constant on (4 + ws)/o® = ¢
(the same is true of the test which minimizes the integral of the power function
on that contour), and the computation of the supremum over ¢ on the right side
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of (2.1) does not seem easy (this will be discussed further in Section 5). Thus,
the above example also illustrates why M-optimality (or L-optimality) seems
so difficult to verify in many problems.

In order to see the meaning of D-optimality, we turn to the notion of a type D
test as defined in [11] (we discuss the case where ¢° is unknown, the other case
being similar): For fixed d, let the function Bu(n, =, ¢°) be defined by
Bs(QuRp, Lau, 0°) = B4(u, o°) and let B5(r, o°) (resp., 8% (v, ¢°)) be the derivative
of B4(n, 7, ¢*) with respect to the 7th (resp., ith and jth) component of 5, evaluated
at 7 = 0 (these derivatives always exist). A test ¢ in Hy(a) is said to be locally
(near H,) strictly unbiased if

@) ¢¢&Hi(a),

() Bi(r, ¢°) = 0 for all 4, 7, and o°,

(c) the matrix By(r, ¢*) = || 85 (r, ¢°) || is positive definite for all  and o
Clearly, (c) can be satisfied only if d & A’. Suppose then that d ¢ A’ and that
Qa4 = identity (we have mentioned the fact that we can make this choice of Qa4
when d ¢ A"). For any ¢ satisfying (a), (b), (c) just above, det By(r, ¢°) is the
Gaussian curvature of the surface given by the graph of 8, (n, 7, o°) as a function
of 5 for fixed 7, o, at n = 0. A test ¢is defined in [11] to be of type D if it maxi-
mizes this curvature for all = and ¢°, among all locally strictly unbiased tests.
"This criterion of optimality, although a local one, has certain appealing features;
for example, it is invariant under all one-to-one transformations of the parameter
space which leave n = 0 fixed and which at » = 0 are twice differentiable with
non-vanishing Jacobian [11]. Now, since without loss of generality we are taking
Qq = identity, we can compare the behavior of the type D tests for various
designs in A’, assuming b, to be the same for all d in A’. A design for which the
Gaussian curvature at 7 = 0 of the test of maximum Gaussian curvature (for a
given design) is a maximum (over all designs) is thus, if it exists, that d which
maximizes max,, det By, (7, °) simultaneously for all 7, ¢*. That such a design
is precisely one which is D-optimum follows immediately from the following
lemma* (there is an obvious analogue when ¢ is known):

LeMMma 2.1. Fordin A" and 0 < a < 1, the test Fq,o is of type.D.

Proor. Fy . is clearly locally strictly unbiased. We again put @; = identity,
and a nonsingular linear transformation reduces the proof to the case where
‘G4 = identity (see Section 2A.(c)), so that » = 5. Wald’s theorem can then be
stated as

@) [ Brne) - dldn 2 [ B o) - ad@n

for every ¢ > 0, ¢° > 0, and ¢-in HJ (a), where A (dn) is Lebesgue measure on the
sphere 7'y = c¢. Noting that
. _ JK(e, 1) ifi =3,
(2-6) ‘/;’n—c N Ny A(dﬂ) - {O if 1: # j;
where 7; is the sth component of » and K(c, ) is positive and depends only on ¢

4 The author understands that Isaacson gave a longer, unpublished proof, earlier.
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and r, we obtain from (2.5) by normalizing properly and letting ¢ — 0, for any
¢ satisfying conditions (a) and (b) above,

(2.7) Z; B (1, 6°) = E By (r,0%).

Since By, (7, ¢°) is a constant times the identity in our reduction, using the
inequality of the geometric and arithmetic means and the fact that the deter-
minant of a positive-definite matrix is no greater than the product of its diagonal
elements, we obtain (omitting some appearances of 7, o°),

det B¢ (T) 62) = H ﬁ;: (7'7 0'2) = [Z B:f:/r]
(28) - .
< [Zl B, /r} = II1 Bi.. = det By, (r,d"),

which completes the proof.

To summarize, D-optimality and L-optimality, although local properties,
seem more reasonable criteria than E-optimality, which is tied to the ad hoc
assumption that Fy,, should always be used ; M-optimality (and to a lesser extent
L-optimality) seems difficult to verify in many examples.

2C. Relationship among optimality criteria in symmeiric cases. For future
reference we state the following simple result (which was alluded to in Section 0
in reference to the relation between [1] and [2]):

LemMma 2.2. Suppose ba is constant for d in A'. If d* is D-optimum and Vas
is @ multiple of the identity, then d* is E-opttmum and L-optimum.

Proor. E-optimality is obvious from the nature of V... If d* were not L-opti-
mum, since Fgs . has property 2A(c), for some other design d’ there would by
(2.2) be an associated test ¢4 in Hy () with

29) inf det By, (r, o") > det By, (r, ")

(the right side of (2.9) is constant); by Lemma 2.1, equation (2.9) is a fortiori
true if ¢o is replaced by Fg . ; this yields the contradiction that det Vi <
det V.

