SADDLE-POINT METHODS FOR THE MULTINOMIAL
DISTRIBUTION!

By I. J. Goop

1. Summary. Many problems in the theory of probability and statistics can
be solved by evaluating coefficients in generating function, or, for continuous
differentiable distributions, by an analogous process with Laplace or Fourier
transforms. As pointed out for example by H. E. Daniels 2], these problems can
often be solved by asymptotic series derived by the saddle-point method from
integrals containing a large parameter. Daniels gave a form of saddle-point theo-
rem that is convenient for applications to probability and statistics. In the pres-
ent, paper we extend the theorem in various directions and give some applica-
tions to distributions connected with the multinomial distribution, especially
to the distribution of x? and to the distribution of the maximum entry in a multi-
nomial distribution.

2. Introduction. The use of asymptotic formulae in practical statistics has,
historically, been partly experimental. As much regard has been paid to numeri-
cal examples as to analytical bounds on the errors. Analytical bounds have a
habit of being much larger than life, and are often of less practical value than
the second term of an asymptotic expansion. If the second term is small then we
can be happier about relying on the first term. If it is not small then we learn
even more, and we also become interested in finding the third term. There is
therefore a definite need in statistics for two-term and three-term asymptotic
expansions.

In Sec. 6 we give three rather general theorems about asymptotic expansions
of integrals, double integrals, and multidimensional integrals, in a form conven-
ient for statistical applications. These theorems are adequately motivated by
the earlier sections. In Sec. 3 we make some preliminary remarks about the
multinomial distribution and tests for it. In Sec. 4 we give some examples to show
how generating functions arise for these tests. In Sec. 5 we give brief descriptions
of continuous and discrete methods of extracting coefficients from generating
functions, and the continuous method is elaborated in Sec. 6, where the general
theorems on asymptotic expansions are given. These theorems are applied in
Secs. 7 and 8 to the distribution of the maximum entry and to that of x? for a
multinomial distribution. (When we refer to x? we mean the statistic for testing
goodness of fit, not the gamma-variate.) In Secs. 9 and 10 we give some examples
of the discrete method of extracting coefficients and some combinatorial formu-
lae for the distribution of the maximum entry.
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862 1. J. GOOD

3. Significance tests for multinomial distributions. Multinomial distributions
arise, for example, in the following problems.

(a) Testing the goodness of fit of observations to a theoretical continuous dis-
tribution.

(b) Testing whether a sequence of non-negative integral variables arose from
independent observations of a Poisson variable of unknown mean. (See, for ex-
ample, Rao and Chakravarti [21] or Hoel [10], page 198.)

(¢) Testing whether digits are adequate as random sampling numbers.

In all three of these applications the equiprobable multinomial distribution
(with all cell probabilities equal) is of special interest and therefore, in the pres-
ent paper, more attention will be given to this case than to the general multi-
nomial distribution. Furthermore the theory is simpler for the special case.

Let our multinomial distribution have # categories, sample size N, and sample
ni, Ng, -+, Ny, where

n+ ne+ - +mn =N.

Let the null hypothesis be that the cell probabilities are p;, p2, -- -, p¢, the
most interesting case being when p; = p, = -+ = p, = 1/%.

The null hypothesis may be tested by any of the following tests among others.
Which tests are appropriate will depend largely on what non-null hypotheses
are judged to have appreciable initial probabilities.

