ACCELERATED STOCHASTIC APPROXIMATION!
By Harry KESTEN

Cornell University

1. Summary. Using a stochastic approximation procedure {X,}, n = 1,
2, -+, for a value 6, it seems likely that frequent fluctuations in the sign of
Xn—0)—-Xpu—0 =X, — X, indicate that | X, — 6 | is small, where-
as few fluctuations in the sign of X, — X, indicate that X, is still far away
from 6. In view of this, certain approximation procedures are considered, for
which the magnitude of the nth step (i.e., Xn11 — X,) depends on the number
of changes in sign in (X; — X,,) for¢ = 2, --- , n. In theorems 2 and 3,

Xn+l - Xn

is of the form b,Z, , where Z, is a random variable whose conditional expecta-
tion, given X3, -+, X, , has the opposite sign of X, — 6 and b, is a positive
real number. b, depends in our processes on the changes in sign of

X: — X £ n)

in such a way that more changes in sign give a smaller b, . Thus the smaller
the number of changes in sign before the nth step, the larger we make the cor-
rection on X, at the nth step. These procedures may accelerate the convergence
of X, to 6, when compared to the usual procedures ([3] and [5]). The result
that the considered procedures converge with probability one may be useful
for finding optimal procedures. Application to the Robbins-Monro procedure
(Theorem 2) seems more interesting than application to the Kiefer-Wolfowitz
procedure (Theorem 3).

2. Statement of the theorem. The formulation of the theorem is similar to
that of the theorem given by Dvoretzky [2]. Let 8 be a real number and

Taln =1,2,---)

be measurable transformations. Let X; and Y,(n = 1, --- ) be random vari-
ables’ and {a.} a sequence of positive numbers and define

1 Xapi(w) = Ta(X1(w), -+, Xn(@)) + ba(w)Ya(w).

The sequence {ba(w)} is selected in the following, way from the sequence {a.}

Received March 28, 1957.
! Note added in proof: The author learned recently that investigation of the above pro-

cedure had been suggested by Professor H. Robbins long ago.
* Xa., Ya , and Z, denote random variables, whereas z, is used to denote values taken by

the random variables.
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bl =,
(2) be = ap ’
bn = at(n) 3y
where
(3) tn) =2+ Z; (X — X)) (Ximy — Ximo)]
and
1 if 250
z) =
0 if z>0.

Thus, every time (X; — X;_;) differs in sign from (X,;_; — X,_;) we take another
Qn

Let an(z1, ++, Zn), Bal®r, <+ +, Zn), Yn(®1, * -+, T») be nonnegative func-

tions and put
(4) ey = sup Z ﬂn(xl, . ’xn),

{zk} n=N

—_ 3 : 7n(x17 "'yxn)
(5)° p(8) = inf inf Yol * 0 Tn)
n=12, ¢ |z;—0] 28 . bn
Ty, **,Tp—y arbitrary

TaEOREM 1. If
(L + Ba(@r, -+ 5 @) 20 — 0]
(6) |Talxr, -+, 2a) — 0] S — vn(21, *++ , Tn) when (T — 0)(xa — 6) > 0
an(T1, + -, Zn) when (T, — 0)(x, — 6) = 0,

(7) lim an(®, -, %) =0 uniformly, for all sequences z;, 2, « « -
i(n) — with H(n) — o,
8)° i (2n — 0)Bp(x1, + -+, 20) -0 uniformly, for all sequences
n-»0 bn Xy ,%2, ",
and
. —0
) lim ey = 0,
(10) p(8) > 0 for every positive 8,
(11) Z Qn = 007 Zl afb < °°7 and an+1 é Ay )
n==1 ne

3In (5), (8), and in (13), b, depends on z; , -+ , z, as given in (2).
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(12)4 E(Yﬂ l X17 ] X") = 07
E(Y%| Xy, -+, X.) < o with probability 1,

lim inf lim inf
n-»00 750 0< |zp—0| ST
(13)3 TLse "tfn_l arbitrary

‘P{Tn(Xl, e 7Xn)+ bnYn = XnIXl = Ty, * " ,Xn = xn} > O)
lim inf lim  inf
n->00 70 0< |zyp—0| <7
Z1,***,Tp—1 Brbitrary

P{T (X, -, Xa) + 0.V < Xu| Xy =2y, -+, X = 2} >0,
then X, converges to 0 with probability 1.