In many examples of Case I where syrmmetrical designs exist, the condition on
V4 in the hypothesis of Lemma 2.2 will be obvious. In Case II, as discussed in
Section 3A, it is often convenient to write the normal equations in the form
Cdi = Za, where Cyis a u X u matrix of rank u — 1, Zs is a -u-vector of linear
forms in ¥ with covariance matrix Cy , and for any solution #; of these equations
one obtains the best linear estimator of any contrast D 1 c.u: with D ¢; = 0 by
forming Y, c.7; where the #3; are the components of £7 . Clearly, Pf} is the b.le.
ta of Ry u. Hence, if every diagonal element of C; has the same value and if all
off-diagonal elements have the same value, the fact that the first row of the orthog-
onal matrix O defined in Case II of Section 1 is constant immediately yields
the fact (see Section 3A) that V' = PCs P’ is a multiple of the identity, so that
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Lemma 2.2 may be applicable in such cases. For future reference, we state this
simple computation (put a + (¥ — 1)¢ = 0) in

Lemma 2.3. If U is a w X u matriz with diagonal elements a and off-diagonal
elements c, then

(2.10) oU0’ = (“ + (%_ De @ —Oc)Iu_l)‘

We remark that the form of Ry; (associated with O) used here makes computa-
tions and proofs simpler and emphasizes more the role of symmetry (e.g., as it
appears in the form of V' just noted, when C; has appropriate symmetry), than
would be the case if Ry were replaced by a matrix obtained by adjoining a
column of 1’s and m — u columns of 0’s to I,,_; , as in [1] and [2].

3. Optimality of symmetrical designs.

3A. Preliminaries. The results of this section will be proved for the case where
¢ is unknown, the other case being handled similarly. The setting of two-way
heterogeneity where the LS design is employed is much easier to analyze (and
thereby obtain an optimality proof) than other settings considered in Section 3B
such as those where the YS and BIBD are used (and the remarks at the end of
Section 2 indicate how this analysis can be made even simpler than in [1] and
[2]). The reason for this is that in this setting where the LS is used, whether u
is considered to have 3u components (v each for row, column, and treatment
effects in the w X u case) or 3u — 2 components (to make X;X; nonsingular
when s; = by = u — 1), X;X4 becomes particularly simple, having large blocks
of 1’s (each row and column occur together once, etc.) or multiples of an identity
(rows by rows, etc.) in the former case, and large blocks of 0’s (especially if O
is used in reducing X4) and multiples of an identity, in the latter. Other design
situations yield more complicated forms of XX, . Therefore, although the ex-
amples of Section 3C could be analyzed in a manner analogous to that used for
the LS in [1] and [2], it appears algebraically simpler to use the incomplete block
design analysis of Bose [4], to which end we now briefly outline the notation. Of
course, we aré concerned here with the more difficult Case II, which includes
most of the important examples.

The form of the Z; and C; mentioned in Section 2C depends on the design
setting and, in particular, in this section, on whether we are in a setting of one-
way or two-way heterogeneity of (for example) soil (since all block sizes will be
the same in our example of the former, it could be considered as a special case
of the latter under further restrictions on u). We shall first state the pertinent
results which apply in both of these settings, and then specify the particular
forms (see [4] for details). The u X u symmetric matrix C; has row (or column)
sums equal to zero, and the sum of the components of the u-vector Z; is zero.
The covariance matrix of Z; is ¢° Cs and the expected value of Z, is Cau®™, where
u™ is the vector of the first » components of u. We may assume d ¢ A’, which
means the design d is connected and that C; has rank w — 1. If #; satisfies Cafy =
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Zjand P is the (u — 1) X w matrix defined in Case II in Section 1, then #; =
I_’t; is the vector if b.l.e.’s of Ryu; the last u — 1 rows of the equation 0C;0’0tf =
0Z; are thus PCyP't; = PZ; (the first row and column of OC40’ are zero), so
that £; = (PC4P’")"'PZ, (the inverse may be taken for d in A’) and thus the com-
ponents of #; have covariance matrix (PC;P')~.

In the one-way heterogeneity setting we have u treatments, to be planted in
b blocks; in our example, each block will contain the same number & of plots,
one “planting” to be allowed per plot. The component of ¥ corresponding to an
appearance of treatment 7 in block 7 has expected value u; + b; ; thus, m =
% + b, with p.4.; = b; . Let n4;; be the number of appearances of treatment ¢ in
block j. We do not restrict ng;; to be 0 or 1, as is often done. Thus, D consists of
those d for which X, is any matrix of 0’s and 1’s for which each row contains
exactly one 1 among the first m elements and one 1 among the last b elements
and for which the last b columns each contain % one’s; of course, N = bk. Let
Ta: = D jMai; = number of replications of treatment ¢, let T4 = sum of all
components of ¥ corresponding to treatment 7, and let Bs; = sum of all com-
ponents of Y arising from block j. The ith component Z,; of Z; (“adjusted yield
of treatment ”) is Zs; = T: — D ;ni; B;/k, and the (¢, j)th component c;; of
Cd is

(3.1) - Caij = 8iirai — Maii/k,

where 8;; is the Kronecker delta and Aai; = D Raisas -

In the setting of two-way heterogeneity, we have u treatments and a k; X k2
array of plots, and the expected value of a component of ¥ corresponding to
treatment 7 in row j and column & is u; + b + b; thus, m = u + ki + ke
with b = pmsjand b® = Hom kg 4 - Lt ndi) (resp., nésa) be the number of times
treatment 7 appears in row j (resp., column k), and let Ts: be as before and
BSY (resp., BS?) be the sum corresponding to the jth row (resp., hth column).
r4: is as above, while MY = Es n$nd® for ¢ = 1, 2. In this case Zy; = Tas —
> n$ty B [ky — Do ngn BS ki + 7ai Qs Tas/kiks and

MY

= g — i Ndif T3iTdj
(3:2) Caij = Bijrai — 7+ -

Many other design settings can be treated similarly ; the above two will be used
in the examples of Section 3C to illustrate our methods of proving optimality.