(A) For the non-null hypothesis we might assume that the cell probabilities
are qi, ¢z, -+ , e where g1, g2, - - - , ¢: are unknown but are assumed to have
what I call a “type II” initial probability density in the simplex (generalised
tetrahedron) ¢ + ¢ + -+ 4+ ¢. = 1. (By a type II distribution I mean one
obtained when sampling from a superpopulation in order to determine an ordi-
nary population.) We should then, by Bayes’s theorem, arrive at a factor in
favour of the non-null hypothesis provided by the observations n;, ns, -,
n; . (For the terminology and for the theorem of the weighted average of factors
see Good [3], Chapter 6.) This factor would be the weighted average of

D pe)

with weights proportional to the initial probability density. For example, if the
initial probability density is taken as proportional to (pips - - - )% (> — 1)
(cf. Perks [20], Good [4], or, for the uniform distribution « = 0, Lidstone [18]
and Jeffreys [13]), the factor in favour of the non-null hypothesis turns out to he

(ta + t — l)!I_Il(n,-i- a)!
@) (N + ta +t — D[]

Fla) =

In accordance with what 1 called the “Bayes/non-Bayes synthesis” in lec-
tures in Princeton and Chicago in 1955, we could,’ for some guessed value of «,
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regard F(a) simply as a statistic and work with its distribution, given only the
null hypothesis. [The Bayes/non-Bayes synthesis is the following technique for
synthesizing subjective and objective methods in statistics. (i) We use the neo/
Bayes-Laplace philosophy in order to arrive at a factor, F, in favour of the non-
null hypothesis. For the particular case of discrimination between two simple
statistical hypotheses, the factor in favour of a hypothesis is equal to the like-
lihood ratio, but not in general. The neo/Bayes-Laplace philosophy usually
works with inequalities between probabilities, but for definiteness we here as-
sume that the initial distributions are taken as precise, though not necessarily
uniform. (ii) We then use F' as a statistic and try to obtain its distribution on
the null hypothesis, and work with its tail-area probability, P. (iii) Finally we

look to see if F lies in the range
)
30P’ 10P/ "

If it does not lie in this range we think again.]
(B) The likelihood-ratio test. (See, for example, Wilks [26].) Minus twice the
logarithm of the likelihood ratio is

=22 n logen, — 2> n, log.p, — 2N log.N,

which has, asymptotically, a gamma-variate distribution with ¢ — 1 degrees
of freedom. For the equiprobable case

w =22 n log, n, + 2N log.t — 2N log. N.

(C) The chi-squared ftest (for numerous references see, for example, the Index
of M. G. Kendall [16], Vol. II),

X2 = Z (n, — Npr)z/(Np,-).

x’ arises as an approximation either to u or to a constant plus 2 log F(a), what-
ever the value of «. In fact, for any initial distribution with positive density
at (py, D2, -+, Di), the log-factor (“weight of evidence’) in favour of the non-
null hypothesis, when the null hypothesis is true, is asymptotically of the form

2
%X —'Kr

where K depends only on N, ¢, p1, - -+ , p: and not further on the sampling fre-
quencies ny , ng, ** -, N . This, to a neo/Bayes-Laplacian, is the real justifica-
tion for the use of x*. A similar argument applies to the use of x* for testing
absence of association in contingency tables.

.Among the advantages and disadvantages of u as compared with x* are (i) x
more closely puts the possible samples (for given N, ¢, p1, p2, - - -, p¢) in order
of their likelihoods on the null hypothesis, (ii) when tables of 2n log.n are avail-
able, the calculation of u can be done by additions, subtractions, and table-
lookups only, but the calculation is less “well-conditioned” than for x%, in the
sense that more significant figures must be held, (iii) x* is a simpler mathemati-
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cal function of the observations and it should be easier to approximate closely
to its distribution, given the null hypothesis. (See Sec. 8, where a method is
discussed for improving on the usual gamma-variate approximation.)

(D) Number of zero entries. Sometimes the (possibly vague) non-null hypothe-
sis has a lot of type II probability density close to regions where several g¢,’s
vanish. In this case a reasonable statistics is the number of zero n.’s. The prob-
ability that the number of zero n,’s will be exactly s is

uty
Z{(l — "= —qg+p )+ Zj(l —qg+p,+2) - }

where
q=pr|+pr2+ “'+p7'o’

and where the outer summation is over all unequal values of r, 7o, -+, 7,.
For the equiprobable null hypothesis the above probability reduces to

) - O+ e (20)6) )

and is discussed in some detail by Rao and Chakravarti [21].
(E) Maximum entry,

max n, .