Proor oF CoNVERGENCE. Without loss of generality we take § = 0. Also
we assume in the following E | X; | < «. This can be done, because replacing
X 1 by

X, if |X;]<A4
T4 i Xz 4
changes the process only with a probability equal to
P{| X,| > A}.

By taking A large enough, this probability becomes arbitrary small. We fre-
quently do not write all the arguments of the functions, e.g., we write 8, for
Ba(xy, +++, Zs). We shall first prove several lemmas. From

E(Ys| X1, -, Xa) =0

and E(Y% | Xy, -++, X.) < o follows immediately.
LemMA 1. There exists a function p(8) with 0 < p(8) < 1 for 6 > 0, and such

that
P {Y,.
P { Y.

lim ian{X,..H - X, =

n-»00

1
1

v

%>0|X17"'7Xn}§ 1—P(5) <l

IIA

_%<O|X17°"7Xn}§1—p(5)<1-

LeEMMA 2.

— pl(a) bn
2

X1, Xas X,=6 and t(n)gk}

é 1~ P(Pl(a)),

4 P{-|-} and E(-|-) denote conditional probabilities and conditional expectations respec-
tively.
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1
].im ian{X”+1 - Xn § d (s)bn Xl, e ,Xn; Xn é —d aand t(ﬂ) ...2_ k}

n-»0 2
1 — (@),

A

where
0(8) when p(8)a, < 6

1
p(®) =
;— when p(8)a; > 6.
k

Proor. Since ¢(n) = k, we have b, < a; and for X, = &

Xn+l = max [Oy (1 + .Bn)Xn - 'Yn] + 0.7, = Xa + bn [E%& - Pl(a)]

+ bnYn = Xn + bn [%Xn - Pl(s) + Yn]-
So by (8) and Lemma 1, we have
1
lim ian{Xﬂ+1 - X.2 -£ (;)bn Xl: Tt Xn; X,z 6, t(n) = k}

1
élimian{Y,. 229 % X Xezs w2 Ic}

n->00 2

for-every ¢ > 0.

Application of Lemma 1 gives the first inequality. Similarly we prove the second
part of the lemma.
LemMa 3. For every k and N

P{tn) =k for n=2 N and X,+»0} =0

(i.e., when Xn11 — X, does only change sign a finite number of times, then X,
converges to 0).

Proor. When #(n) is constant for » = N, then X, is monotonic for n = N.
Therefore {X,} converges (possibly to + « or — ). Let the limit be positive,
say X. But by Lemma 2 for every § > 0 and ¢ < [p'(8)a:]/2,

lim P{Xpy1 — X, > —¢ and X.2=6 and #(n) 2k foralln = N
N>
|6 < Xy and #N) =k} =0,

so the probability that X > § is zero. Similarly the probability X < —4é is zero.
Since § is an arbitrary positive number, this proves the lemma.

This lemma allows us to limit ourselves in the sequel to those sequences with
t(n) — o and therefore b, — 0.

LemMa 4. Let 6 be a fixed positive number. Then there exist positive numbers
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ng and to such that, whenever n = no , #(n) = 4 and | Xo| Z 6, one has
B Xos | K, o, i 1%l 20} 5 1 X0 ] = 2000,
Proor. Choose # such that ax(Xy, -+- , X,) < 8/2 for ¢(n) = 4 and
Then b, < ay, for ¢(n) = f,. We distinguish two cases

(a') ITn(XI"":Xn)Iég-

N} o

E{IXmlle, e Xui | Xal 20| Th| <

) 8 _ ban() _ bap(d)
§_2.+b,,E|Y,,|_§§+b,,a§6 -7 =Xl -
(b) | T, o+, X | > 2

As aq(X1, -+-, X,) < 8/2 for ¢(n) = f, we must have T,-X, > 0 (cf. (6)).
Let X, = 4. Denote the distribution function of ¥, w(X1, -+, Xa) by Hu(y | X).