3B. Algebraic results. We now demonstrate the algebraic results used in proving
optimality in the examples of Section 3C and which will be useful in other
examples of Case II. The results proved here are meant to apply elsewhere than
in the settings of Section 3A. We suppose in the present Section 3B that we are
given a class {K4, d ¢ A’} of u X u symmetric nonnegative definite matrices of
rank © — 1 with row and column sums zero and define W; = PKyP’ (in our
applications, Wy = V3*). The elements of 0, K4, and W will be denoted by 5;;,
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kas; , and wai; , respectively. In Lemma 3.2 we consider an orthogonal matrix
0 = | 0:; | , not necessarily O, and a diagonal mattix D = | d;; || .

Our first lemma merely translates into terms of K; the obvious fact that, if
W4+ has equal eigenvalues and if the sum of the eigenvalues (= trace) of Wy is a
maximum for d = d*, then the product of eigenvalues (= determinant) of W
is a maximum for d = d*.

‘LemMa 3.1. If all diagonal elements of K4+ are equal and oll off-diagonal elements
of Kas are equal and Y ; kaii-i8 a mazimum for d = d*, then det Wa is a mazimum
for d = d*.

Proor. Since 6;; = 1/A/uand D_; ; ka;; = 0, the upper left-hand element of
OK 0’ is zero. Since the traces of OK40’ and K are equal, we conclude that the
traces of K4 and W, are equal, so that the trace of W, is a maximum for d = d*.
The result now follows from Lemma 2.3 (follow the steps of (2.8) with W, for
By and W for By,,).

We shall actually prove in Theorems 3.1 and 3.2 that the trace of the matrix
PC4P' is a maximum and that all eigenvalues are equal when d is a BBD or
GYS, so that Lemma 3.1 is relevant. However, there are settings in which the
next three lemmas are more useful for proving D- or E-optimality directly when
the hypothesis of Lemma 3.1 is difficult to verify or is false.

Lemma 3.2. For u > 1 if O is orthogonal u X u, D is diagonal u X u, K is sym-
metric nonnegative definite u X u with row and column sums zero, and ODO' = K,
then

w— 1 u fu—1 u/(u—1) %
(3.3) - IIdx < IT ka.
=1 i=1

Proor. We assume d,, = 0 < d;; for ¢ < u, or the result is trivial. Since, then,

u u 3 u u—1 2
(3~4) 0= ; g ki = Z; JZ; a—Zl 0405 Asg = E d.s (Z 0:’:) y

we conclude that the first ¥ — 1 columns of O are orthogonal to the vector of
ones. Hence, 0,, = 1/4/ (or its negative, which is treated in the same way).

Let the coordinates of a point ¢ in u(u — 1)-dimensional Euclidean space be
denoted by ¢;; 2 =1, -+ , u; j =1, — 1), and let B be the set of points
e in this space for which all ¢;; = 0, for whlch Z, €i; = (u —.1)/u for all 7, and
for which Y, &;; = 1 for all j. We shall prove below that ¢ in B implies

(3.5) zI-Il ( ]_Zl € dij) 2 (u ; 1)" (tI;I: dii)u/u-t;

since the left side of (3.5) with e;; = o}; gives the nght side of (3.3) and since the
restrictions on the e;; in B must be satisfied by the of; (the orthogonality restric-
tions on the 0;; are omitted in defining B), (3.5) implies (3.3).

Call the left side of (3.5) f(e). It is easy to verify that —log f(e) is convex in
e on u(u — 1)-space, and hence on B. Moreover, B is a convex body in u(u — 1)
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space, and any extreme point of B is either

€1 °°°  €Lu-1

(3.6) C e =

€yl " €y,u—1
or is obtained by permutihg the rows of the matrix on the right side of (3.6)-
Since a convex function on a convex set attains its maximum at an extreme point,
we conclude that the minimum of f is attained at one of these extreme points.
But f has the same value at any of these extreme points, namely,

3.7 Ir:}in fle = (E d;,-/u) ﬁ (u —1 du) .

=1 u

Thus, it remains oﬁ]y to prove that the right side of (3.7) is no less than the right
side of (3.5), i.e., that

u—1 u—1
(3.8) T di“™ < 3 dis/(w — 1);
=1 =1

but (3.8) is merely the well-known inequality between the geometric and arith-
metic means.

The form of Lemma 3.2 which is useful in many applications is the following:

Lemma 3.3. If [ [{ka:i is a mazimum for d = d* and if Ka+ has all diagonal ele-
ments equal and all off-diagonal elements equal, then det Wa is a maximum for
d = d*

- Proor: We use Lemma 3.2 with the product on the left side of (3.3) going from
2 to u, in order to conform to previous notation. In this form, with 0 = O, it
follows from Lemma 2.3 that the left and right sides of (3.3) are equal for K =
K+ . Hence, from Lemma 3.2, ][ ; wa:: is & maximum for d = d*. Since ] J;wai =
det W, with equality for the diagonal matrix Wa«, the proof is complete.

The following lemma could be used in the case of the YS, and in more compli-
cated problems where D-optimality is hard to prove or false, to prove E-opti-
mality directly (i.e., without the use of Lemma 2.2):

Lemma 34. For u > 1, if m(W) is the minimum eigenvalue of W , then

(39) m(Wd) § —u—— min,- ch,;,;;
u — 1
if all diagonal elements of Ka are equal and all off-diagonal elements are equal,
equality holds in (3.9).
Proor. Let 8; be a u-vector with ith element one and all other elements zero.
Let £; = Ps; . Clearly, v/u/(u — 1) £ has unit length. Hence,

kasi = 8:Kad: = (08)'(0K410")(06;)

3.10 , ~1 . _
(8.10) =§&EWak 2 o y 1 min a'Waa = u_u_l m(Wa),

a’a=1

which proves (3.9); the result on equality follows from Lemma 2.3.
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The results for Case I analogous to those proved for Case II in this subsection
are trivial (since in Case I the analogue of K, will be nonsingular and Kg» will
be a multiple of the identity), and will be omitted.