This statistic would have some application to some work of Guttman (8], as
pointed out by Greenwood and Glasgow [7]. The latter authors considered the
distribution of both maximum and minimum entries in a binomial distribution
and discussed also a special trinomial example. Their methods and results
hardly overlap with ours. The distribution of the statistic max, n, can be ob-
tained by means of the saddle-point method and is discussed further in Secs.
4,7,and 9.

4. Some generating functions, mainly related to the multinomial distribution.
4.1. Mazimum and minimum eniries. Let P(all n, < m) be denoted by

P(m|N,?),
which of course depends on m, N, ¢, p1, p2, - -+, p: . For the equiprobable hy-
pothesis p; = p, = --- = p, we denote the probability by Po(m | N, ), a func-

tion of m, N, and ¢ only. Then it can be at once verified that (for all x)

o N t m m
a.1) Z%P(mw,t)=H<1+prx+"'+p;nf>’

r=1

and in particular that
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m

© LN N 2 t
(42) ZtN—’”,Po(mlN,t)=(1+x+%+...+’£_>,
N=0 . .

m!

Similarly the probability that the minimum entry is at least m is the coefficient
of ¥ in

2 m m+1_ m+l
1 prx pr T .. .>
(43) N'rI=I1<m! + (m + 1)!+ ’
or, for the equiprobable multinomial distribution, in
Nt/ i >'
(44) _t—“'_(ﬁ-'-'_(m—+iﬁ+ .

The above four generating functions are simple generalisations of the one in
Proposition XXIII of Whitworth [25].

4.2. Probability that all n, are even or all are odd. It may be noticed, for its
entertainment, that the probability that all the n,’s are even, for an equiprob-
able multinomial distribution, is equal to the coefficient of z" in

N! & )t

i.e.in

N! {etz + te(t-—2)z + <2t) e(t—Q)z + .. + e—-tz},

2t W

so the probability is

{3+ Q-+ +(-2)
o (- (Y-8 e (-

~ 2—t+l(1 + e—2Nlt)t
if ¢ is large and N is even. Similarly the probability that all n,’s are odd is

(TN
O ()
_ 2A'—t . 1 >N
—W”G"
and is approximagely equal to 27 (1 — ¢7¥/)" if ¢ is large and N = #(mod 2).

4.3 Chi-squared for the equiprobable multinomial distribution. We write, as is
customary,

X = 3 e — N/

and we have

2 _ S _
(45) X "N N’
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where § = D', n, so that the problem of the distribution of * is essentially
the same as that of S. Now we can at once verify that, M being an integer,

© M NN o n? n\t
4.6) > U_‘Pr(s-.:M)=(z’”y).
Yo, M=o N! a0 n!

In the hope that they may suggest to the reader some improvements in the
analysis of this paper, we mention a few facts about the function

o n?2 qn

x
F(Cl?, :l/) = E il/ .
n=0 M.

We have
aF (e*, e _ *F (e, ")

13 o

|F(e”, y) |* = g (2y)" cos” (nh)/n!,

— 1 ® H"2+ eiuV2
F(e™,y) = f 3™ gy (Ra > 0).
Y V 21I'C¥ —o0 ’

Finally we mention that the function F(e"*V?, y) is discussed by Nassif [19]
and Tims [23].