As Xpuy1 = T + bnY,, we have by (12) and (14)

E{]X,,+1| X, X Xa 2 8, T, 2 g.}
© —T5/bp
= [, Ttv a0~ [ (@t b d ] D
00 -Tn/bn
stotn|[] vane 0 - [ yane o]
—~Tnlby —®
—T /by
=T, — 2b,.[ y dH,(y | X)
—Tnlbn —T /by 1/2
< T, + 2, [ [ vaein [ e ]
boo 402 4° 0(3)
_§Tn+2bnv—ﬁ§Tn+ 3 éTn+bn4'
But by (8),

|Tnléanl-l-bn{&-'-bX—”'—p(é)}éIX,.I——b,.%Q

for sufficiently large n, say n 2 no. For X, < —4, the proof is similar. Thus,



46 HARRY KESTEN

in all cases

E{l Xon |

LEMMA 5. For every 0 < 8 < & < 8"
P{5 <liminf | X,| <& and & <limsup|X.| and i(n) — o} = 0.

Proor. Choose # and 7, corresponding to & as introduced in the preceding
lemma. Assume now

P{s < liminf | X,| <& and & <limsup|X,| and #(n)— o} > 0..
Then there exist an n; = mo and 4 = % such that
(15) P{s < liminf|X,| <& and & <limsup|X,| and |X.|> &

forall n =mn and b, = a,} > 0.

Xi, o) X | Xo za}stxnl—w.

Now introduce a new process.
Z;=|X;| if ¢=1,--+,m
and

| Xpas| if 8 < Zpys for j=01,---,5—1
Zypi = and b., = ay,

0 otherwise.

Unless bn, # @, or | X;| < & for some j = n1, we have always Z; = | X, |,
and thus, by (15), also

(16) P{6 = liminfZ, < & and & < limsup Z,} > 0.
But by Lemma 4
0= EZuwu1| X1,---,X,) S EZ, for n=m.

So application of the semimartingale convergence theorem (Loéve [4], p. 393)
shows that (16) cannot be true. This proves the lemma.

Lemma 6. P{liminf | X, | = o and {(n) — «} = 0.

Proor. If the proposition were not true, we could find, analogous to the last
proof, a process Z; with

17) 0 =< E(Znu|X1, -, Xs) < EZ, for sufficiently large n,
' say n = ng,
and

(18) P{liminf Z, = «} > 0.

But as we took E | X; | < «, one would have

(19) E|Z,| < .
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However, (17) and (19) together are in contradiction with (18). This proves
the lemma.
From Lemmas 3, 5, and 6 one may conclude that with probability 1 either

that lim inf | X, | = 0 or | X, | converges to a finite positive number. We now
prove that the last possibility has probability zero.
LeMmMma 7.

P{| X.| convergesto X and 0< 86 < X <8 < o and tn)— o} =0.

Proor. Choose 7y and ¢, corresponding to §, as introduced in Lemma 4.
Assume now

(20) P{|X.| convergesto Xand 0 <6< X <¢§ < o
and #(n) — «} > 0.
Again there exist an n; = no and a # = 4 such that
(21) P{6<|X,| <& forall n=mn and bs, =ay} >0
and a.p(8) = 6.

By Lemma 2 we can choose n; and £ so that at the same time forn = n;

P{X,.+1 ~Xoz -y x
(22) (
Xn 2 5, t(n) 2 n}g 1 —l’__"_z(_")_),
P{Xn+1— Xa él-)-ga—z)—b—-" Xy, oo, Xas
(23)

X, £ —5,i(n) 2 tl} <1- P__(PZ('*)).