3C. Ezamples.’ (1). Optimality of BIBD’s. In the setting of one-way hetero-
geneity described in Section 3A (with w > 1), suppose b, u, and k to be such that
there exists a design d* for which all ng«;; are k/u if k/u is an integer and are
either of the two integers closest to k/u otherwise, for which all r4+; are equal,
and for which all A;; are equal for ¢ > j. Such a design is called a BIBD if
k < u, but we do not impose this last restriction here, and therefore call such a
design a Balanced Block Design (BBD). (For example, if b = 2,4 = 2. Lk = 3,
such a d* is that for which 7ngs; = flase = 1 and ngye = s = 2.) Our result is:

TurorEM 3.1. If a BBD d* exisis, it is D-optimum, E-optimum, and L-oplimium.

Proor. From (3.1) we have

(3.11) E Caii = N — Zi Zs ngis/k;
i=1

since Y i, mais = N, it is clear that (3.11) is a maximum for d = d*. The
result now follows from Lemma 3.1 and Lemma 2.2.

(2). Optimality of YS’s. In the setting of two-way heterogeneity described in
Section 3A (with w > 1), suppose k;, k2, and u to be such that there exists a
design d* for which all r4+; are equal, for which all AR are equal for ¢ # j, for
which all A§2}; are equal for ¢ # j, and for which all nd); are equal to ko/u if

k,/u is an integer and are either of the two integers closest to k,/u otherwise
(¢ = 1,2). Thus, d* is a BBD when either the rows or the columns are considered
to be the blocks. Such a design d* is usually called a YS if k1 < u (and ks/u is an
integer); we do not impose this condition, and shall hence call such a design d*
a Generalized Youden Square (GYS). (For example, if u = 2, ky = 4, k, = 3,
such a design d* is easily constructed.) If k; = k. = u, such a d* is of course a LS.
Our result is:

TaEOREM 3.2. If ky/u or ko/u is an integer and if a GYS d* exists, then d* is
D-optimum, E-optimum, and L-optimum.

Proor. We shall show that D_; cas: is & maximum for d = d*; Lemma 3.1 then
yields the desired result. In this proof only we write [z] = greatest integer =< z.
Let r be an integer. Subject to the restrictions that Y .im; = r and that all m;
are integers, the expression Zl m? is minimized by taking k — r + k[r/k] of
the m; to be [r/k] and r — k[r/k] of them to be [r/k] + 1, the corresponding mini-
mum of m:being r + (2r — k) [r/k] — k[r/k}’ = h(r, k) (say). Wemay assume

8 The Editor has informed the author that E-optimality of the BIBD’s (as a subclass of
the BBD’s) has been proved independently by V. L. Mote, and that the minimization of the
average variance (see numbered paragraph 2 of Section 5) and of the generalized variance
(i.e., the attainment of D-optimality) achieved by the BIBD’s and YS’s (a subclass of the
GYS’s) has been proved independently by A. M. Kshu‘sagar both of these authors prove
their results under the restriction and that the ng:; and né® are all 0 or 1. Under this restric-
tion, these special cases of the results of this paper are a consequence of the followingline of
argument: the trace of C, is the same for all d, and the results follow at once from the sym-
metry of the BIBD and YS.
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ki/u is an integer. From (3.2) we have, for any d,

(3.12)  kyko(krke — Z Caii) = Z {keh(ras, ko) — 73} + E kyh(rai, k),

with equality in the case of a GYS. The theorem will be proved if we show that
each of the two sums on the right side of (3.12) attains its minimum for d = d*.
Now, h(r, k) = r*/k, since the latter is the minimum of > m} subject to ) m; =
r without the restriction that the m; be integers. Hence, the first sum on the
right side of (3.12) is at least zero. Moreover, this lower bound is achieved by the
first sum on the right in (3.12) when d = d*, since ras;/k2 = ki/u is an integer.
It remains to consider the last sum of (3.12). We shall show that, subject to
D T2; = c, the expression

(313) a2 = 22 (@ — Dled — )

is a minimum when all 2; are equal; putting z; = [rs:/ki], we see that this will
yield the desired conclusion regarding the last sum of (3.12). The proof regarding
(3.13) is by induction: assuming the conclusion to be true of m = M, in proving
thecasem = M + 1 wemay put 2zt = -+ = 2y = sand 2y = ¢ — Msin
(3.13). The resulting expression is continuous in s and, except on a discrete set,
has a derivative with respect to s which is equal to 2M([s] — [c — Ms]). The
latter is £0if s < ¢/(M + 1) and is =20 if s > ¢/(M + 1), so that s =
¢/(M 4+ 1) yields a minimum. This completes the proof of Theorem 3.2.

We remark that, without the assumption that ki/u or k»/u is an integer, the
above proof fails and Lemma 3.3 also fails to be applicable generally. To see this,
consider the case k; = k. = 6, u = 4. A GYS d* exists here, e.g., that one whose
successive rows are (134324), (412233), (241342), (124123), (313412), (321441).
We obtain cge:; = 25/4 for all <. Let d’ be the design whose rows are (133442),
(213344), (421334), (442133), (344213), and (334421). Then con = cazz = 5,
Carss = Com = 8, €z = —1, ¢y = —4, and all other ca;; = —2. Thus, we
obtain Y carii = 26 > 25 = D _; caris and even J[icars: = 1600 > (25/4)* =
I1: cavsi . However, det Va' = 576 < (25/3)° = det.Va' . Thus, between the
designs d* and d’, the former is D-optimum, although Lemmas 3.1 and 3.3
cannot be used to prove it. Lemma 3.4 could still have been used to prove the
E-optimality of d* directly.