4.47 Chi-squared for a contingency table. For an r by s contingency table
{nii}(i = 1’ 2} :T;j = 1: 27 8 Zi.inﬁ = N: Zinii = N, , Zinii =
n.;), the probability of the table, given the borders, and assuming no associa-
tion, is, as is well known,

H n;.In ;!
i

g

Now

2 _ 5 (i — niny/N)* _ _
x = Z} niniy/N NE -,

where
2
n .
S = .
zz:: n; n.;
The problem of the distribution of x” is equivalent to that of S, and
‘ Pr (S = M) = coefficent of 2 H ziiyid in
¥
(4.7) H n,-,!n,,-! o n n_n2/(n;n;)
i

1] 3

N! 65 n=0 n!
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The moment generating function of S is therefore the coefficient of []: ; z7* 4}
in

Hn,'n,' o _n_n nu/(n;nj)

o]
N! 1§ n=0 n!

b. Methods of evaluating coefficients in generating functions.

5.1. Continuous methods. A coefficient in a power series may be expressed as a
contour integral by means of Cauchy’s formula, and then this integral may be
expanded into an asymptotic series by a saddle-point method. In the present
paper examples are given in Secs. 7 and 8. For continuous random variables
with probability densities the analogous process is the use of the Fourier or La-
place transform instead of Cauchy’s integral.

5.2. Discrete methods. Let

g(6) = 2 cae™

n=—00

Then if u is a positive integer we have

(5.1) LS (2”> > .

U r=0 n=—00

In particular, if ¢, = 0 whenever | n | = m, then

L u—1
62) L[ 0= =15, ()
T J—m r=0
whenever v = m. (Compare D. G. Kendall [14], and Good [5].) Given a generat-
ing function that happens to be a polynomial, h(z), we can extract the coeffi-
cient of z" by using (5.2) with g(8) = ¢ "'’h(e”). An example will be given in
Sec. 9, and it should be noticed that the method gives an exact formula (from
which an asymptotic formula can sometimes be deduced). For continuous ran-
dom variables the analogous process would be the use of Poisson’s summation
formula: see, for example, Krishnan [17].
When the generating function is an infinite power series we can make similar
use of (5.1) provided that the series on the right is utterly dominated by its
largest term. A potential example is given in Sec. 10.

6. The general asymptotic formulae.

6.0. In this section we give theorems in a convenient form for applications
to probability and statistics, concerned with the asymptotic expension of mul-
tiple integrals containing a large parameter. Three terms are given for single in-
tegrals, two for double integrals, and one for multiple integrals. Only the first
two theorems are applied in the present paper, but the multidimensional theorem
seems worth stating since it puts the two-dimensional one into proper perspective.

6.1. The asymplotic cxpansion of a single integral.
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THEOREM 6.1. Let

f(z) = nZ” az"

be a power-series or polynomial with non-negative real coefficients and a non-
vanishing open domain of convergence (an annulus, or the inside or outside of
a circle). Suppose that the suffixes » at'which a, > 0 do not all have a common
factor greater than 1. (This condition is given, though incidentally, by Daniels
[2], p. 646. It is clearly necessary and its sufficiency will follow from the remarks
following Theorem 6.3. The condition can always be forced by a change in the
variable of the generating function.) Let the coefficient of ¥ in (f(z))* be ¢(N, ).
If ¢(N, t) # 0, then there is a unique non-negative real solution, p, of the equa-
tion

(6.1) tp gl;f(p) = Nf(p);

and, if in addition N /¢ is held inside a constant interval, then

()"

c(N, ) ~ 00"/ 2t
©6.2) , {1 " 24% B\ — 5\ + (1/11528)

- (168N\s\s + 385M5 — 630AjN, — 24Ns + 105M)) + ---}

uniformly as £ — o, where

(6.3) A= N(p) = K5(p)/0"

where

(6.4) o = Vkp),

and

65w = (L) Qo s N lea, G =0,12, ).

£

If we write p = ¢°, we may replace (6.5) by

(656) o) = () 108 1) s

Similarly if f(2) = [Zw a(r)2” dr, where
- (a) a(r) = O for all real r, and is continuous,

(b) the integral is convergent for some non-vanishing open interval of posi-
tive values of z, then

¢@) = [ o, " an,
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where ¢(N, f) is still given by (6.2) for positive [negative] N, and where the re-
maining conclusions are formally the same as in the discrete case. The conclu-
sions of the theorem (both in the discrete and continuous cases) may be simul-
taneously true for positive and negative N.