As before we construct a new process.
Z,'= IX,I if ¢= 1, cee, M

and
|X,.l+,~|if6 < an+j <¥ fOI‘j = O, e ,7: bl landb,., = Gy,
Zn i = .
i Znygiol — Qgygim1 ﬁ%@ otherwise.

From (21) follows
(24) P{6<Z,<¥ for all n=m} >0,
and thus, :

(25) P{ ’2: (Ziwa — Zp) | < 2(8’ — 9) foralln = nl} > 0.

n1
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Denote
E(Z/,.H — 7 I Xi ) * Xk) by mk(Xl y "ty Xk) (=mk for ShOI‘t).

By Lemma 4 and the construction of the Z-process,
(26) my(Xs, -+, Xi) £ = 2 p(8) for k = m,
where
{b,.,+,- if 6<Z;<¥ for j7=0,---,7 and b, = ay,,
Cn1+i =

Oy +i otherwise.

Further for k = n,,

2
(27) var (Ziw' — Zi | X1, +++, Xi) S ¢k [p—l(g-) + EY}‘Z] < aC,

where
2
_PO) 2
C = 16 4 o
In addition
n n—nj
(28) E Cr = Z Aty gk
k=n1 k=0
By (25),

E (Zk+l — 7y — M)

km=n y

7

and thus, by (26) and (28),

g

But for

(29)

n

Z my

k=ny

> — 208" — 9) forallm = nl} > 0,

(30)

v

n—ni
> PO SN o —8) foralla nl} > 0.
k=0

.n—njy
B%Q Y Gy — 20 —8) >0
Jo=0

we have by Tchebycheff’s inequality and (27)
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n 5) ment
lg.: (Zipr — 2, — my) l = p_i_)_ Z; Qe — 208" — 5)}
ni N

7

(32) C E Ec;
< k=ny ,
= 6 n—njy 2
{B—i—) D Qg — 208 — 5)}
=0
n n—ny
(32) k-ZM Eclzc §. bg a?1+kErl1+k,
where

74,+%x = number of times ¢n4i = Qg4 -

As soon as the Z; process differs from the | X; | process, we don’t keep the same
@y 41 for more than one step. Therefore Ery 4 = 1 + expected number of times
that {€a+i = ayrand § < Z,4; < 8 forj=1,:--,7and bs, = a,} occurs.
If § < X, 44 < &, then by (22),
P{X"l'!-i+1>Xﬂ1+t'l6<IX"1+J'|<6’ J=1,,1
and b,, = a, and X, 4 > 8} = 1

b

_ p((®)
2

and.

P{X"”"'H > Xnpirra |8 < | Xyl <8 j=1,---,1¢
I=1,--,s

and b,, = a, and X, 4 > 5} < {1 - P(Pz(ﬁ))} )

As we pick a new a; as soon as (X; — Xi4)(Xi1 — Xi2) < 0, we have: Ex-
pected number of times that

{Cm+i = Q) +k and 0 < an+j < & ] = 1, tety 7 and b”l = a;,}

under the condition that X ;. = X; > & for the first j'= n, with b; = ay 4,
is at most

(33) 2““(1“2@2(8—)))4'(1"?%@)2“"“473@'

The case where X ;1 < X; at the first time that b; = a4+ is more difficult.
Let us divide the interval (3, &’) in

/ —
[2(3 a)] 1
P(‘s)aiﬁk
non-overlapping intervals® I, with

& [a] is the largest integer < a.
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length (I,) < ”@_)giﬂ(t =12, ’[?—(6,——_6—)]-'_ 1).

p(8) ey 41
Expected number of times that

{em+s = @y and 8 < It <V J=1, 4, Znyi e}

under the condition that X1, < X;, X; > ¢ for first j 2 n,, with b; = as 4z,
is at most

P(p(ﬁ))> ( 20(10(6)))2 2
14 (1 — 229 1 — PN 2
+(1-22) + 2 0)

This can be proved analogous to (33) using (22) and the fact that

length (I;) < [p(8)as +x]/2.