(3) Other examples. Many other design settings can be analyzed in a manner
differing only slightly from the above examples and we mention but a few. One
can treat similarly problems where the test concerns the b; and b}"? of Section 3A.
Problems involving Graeco-Latin Squares or higher Latin Squares, with or
without replications, admit similar treatments. Higher-dimensional analogues
(more than two directions of heterogeneity) can also be considered in a like
fashion, as can complete or partial factorial arrangements. Ma,_ny of the Case I
analogues, such as the analogue of the BIBD treatment which assumes the b;
to be known, are trivial.



SYMMETRICAL DESIGNS 691

Other problems such as those for which E-optimality is considered in [2]
(e.g., Hotelling’s weighing problem and certain problems in the analysis of co-
variance) could be considered regarding D- and L-optimality by similar methods.

The treatment of some problems is in part parallel, but entails other considera-
tions in addition to symmetry; such a problem is to test whether a regression
function D _7e1 uif;(x) is actually such that u; = --- = p, = 0, where the f; are
given and N 2’s must be chosen from a given region of some space. (Many prob-
lems in the analysis of covariance involve similar considerations.) D- and E-opti-
mality are also relevant in estimation problems (see Section 5.2).

The consideration of some of these other examples will appear elsewhere, in a
paper by J. Wolfowitz and the author.

4. Nonoptimality of symmetrical nonrandomized designs among randomized
designs.!

4A. Case I. We consider here the simplest general setting of Case I, namely,
the extension of the example of Section 1 to more observations N and more
treatments u. Other examples, such as the Case I analogues of the examples of
Section 4B, have parallel analyses, and we omit them. We shall carry out the
treatment when ¢ is unknown, the treatment when o is known being similar.
The underlying probabilistic property (of the normal distribution) which is
relevant here will now be stated in a lemma. Let U/cs” have a non-central x* dis-
tribution with N; degrees of freedom (d.f) and non-central parameter A\ ="
EU/o®* — Ni, and let V /o have the central x* distribution with N, d.f., with
U and V independent. Let Py, x, (A\; @) denote the power function of the F-test
of size o for testing A = 0 based on N.U/N,V, and, as in (1.3), let g, ~, ()
denote the derivative of this power function with respect to A at A = 0.

‘LemMa 4.1. If Ny < N; and Ny + Nz = N{ + N; with at least one of these a
strict inequality, then Py, ny (\; @) > Pyj.n, A; @) for A > 0and 0 < & < 1,
and gu, v, (@) > gul, x} (@) for 0 < a < 1.

Proor. Let U/qs” have a x distribution with parameter A and N, d.f., and let
Vi/o?, Va/d®, and Vs/o® have central x* distributions with N5, Ny — Ny, and
Ni+ N, — N; — N: df., respectively (if any of the d.f.’s is 0, so is the corre-
sponding V). U, V1, V,, V; are independent. For testing the hypothesis A = 0
against alternatives A > 0 based on U, V., V., V3, it is easy to prove that the
F-test based on N.U/Ny(V: 4+ V. + V3) is UMP unbiased of size o and is of
type A, and is the unique (up to sets of measure zero) test with each of these
properties; in particular, this is true in comparison with the F-test based on
No(U + V3)/N Vs , which proves the lemma.

The above lemma indicates both that the numerator d.f. should be as small
as possible without affecting A, which is also true when ¢” is known, and also that
for fixed N1 + N, décreasing N; helps even more if ¢° is unknown, since N is
increased (compare (4.5) and (4.7) below).

We now consider the following problem: Y;; are independent and normally
distributed random variables with unknown mean u; (j = 1, ---, n; ;¢ = 1,
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.-+, u) and variance ¢° (we use a convenient notation for the example, rather
than that introduced in Section 1). The problem is to test Hoipy = pg = -+ =
e = 0, and a design d in A is a specification of nonnegative integers n; whose
sum is N. For any such d, we denote by M (d) the set of ¢ for which n; > 0; by
k(d), the number of integers in M(d); by rd, the design associated with the
values n; = nJ(; when d is associated with the values n; = n} , where r is any
element of the symmetric group S, on u symbols; by 8;, the design in Ar which
assigns probability 1/«! to each rd for r in S, ; by fis,« the test associated with
da which is obtained by using the appropriate F-test of size a with whatever
7d is chosen by 8;. We shall also use the symbol as(c) of (2.2), with ¥(u) =
> ¥ui, and shall denote by ay its derivative with respect to ¢ at ¢ = 0. We shall
also use the symbols g;;(e) introduced in (1.3). Our result, which implies that the
“symmetrical”’ design associated with k(d) = w and all n; equal (or as nearly so
as possible) is not L,-optimum in Ag, and that the §; associated with the d for
which n; = N (this d; chooses each ¢ with probability 1/« and takes all ¥;; with
the chosen 7) is locally best among the §; , is the following:
TuaeoreMm 4.1. For every d, a, and c,

(4.1) araq(C) = ag,(c);
a}d,a is strictly decreasing in k(d), and the same s true of ays,,(c) for all ¢ in some
netghborhood of ¢ = 0.

Proor. (4.1) is trivial, and we proceed to the rest of the proof. The numerator
13Va's of Fa . is of course

Us= 2 m (i Yﬁ/ni)z,

teM (d) Jj=1

and Ua/o” has a x* distribution with k(d) d.f. and non-central parameter

Z n; y,%/az.

teM (d)

The denominator of Fs , has N — k(d) d.f. Write A = D_iui/s". From (1.3) we
have, as A — 0,

ﬁfd,,x(l/'; ‘72) = Z ﬁl’fd,a(l‘y 0'2)/'“!