The above theorem can be proved as in Daniels [2] and differs from Daniels’s
form only in (i) that we do not insist on the condition f(1) = 1, and (ii) that
we have calculated the third term of the asymptotic series. More terms could
be worked out on an electronic computer programmed to do algebra.

Since the theorem is so similar to the form given by Daniels we shall here
content ourselves with some of the formal details leading to the extra term. We
may suppose without real loss of generality that f(p) = 1. Write «,.(p) = «, for
short. Then

(N, 1) = 5‘;1 f ()" dz

1 .[: (f(pem))te—mo do

o 2m

T . 3
= ~12 f expt{—%xgtf - “EG + } dé
PYAT J—x

= __._l i e‘}xgql’z ex K4(P4 - Kﬁ‘pe + .. .>
o"213/1 Luyi P\2a ~ 7202

3 5
K3 Kg ¢
§ oo (aﬁ" 2067 T '“d¢>

and (6.2) follows from the formula

1 ® —3z2 2n _ B
N2 .[we 2" dr = 13.5.---(2n + 1).
(Some of the above algebra can be done with the help of Kendall [16], I, formula
(3.30), with his x, = 0, since this formula gives the expansion of the exponential
of a power series.) As a check of the above theorem consider the case a, =
¢ MY(N/t)"/r). Then we find that the theorem correctly gives

1 ¢ (4 __1+_1_ + .-
NI  N'/2r 12N 288N’ :

A further check of the theorem can be obtained by applying it to a classical
problem in the theory of numbers, namely the enumeration of ways of express-
ing a positive-integer N as the sum of ¢ squares of numbers 0, 21, £2, - -- (dif-
ferent orders counting as different representations). For a detailed discussion
of this problem see Hardy [9], Chapter IX. Here ¢(N, f) = r/(N) in Hardy’s’
notation, and

o0

2 n(N)z" = (3(2)),

N=0
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where

o) = i z (=] < 1).

n=—00

The equation for p becomes
(6.7) 2 = %V' Z; o

Now

— = n? - ™ & —nzrzllogl
1) _pr 1/——-——10g l/pze »

—c0

w,‘/——l—— if p is near 1.
log 1/p’

If p is near to 1 we may approximate the derivatives of log f(p) by those of

—1log log%.

We find that
lo LPUL
g P ~aN
if N/t is large, that
o N? \/§,

and that

k(p) = r ; 1)!<27N>T (r=1,2 ---);

MR2VZ, O MR1Z, MR 482, A A 480;

and Theorem 6.1 gives

1 Z%Ne*‘( 1, 1 )
" gy /L) (-t et ).

Clearly what we have here is no better than the elementary result

T}t N%t—l
TGy
though once again the example acts as a check of Theorem 6.1. It would be in-
teresting to see what the theorem would give if N/ were not assumed to be
large. The equation (6.7) could be solved iteratively and the result of the theo-
rem could be compared with known results; for example, the case t = 24 is
treated in detail by Hardy [9].

as N — o,

r(N) ~
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On the whole is seems unlikcly that the present method could compete in
elegance with the classical theory in which, instead of the saddle-point method,
a so-called “singular series” is obtained by using a contour that comes very
close to the unit circle. It may be that there is scope for the method of singu-
lar series in statistical problems.

6.2. The asymptotic expansion of a double integral. (Compare Hsu [11]; Copson
[1], Sec. 5. These authors do not work out the second term of the expansion.)