(2=

intervals I, , expected number of times that

As there are

{Cnl+i = Q¢ +k and § < Zﬂ1+i < 5’j = 1, ey, ‘i, and bm = a,l}

under the condition that X;i, < X;, X; > & for the first j = n, with

bf = Qe 4k,
is at most
208" — 8)] }
20| —7/5— 1
{[ p(8)ae 11 + )
p(p(5))
Similar estimates are valid when X; < —é for the first j. = n; with b; = a;4x
As a4 41 — 0(k — =), we can find a positive constant D such that
D
Eriw = P
t1+k

By (31) and (32), it follows that

7

”Z”: (Zpr — 2, — ’mk)l = Q_(:_) ,Z? G — 208" — 5)}
(34)

n—ny

CD E atl +k
k=0

=T == a
T kg Aty bk — 2(6’ - 5)}
AS D0 Giy4x = o, the right hand side of (34) tends to zero when n — o
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and therefore (29) cannot be true and
P{| X, | convergesto X £ 0 and #(n) — «} = 0.
Combining the remark after Lemma 6, and Lemma 7 we proved
(35) P{liminf | X, | = 0} = L
Until now we only used that a, tends monotonically to zero and
2:-1 On = @,

but not yet ) o1 ah < .
Lemma 8. Define

1 if T”(Xl, "',Xn)‘Xn>O

s(n) =

—1 if Tu(Xy, -, X2)-Xa 50,

Y, = Y. 11 s(),

=
dm,m —1) =1
dim,n) = T1 (1 + 85 (n = m),
J=—m

S(m + 1,n) = jZ d(j + 1, n)b; Y.

Then the conditions
aM+i—1(X17 o ’X"H-i-—l) = % .7 =1 ’k’
d(m, =) < 3,
|Xm| é 'Z')
le-I-J|>f4' .7=1s ’k_l:
and
sup | S(m + 1,n)| < <
n=zm 16
imply

|X"'+J'|§e§ j=1--,k

The proof follows immediately from Wolfowitz [6], p. 1154. We need the fol-
lowing
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CoroLLARY. If t(m) ts so large that

amii(Xy, o0y Xmpi) S i=12---

¢
8
and if

d(m, ) =

[ VIR

’

then

P{ | Xours | > % for some positive integer j|| Xm| < f_L}
=< P{ sup |S(n +1,m)| 2 i}
nij,ne=m 16

2 o 9. ®
=23 var (@G + LWy YY) = (gs_:) paj:i
J=m =—m
Proor oF TueoreM 1. In view of Lemma 3, we only have to prove
Pllimsup | X,| >0 and ¢n) —> o} =0.
By condition (13)
2t = min(lim inflim inf P{Xu1—Xa20|Xy, -+, Xo, Xn = Za},

nso 1200|2505

lim inflim  inf P{Xp:— Xo <O| X1, o+, Xat, Xo = 2a}) > 0

ns0 700 |2ulST

Take £ > 0 and n; such that
P{Xn+l_Xn% OIle"‘,Xn—»l;Xn= xn} >§¢> 07
PXp1 — Xo<0| Xy, , Xpa, Xn=za} > >0

for0 < |zo| < fand n = n,.
Choose an ¢ < £ and % such that

(36)

on(Xy, o0, X,) % when t(n) = t,,

and let

d(ng, ©) <

N

.

Let now for some m = n,

| Xm| <~ and t(m) = t..

<
4
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Construct the following process
Z"W =X if k=1,--
and
Zws = Topia(Z, -+, D)
+ empia¥mpia( Xy, oo, Xmgs)@ = 1,2, -4 ),
where the ¢’s are determined in the following way:
Cm = bm = Qiem)
onpit i | Zwg| S5 G=0,1, 000
and  (Zmii — Znyi1) Zmpiat = Zmyia) > 0

(37) Cmys = a if 'Z"'“'lé% F=0,1,-+,4

and  (Zmpi = Zmpic1)(Zmpict — Zmpiz) < 0
and Crti—1 = Q1

Gimy+; Otherwise.