7e8y
= ZS [ + gray. -t (a) Z‘; Neous/a + 0] /u!

4.2
“32) = o 4+ giay,n—k@ (@) ; (Z ’nr(z)/U!)#%/Uz + 0%

Ii

o + ggk(d),lv—k(d)(a))\ + 0.

The desired conclusion now follows from Lemma 4.1.

Existing tables and charts of the power funetions of the F-test and x’-test are
presented in such forms (in terms of v/\/(k(d) + 1), usually in inverted form
and with wide spacing of arguments) as to make accurate comparisons of the
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Bf4, difficult. This difficulty is made the worse by the fact that gy, , is not (with
an obvious exception) constant on the contour A = constant, making it somewhat
of a task to obtain ay, (c). It is not true, as might be supposed, that this mini-
mum power on the contour N = constant is always attained for a u with all com-
ponents equal, or else is always attained for a u with all components except one
equal to zero. To see this, consider the problem of Section 1 (N = u = 2, ¢°
known). Let C, be the value such that, if ¥ is a normal random variable with
0 mean and unit variance, then P{ | Y | > C.} = a. A direct computation of the

power function of 8 near A = u! + ui = 0 yields
_ C, exp (—C%/2)

43) Bs(w) = o + o/

{2@u; 4+ w) + (€% — 3)(ui + u3)/3 + OY)}.
Hence, when c is sufficiently small, the minimum of 8;(x) on the contour A = ¢,
neglecting tl_le term O(\Y), is locatecj._it w = Ve, pe =0 (or pz = Ve, m = 0)
if Co £ vV3and at uy = w2 = V¢/2if Co = /3. When we include terms of
highet order in g, it is no longer even evident that the minimum must be attained
at one of these two values of u.

We see from (4.3) that g1.(e) = (27)*C. exp (—C%/2) and it is not hard to
show that g2.»(a) = —a (log a)/2 (see [12], equation (6.27), where \ is our A/2).
Thus, a comparison of a}d_a for k(d) = 1 and 2 is given in this example by the
following table:

a gl.,,(a) gz.,,(a)
.01 .037 . .023
.05 114 .075
.10 175 115
.20 .225 .161
.30 .242 .181
.50 214 .173
.90 .050 .047

The following lemma shows that, as o — 0, the ratio of the second to third column
above goes to 2 and, more generally, that g; «(a)/g;«(c) — j/¢ (this gives a com-
parison of the various 8, for general N and u and for various %(d) when ¢ is
known, as o — 0; see Lemma 4.3 for the case when ¢’ is unknown):

LemMma 4.2, As a — 9,

(4.5) giw(e) = —[1 4+ o(1)]a(log a)/j.

Proor. Fix j. Let k. be such that if Y is a random variable with central x*
distribution with j d.f., then P{Y > k.} = o. Let fi be the x* density function
with j d.f. and non-central parameter A. A simple calculation shows that dfy\(u)/
d\ at X ,=,0 is fo(u)[(u/25) — 1/2]. Hence, as ka—

@6) gl = [ Sow)lu/2) = 1/20du = 1+ o(Dfulkusi,

by partial integration. On the other hand, an integration by parts shows that
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o = 2fok)[l + o(1)] as ks — o, and hence that ko = — 2 [1 + o(1)] log a.
This completes the proof.

4B. Case II. We again treat the case where o is unknown, the other case
being handled similarly (mainly, use Lemma 4.2 for Lemma-4.3). We first prove
two simple lemmas.

LEMma 4.3. Asa— 0,

4.7) gii(a) = ia/2j + o(a).

(This does not contradict (4.5), since j is fixed in (4.7).)

Proor: Fix j and 4. Let h, be such that if ¥ has a central F-distribution with
jand 5 d.f., then P{Y > h,} = a. Let G\ be the F density function with j and
i d.f. and non-central parameter A. From [12], equation (6.29) (with A there
replaced by our A/2), it is easy to compute that dG\(u)/d\ at A = 0 is Go(u)
[(G 4+ ©) w/j(1 4+ u) — 1]/2. Hence, as ko — =,

(4.8)  gjila) = —f Go(u) [— - ‘7—1‘ . ]du = 10/2j + o(a).
: J 1+

In the next lemma, we use the following notation: n; (i = 1, - -+ , ) are again
nonnegative integers w1th sum N. S, is the symmetrlc group on % symbols and,
for 7in S, , a(r) = N7 D in.opi ; finally, & D ip

LemMma 4.4. Forallu > 1, u,and N,

(4.9) Z Z Ny (i — B8(1)" = ulu — 2)[N — N7 nd Z (ui — @)

Proor. Since

(4.10) > onie = (w— 1120

7ES,
and, for ¢ # j,
(4.11) > Ny = (w — 2)! Z nin; = (u — 2)![N* — Z nil,

7e8, A7
we have
N Zs M(T) = E Wi g ,E Nr ()N ()
(4.12) = (u — 1)! Z n; ; uj
+ (w — 2N = 2 nllW'E - Z]: w3l
Also,
(4.13) ZH 2 Meppi = Dui 2 My = (w— DIN 2 ui.

Equations (4.12) and (4.13), together with
(4.14) Z Z Ny (i — a(r)” = Z Z nr(zj)_ngi - N Z a(7)’,

give (4.9).
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The maximum for fixed k(d) of the factor in square brackets on the right side
of (4.9) will of course be nondecreasing in k(d). It is the factor g 1.8 which
will increase rapidly enough as k(d) is decreased to more than make up for the
decrease in this term in brackets.