THEOREM 6.2. Let

fay) =3 S a9y

r=—00 j=—o0

(or [Zw (2w a(r, s)z'y’ dz dy, where a(r, s) is continuous), where the conditions
(6.14), (6.15), and (6.16) of the (multidimensional) Theorem 6.3 are satisfied with
1 = 2. Let the coefficient of z™y" in (f(z, y))* be ¢(M, N, 1), t.e.,

Fa ) = > > oM,N, )" y"

M= N=—w

or ()= i [ " oM, N, 1) & ¥ dM dN),

where the conditions (6.17) to (6.19) of Theorem 6.3 are satisfied with I = 2. Then
there is at most one pair of non-negative real numbers p, p’ such that

6.8) tp g’;f(p, o) = Mf(p, o),

(6.9) to’ a%,f(p, p’) = Nf(p,p'),

(If (p, p') ts a boundary point of the domain of convergence, then f and its deriva-
tives may be interpreted as limits from within the domain. A similar understanding
applies throughout this paper.)
and if there is such a pair then

‘ N1t o
C(M, N, t) ~ M{l + —1— [3)\40 bt 12)\31 o + 6)\22(1 + 20(“)

21rtpMp'N\/K 24t
— 1203 @ + B\os — BNy — (1 + 407 — LA + 4o)
(6.10) — BAE + 30Ns0 Aor @ — B Mia(1 4 407) + 2hz0 Aoz (3 + 2a%)

+ 18\ A2 (3 + 207 — 6hat hoa(1 + 40°)

+ 30A12 Moz @] + }r

where
3T As
Krs Kd; K30 )\11

(6.11) Ny = T o=t
AN V (oo No2)
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where

(6.12) A = xakes — K31,

where

(6.13) ks = Krs(p, p') = (ag)( ) log f(¢', €")

t=logp
n=logp’

Here again we merely give some of the formal details of the proof. These
details should suffice, when combined with the references cited, together with
the remarks following Theorem 6.3.

There is no real loss of generality in assuming that f(p, p’) = 1. Then

C(MNt)—— IN ‘[ [ expt{——xgoo —K110¢—§K02¢
- éxaoo" - -H}dOdc,o
/I pra/i
— IN » / [ e—i(xzooz+2«uo¢+xow’) exp {1 4+ — (K4o 0
p p 4n” S-x/t i

+ dkg 6% + Gk 0°0" + 413 00° + xou @) + }

cos {G_Iti (K30 6° + 3ka 02¢ + 3kiz 0992 + Koz ¢'3) + - } dé de.

If we now define 43 , 53 and 5 by the equations

=

__ Koz _2 K20 —Kn

A’ P = T e’

where A = kKo — k31, we may apply the formulae for the moments of a bi-
variate normal distribution as given, for example, by Kendall [16], Sec. 3.29 and
Exercise 3.15, and we formally obtain the result (6.10). In order to check the
algebra it may be observed that, when @ = 1, the sum of the moduli of the
first five coefficients of the \’s is 48 and the sum of the rest is 320, while the
algebraic sums are both zero. These facts can be inferred from the above argu-
ment without going through all the details.

An application of Theorem 6.2 is given in Sec. 8. In this application it is
found that the coefficient of 1/(24¢) is very ill-conditioned. It may be possible
to write it in a well-conditioned form.

6.3. The asympfotic expansion of a multiple integral. (Compare Hsu [12],
Rooney [22].)

THEOREM 6.3. Let

rl

f(xl,x2,"',$1)= Z a(h,"',h)x;'“~x;
T1,7g,0 00Ty

00 0
<0r f ...‘[ a(rl,...’rl)xil...x;ldrl...drl>,
—o0 0

_2
o1
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where a(r1, «+ -, r1) 15 continuous), where the summation is over all integral lat-
tice-points in l-dimensional space, and where
(6.14) a(ry,re, -+ ,71) 20

(6.15) the series (integral) is convergent in some mnon-vanishing open l-dimen-
stonal domain;