Then Er; = expected number of times cn4; = al is zero when ! < ¥(m). For
l = t(m) it is at most

el

(38) 140 -9 +0 =07 =

In fact from (36) and (37),
Plemis = Cmyja} S 1 —¢.

Using (38) and applying the corollary of Lemma 8 to the Z(m) process, and
thus replacing the b’s by the ¢’s, one finds for m = n,,

P{ | Xomyi| > % for some positive integer j

s(@y 5 e
o € n=ty §

Now choose #; = ¢ such that

2 0
(215455

ne=tg

PA gfi,t(m) > t,}

< P{ | Z&m | > % for some positive integer j

IIA
e
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and n; = n, such that

P{[IX,,I>% forall n=mn; or t(n3)<t3] and t(n)—->°°}§-€2-

(such an n; exists by (35)). Then
P{lim sup | X,,| > ¢ and #(n) — o}

=< P{[I X | >i forall n=mn; or #(ns) < t3:| and {(n) — oo}

+ X P{X,,. is the first after X.,_, with |X,| =

m=ng3

<
4
and #(ng) = ¢ and max | Z,(m)| > e—}

k=m 2

§§+i > P{X,,. isthe firstafter X.,—; with |X,| = fz} <e

27”-%3
As the only restriction on € is ¢ < ¢, this proves the theorem.

3. Applications.

Accelerated Robbins-Monro procedure.

TuporEM 2. Let Xy and Y (z) be random variables and {a,} a sequence of posi-
tive numbers and define

Xon(w) = Xa(w) — bua(M(Xs) — @) + 0.V (X,).
The sequence {ba} is selected in the following way from the sequence {a,}:

b1=a1,
b2=a2,
ba = Qe(n) »

(cf. (2) and (3)).
If M(z) is a measurable function satisfying

(39) (z—0)M@x) —a) >0 forz =6,
inf |M(@) —a|>0 f 3> 0,
(40) b5 1o <o | M) — af or every

(41) |M(x) —a|=c+d|z— 60| for some positive constants ¢ and d,
and if
(42) Zla..=°°, Zlaf,<oo, and @ny1 < @,

“3) EBEYX.) X, ,X.) =0, EXYX) X, ,X,)So
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with probability 1,
lim inf P{Y(x) — M@x)+a=0}>0

>0 0<|z—0]|<7

lim inf P{Y(x) — M) +a <0} > 0,

0 0<[z—0|l T

(44)

then
P{X, converges to 8} = 1.
Proor. Take
balc +d|2. — 0|) for bd>1
o {b,.c for b.d =1,
» =0,
Yo = ba| M(zs) — a

in Theorem 1.
The process as described in Theorem 2 gives a stochastic approximation
method for the point 6 which uses the number of changes in sign in

X — Xi)(Xia — Xio) §i=3,---,n
to determine (X,41 — X,). We only reduce b, and thus the magnitude of
Xn+1 - Xn

when the last two corrections X, — X, and X,y — X, had different signs.
As indicated in the summary this process may pull X, to 6 faster (for large
| X» — 6][) than the Robbins-Monro procedure. In Theorem 2 the conditions
are slightly stronger than for the Robbins-Monro process as given by Blum
[1]. Blum does not need

Gny1 S Gp

or (44) and has

(40a) aS|xin§|§a' |M(z) — a| >0 forevery 0 <3=<4 <
instead of (40).
One can easily give an example to show that we cannot replace (40) by (40a)
and the following example shows that (44) cannot be dispensed with.
Exampre. Take
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Let {2sn41.0j(n = 0, 1, --- ) be a sequence of real numbers such that

Zan41.0 # Tamer0 for 5 m and 1 = Zoppro = 2.