We are now ready to give our nonoptimality result in several illustrative
examples of Case II, including those of Section 3C(1) and 3C(2). In all of these
examples we ignore the divisibility properties; considerations when the design
does not “divide up” properly (e.g., when k(d) does not divide N in Example
(1) below) are messier and their consideration does not help in the understanding
of the phenomenon we are illustrating; thus, we shall assume whatever divisi-
bility properties of N are needed to make our examples simple.

(1). One-way analysis of variance. In our first and simplest example, the setup
is that of Section 4A, except that we now are testing uy = --- = pu, and the
appropriate F-tests are changed accordingly. Our result has the same implica-
tion as that stated just above Theorem 4.1, except that it now holds only when
« is sufficiently small, and the optimum & chooses each pair (7, j) (¢ > j) with
equal probability and sets n; = n; = N/2.

TaeoreM 4.21. For every d, o, and ¢, (4.1) holds; for fixed k(d), a}d,‘, 18 strictly
decreasing in D n}, aftaining its maximum for my = -+ = m@ = N /k(d);
for this choice of the n; and for all o in some neighborhood of 0, a}d'a 18 strictly de-
creasing in k(d) for k(d) > 1; the results just stated for a}d'a hold also for ay,,
(c) for all ¢ in some neighborhood of 0.

Proor. From Eemma 4.4 and an argument like that of (4.2), we have, setting

A= 2w — B/,
415)  Bran(n o) = o + Grrv—rw (@@ — DTN = N7 2 nd)h+ OON).

When ny = -+ = newy = N/k(d), the ratio of values of a}m corresponding to
two values k and k' of k(d) with 1 < k < k' is thus

gk—l.zv—k(a)(l - l/k) .

4.16 ;
( ) gk'—l.N—k'(a)(l - 1/’9')
as a — 0, by Lemma 4.3, this ratio approaches

- (N —k)/k
(4.17) N =K > 1,

completing the proof.

For a numerical example, suppose N = 6, u = 3, with o known. Comparing
the 8,’s for which & = 2 and k' = 3, we see that (1 — 1/k)/(1 — 1/k") = %,
thus, the ratio of the two a}m in this example is 2 times the ratio of second to
third column in the table above Lemma 4.2. For a < .3, then, the design with
k(d) = 2 is locally better than that with k(d) = 3, in this example.

(2). Several-way analysis of variance. With or without interactions, the con-
siderations are very similar to those of Example (1), and we omit them.

(3). One-way heterogeneity. In the setting described in Section 3A, suppose for
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fixed b, k, and » that BBD’s exist for two possible choices u; and . of the “num-
ber of treatments’ to be tested, say for u; and u, with 1 < u; < us < u. Let
di(1 = 1, 2) be the design which uses the BBD with parameters b, k, and u; to
test the hypothesis u1 = - -+ = u,, , and let 8, be the corresponding randomized
design which replaces the subseripts 1, ---, u; here by (1), ---, r(u;) with
probability 1/u! for each 7 (or, which is the same thing, which chooses each of
the possible subsets of u; treatments with equal probability). Otherwise, we use
the same notation as in Example (1) of this section.

For any design setting, the parameter of the non-central x* variable £;V3'/q"
is (QaRw)'Vi'(QsRy), and by Lemma 2.3 and equation (3.1) this reduces in the
case of a BBD d* with parameters b, k, and u to

(4.18) [Td-*1 - O\d*ll - >\d*12)/]\7] zz: (,ui - ﬁ)2/a2.

For the sake of arithmetical simplicity only, suppose that k/u;is either an integer
or is < 1 (the phenomenon to be studied persists without this assumption).
Then, for d* = d;, the term in square brackets in (4.18) is easily computed to be
bk — 1)/(u; — 1) if k/u; = 1
(4.19) flus) = . ’
bk /u; if k/u; = 1.

Using now the counterpart of (4.18) for the designs d; and the fact that, for

ny = -+ = n,, = 1 and all other n; = 0, (4.9) becomes
4200 2 2o — B ul = (w = D7y = 1) 2 (s = B

we obtain, corresponding to (4.16),

(421) llf:,,b,, _ gul—-l,bk—ul—b+l(a)(ul - 1)f(u1) .
Ofaye  Jur—tbius—dpr(e) (uz — 1)f(us)

By Lemma 4.3, as @ — 0 this ratio approaches

(bk — wy — b + 1)f(uy)

bk — uz — b + 1)f(us)’

It is trivial to verify that (bk — w — b + 1)f(u) is strictly decreasing in w for
u > 1, so that the expression of (4.22) is > 1. Thus, we have proved

TuroreM 4.22. For fived b, k, w and all « in some neighborhood of 0, a},,m 18
strictly decreasing in u; for © > 1; the same s true for ay,,,(c) for all ¢ in some
netghborhood of 0.

This result implies that, if k is even, the locally best 84, is that which chooses
each pair of treatments with equal probability and assigns each of the two chosen
treatments to k/2 of the plots in every block.

(4). Two-way heterogeneity. Using (3.2) in place of (3.1), the analogue of
Theorem 4.22 can be proved for the YS design by an argument very similar to
that of Example (3) just above, and which we therefore omit. One can even give

(4.22)
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an example of the lack of optimality of the YS in Ar without resorting to this
analysis: for the case k;, = 2, ks = 3, u = 3, the usual YS gives no d.f. to error,
while the design which chooses two treatments at random and assigns each
treatment to three plots, at least once in each row and column (full symmetry is
impossible here) is uniformly more powerful for all « and all alternatives.