(6.16) there exist positive integers Ry, Ry, - -+ , R such that every point Ry,
R., -+, Riwith Riee > Ry, Rees > Rao, -+ - , Ries > Ru, where each e is either
+1 or —1, can be expressed as a linear combination of points (r1, r2, -+, 1)
faor which a(r1, 12, -+ -, 1)) > 0, the coefficients in these linear combinations being
positive integers. In other words the suffizes corresponding to positive coeﬁicwnts m
f span all points sufficiently far from the origin in at least one “octant” (or 2 -ant)
(For better understanding the reader may take e; = 1 for all j.) There may be as
many as 2' octants for which this condition is valid. (In the ‘“‘continuous” case of
the theorem this condition does not require explicit mention.)

Let the coefficient of &3 'z3® - -+ &1 in (f(x1, T2, +** » 1))’ be

c(My, M, -+, M;;0),

ie.,
o 0
M
(f(xl,x?’...’xl))t-: Z es 2 C(Ml,"‘,Ml)xll”‘xrl
M j=m—00 M j=—00

(or f [ C(Ml,"',Ml)xi"l cee ¥ dM, .- - dM).

Suppose further that we restrict our attention to a class of values of
My, M, -+, M)

for which
(6.17) M;/t(j = 1,2, ---, 1) all lie in fixed, not necessarily finite, intervals;
(6.18) SgnMi= €5 G=1, 2,--4,0);

(6.19) ¢(My, Mz, ---, M;; ¢) # 0 at any point satisfying the above condi-
tions, if ¢ is large enough.

Then there is at most one ordered set of ! non-negative real numbers p1 , p2,
-+ -, pysuch that

(6.20) tpj%f(Pl,"',Pl)=Mif(P1y"',Pl) (j=1;2)"',l),
J

and if there is such a set of I numbers, then uniformly

[f(Pl yP2, """ ypl)]t

(6.21) oMy, My, -+ My t) ~ @ t);z LTI \/K’

where
(6.22) A = det {«ii(p1, -+, p))},



874 1. J. GOOD

where
( ik 9 9
6'23) Kll(Pl y T Pl) = Pié? Pk (—,)E ]ng(pl y T, Pl)
J
even if j = k. Or we can write
(6.24) K’x"i(m cee L, p) = il log f(ef! - eE")
’ ’ ’ 9%; 0k, ’ ’ gmlogn;
(F=1,"+,1)
In other words A is the Hessian of log f(e*, - - - , %) at

(El;"':gl) = (logpl,"‘,logpz).

-— 95 § —(M +eeet+M )t
f* f( l’ el e ‘)9 151 233 ,

which is essentially of the form of a Laplace transform of a non-negative func-
tion, is an analytic convex function of (¢, &, -+ - , &) in its real domain of con-
vergence, and so also is log f*. (Cf. Doetsch [2A], p. 58.) It can be seen to be
strictly convex. if the points (“basis vectors”) at which a(ry, 2, -+, ) > 0
span a genuinely l-dimensional space, which they do in virtue of condition
(6.16). (It is also strictly convex in any linear manifold that belongs to the
boundary of the domain of convergence.) Hence the Hessian of log f* (which is
equal to A) is strictly positive at points of the real domain of convergence of f,
and stationary points of f*, even if they are on the boundary of the domain,
are necessarily minimum points. There cannot be more than one stationary
point. Certainly f* attains its minimum but this may be on the boundary of
the domain. It follows that the solution of (6.20) is unique if it exists, and it
will exist if f* attains its minimum at an interior point. It may also exist if the
minimum is on the boundary, provided that the minimum is a stationary point
as in an example considered in Sec. 8 in relation to the distribution of x*. In
any practical problem if the equations (6.20) can be solved there are no further
difficulties.