Let {zn0}(m = 1, 2, --- ) be a sequence of real numbers such that
‘Tono = Tamo for n#Em and —2 = 29,0 = —1.

We now construct recursively sequences {z,x}(k = 0, 1, --- ). Put

Z(z) = M(z) — Y(x)
and
Zag = Z(Za),

Xpn1 = Xp — baZ(X,)

We start with {z,:} by taking
Zuo = [ 210 = Tio — 2,0 with probability
' (210 with probability 3,

" ” .
where 12,0 < 2o < Z1,0. Further take z;,;, = 1,0 — 21,0, and in general

o

”

’ . oye
7 216 = T1p — Tao with probability
1k = . .
21k with probability
and
4
Trk+1 = X1,6 = 214k,
where
1 U4
T < 21 < L1k

For n > 1 we take

Zno = (B — 1) (o — Tny10)  with probability 2%2
Zn 0 =

Zno with probability 1 — ——,

1
Tni = Tno — n—1 2n,0,

where 2, ¢ is such that
ZnoTao >0 and 3| Zae| <|zZmol| <|Znol

and z,, is not equal to any zm,,; with m < n. Further for &k > O,
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Zog = N(Tnk — Tapr0)  with probability 5

Zn b with probability 1 — -2%2,

/7
Tnktl = Tnp — ;‘bzn.k’

where 27, ; is such that
z":;’f.x"pk > 0). % I x”"‘ ' < I z":'k I < lx”t" I
and z, 41 is not equal to any zm,; with m < n. We take M(2,.) = EZ,; and
Y(@ap) = Zag — M(znp).

For x # x,; for all n, k, we take M (z) and Y(z) in any way such that the con-
ditions of Theorem 2, except (44), are satisfied.

Take now X; = 21,0 with probability 1. By the choice of z,,, we get the
value Z,41,0 as soon as Z,, takes the va,lue Za . . But for every =, with prob-
ability 1, Z will take once the value 2, . Therefore with probability 1, all the
values ,,0 occur in the sequence {X,} and thus,

P{X, converges to 0} = 0.

Accelerated Kiefer-Wolfowitz procedure.
TrEOREM 3. Let X, and Y (x) be random variables and let {a,} be a sequence of
positive numbers and u some positive constant and define

Xop1(w) = Xa(w) — balM (X0 — u) — M(X, + u)]
The sequence {b,} s selected in the following way from the sequence {a,)}:

bl = a1,
bz = Qg,
bn = Q(n)

(cf. (2) and (3)). If M (z) 7s a measurable function, satisfying

inf Mz —u) — M@+ 4} >0
(45)
{Mz —w) — Mx+ w} <0

»—-05—6
for every 6 > 0,
(46) | M —u) —M@Ex+u)|sc+d|lz— 06|
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for some positive constants ¢ and d, and if

(47) Z;an =w, >al<w, and auu < a,

At
EYXs—u) - YXa+w| Xy, -, X,) =0,
E(Y(Xa—w) — Y(Xo+w) | X1, , Xn) S 6
with probability 1,
im inf P{Y(x—u)— Y@+ u) — M@x—w + M+ u)

0 0L |2—0|<r

(48)

(49) =0}>0
1i-3’10<lia.~13£|§r PiY(z —w — Y@@+ u) — Mz — u) + M+ v)
<0} >0,
then
P{X, converges to 8} = 1.
Proor. Take

{b,.(c+d[x,.— o) for bud > 1
Qp =

bac for b.d =1,
B" = 07
Yn = ba| M(xn — u) — M(zs + u)|

in Theorem 1.

ReMARK. Theorem 3 is also implied by Theorem 2. The procedure in Theorem
3 requires u to be independent of n, and therefore differs from the usual Kiefer-
Wolfowitz procedure ([3]). Also condition (45) does not imply that M(z) has
2, maximum, or if it has one, that 6 is the location of the maximum. However,
for every y with |y — 6| > wu, there exists an « with{z — 6| < wu, such that
M(z) > M ().
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