(5) Other examples. Examples like those mentioned in Section 3C (3) can be
considered similarly, with analogous results. In particular, a frivial example in
the case of a higher LS has already been mentioned in-the first paragraph of
Section 1.

6. Remarks and extensions. We list a few of the variants of the examples con-
sidered in this paper for which similar results hold , and make a few comments on
questions which arise in connection with the paper, some of which present un-
answered research problems.

1. A few of the other problems to which modifications of our method apply
have been mentioned in Section 3C, and some of these will be considered else-
where. Some such results hold under various non-normal probability laws (the
point of the results of Section 4 is not merely that they hold for many models,
but that they hold for the simplest, classical, normal model). Of course, a design
which is optimum for one model may fail to be optimum for another, and vice
versa; in particular, the results are obviously sensitive to change in the function
¢ (even to changes to other quadratic forms and for a fixed d, as indicated in
Section 2). Optimality criteria can be altered in other ways; e.g., one can con-
sider M , . .-optimality, in imitation of 2A(c). The extent of completeness of non-
optimality results like those on the higher LS design (first paragraph of Section 1)
and YS design (Section 4B(4)) obviously depends on whether or not o* is known.
The results for Model II and certain mixed models of the analysis of variance
differ considerably from those for the model considered herein, since the de-
pendence of the power function on the design (and on the test, for a fixed design)
is so different; however, similar methods can be used there.

2. Besides changing the model, one can also change the decision space. From
the examples cited just above regarding higher LS and YS designs, it is clear that
nonoptimality results for some classical symmetrical designs hold for many de-
cision problems. For normal and certain nonparametric point estimation prob-
lems, the discussion of [2] and [3] indicates why Section 3 yields optémality results
(these actually hold for many weight functions other than squared error). Another
typical estimation result is contained in the fact that the designs d* of Theorems
3.1 and 3.2 maximize the trace of V3" and that Vs is a multiple of the identity;
from these it follows at once that average variance of ta (= trace of ¢°Va/(u — 1))
is a mingmum for d*. However, the results of Section 4 are meaningless for many
common weight functions, since V, is not the covariance matrix of b.l.e.’s.
Similar results hold for some interval estimation problems; for estimating
Y(u)/s* (e.g., in “multiple comparison’ problems), Section 4 is now sometimes
relevant. Multiple classification and ranking problems can be treated in like
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manner. Of course, a D-optimum design minimizes the approxiate generalized
variance in point estimation problems.

3. As we have mentioned, nonoptimality results like those of Section 4 do not
depend on the nonrandomized design being symmetrical. Much more difficult is
the problem of characterizing optimum designs in the sense of Section 3 when
there is no appropriate symmetry. (Even the considerations of Sections 3B(2)
and 4B(3 and 4) become messier without the restrictions on k;/u and k/u; it
would be nice if neat proofs could be given in such cases.) It seems often to be
true that a design which is “closest to being symmetrical” in an appropriate
sense (e.g., note the dependence on Y7} in Theorem 4.21) is optimum, but the
algebra involved in proving this can be tedious. Problems like that cited in the
next to last paragraph of Section 3C(3) can be similarly unwieldy under heter-
oscedasticity. In connection with a general symmetry-invariance approach like
that mentioned below (1.3), we note that appropriate symmetry of X is useful as
a partial sufficient condition for some optimality results, but that appropriate
symmetry of X;X is what is really relevant (for the functions ¢ we have con-
sidered).

4. We have mentioned in Section 2 some of the difficulties present in verifying
M- (or sometimes L-) optimality. If bg is not a constant for d in A’, or if ran-
domized designs are considered, this difficulty is increased by the nonconstancy
of the df. for Sa, etc. (We have not considered here a thorough investigation of
the optimality properties of the procedures- 8; of Section 4). The difficulty en-
countered in connection with M-optimality in the nonconstancy of the power
functions of competing tests on appropriate contours also manifests itself when
one tries to find a most stringent design (the “‘envelope power function” being
obtained by taking the supremum of 8, over all ¢ in Hi(a) and all d in A or
Ag). The method of invariance used to prove 2A(f) cannot even supply a start
here, and the method of [6] or [7] used to prove 2A(c) yields no analogue here
where d is not fixed. Thus, even in such a simple example as that of Section 2B,
the stringency problem seems extremely difficult.

It is interesting to note that the 8, of Section 4 lack a “consistency” property if
k(d) < r,in that as,, (c) does not approach 1 as ¢ — o« (in fact, it is easy to
see that the u for which one component of Ry is o 4/¢ and all others are 0 is
asymptotically worst on the contour y¥(u)/ o’ = ¢ as ¢ — o, giving power ap-
proaching [k(d) + (r — k(d))a]/r). Nevertheless, the question remains open as to
whether any of these 6, , or some other design and associated test which lacks this
consistency property, is nevertheless most stringent.

The reader will not find it difficult in considerations like those of Section 3B to
supply the details which show, in some problems, that the D-optimum (or L-
or E-optimum) design is unique. When uniqueness is not present (e.g., for some
« and ¢ both designs in Section 2B will be L-optimum), questions of global
admissibility arise. A related problem is to look not at a fixed contour or family of
contours in the manner of Section 2, but rather to characterize complete classes
of designs in the manner of [3]; in such considerations, especially for problems of
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testing hypotheses, Section 4 shows that results like those of [3] must be altered
if Ag is considered rather than A.

Finally, we may remark that, for a fixed d, the problem of characterizing an
L ,-optimum test is unsolved ; the generalized Neyman-Pearson Lemma does not
seem to yield explicit results easily, although it is not difficult to show that an
L -optimum test is obtained by replacing the numerator of the F-test by some
other quadratic form.
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