It can be seen that condition (6.16) is equivalent to the statement that every
point in the l-dimensional lattice can be expressed linearly, with integral co-
efficients (not necessarily positive), in terms of the “basis vectors”

(riyra, -+, 1)

for which a(ri, v, ---, r;) > 0. If this condition were not satisfied, then at
least one of the vectors (1, 0,0, ---,0), (0,1,0,---,0),(0,0,1, ---,0), etc.,
would not be “spanned,” say (1,0, 0, - - - , 0) for definiteness. In this case there
would be a smallest positive integer 7, such that all multiples of (r,, 0,0, - -, 0)
would be spanned and no other points of the form (r, 0, 0, - - - , 0). Then there
would be at least ro values of 6;, not congruent modulo 2, at which

i0 10, 1]
f(p1e™", pe™, - -, pie™?)
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would be of maximum modulus, i.e., at least 7, equally important saddlepoints,
and the asymptotic formula (6.21) would need modification.

The remaining details of rigour in the proof of Theorem 6.3 may be supplied
along the lines of Daniels [2], whose use of Lagrange’s expansion must be now
replaced by the multidimensional form that is given in Sec. 104 of Goursat [6]
(and attributed to Laplace).

If in Theorem 6.3 the power f* were replaced by the product of ¢ distinct
power series, and if moreover the second term in the asymptotic expansion were
obtained then we should have a theorem that could be used in conjunction with
(4.7) for approximation to the distribution of x* for contingency tables. If only
the first term of the asymptotic expansion were available we should merely
arrive at the familiar gamma-variate approximation.

7. Asymptotic expansion of Py(m | N, t). We pointed out in Sec. 4.1 that
Pyo(m | N, t) is equal to the coefficient of z¥ in

N

w

2 m\ ¢
Q+x+%+-~+19.

m

We may therefore make use of Theorem 6.1. with
2 m
@ =1+z+2+ - +2
2! m!’
Equation (6.1) becomes

2 m 2 m
Py .. i N LI
(7.1) P+t +(m—1)! l£<1+p+ i+ +m!>’

which, when N and ¢ are numerically assigned, can be solved by any method
for the numerical solution of algebraic equations. It is then a straightforward
calculation to apply Theorem 6.1, and it could be done on a general-purpose
computer for any specified values of ¢, N, and m.

As a detailed example take m = 2 and N = {. Then

b= 3

and it can be shown that

> = log f(oe")
r=0 T:

= log f(p) + u + log [1 + (4 — 24/2) sinh? f:f]

Hence
K3 == K5 ——E O’
=1 k=2-4/2 k= —16+ 112, = 512 — 3611/2,

=34+ VD), %=1 - 13VD),



876 I. J. GOOD

TABLE 1

t One term Two terms Three terms Po(2]t,8)

1 1.160 1.070 1.058 1.0

2 1.031 0.990 0.988 1.0

3 0.9153 0.8914 0.8904 0.8888

4 0.8129 0.79703 0.79652 0.7968750

5 0.7220 0.71326 0.7104105 0.71040

10 10.3990 0.39585 0.3958103 0.395811:360
and

1 1+ \/§>‘
P2t t) ~ ————=
(2140 VZ—V2( :

(7.2)

) 1_8-—3\/5_96\/5——113_'_.”
48t 230482 '

In Table 1 the results of taking one, two and three terms of (7.2) are given in
the second, third, and fourth columns, while the last column gives the exact
value of Po(2 | ¢, t). It seems fair to say that, when using formula (7.2), we may
regard 4 as a large number and 10 as very large indeed.

When N is not necessarily equal to ¢, the first term of the asymptotic formula
is

N\ 2—{-\/‘2 ) (t—N)2 }
a e~ (§) emivrevrer (- Ve
For ¢t = 8 we have the following numerical values.
N 2 1 6 8 10 12 14
i) 1.4 .988 773 .506 .239 .074 .014
(i) 1.0 .943 .769 .501 .237 .070 .010

where row (i) is obtained from (7.3). and row (ii) is the value of Py(2 | N, ¢)
correct to three decimal places, computed directly from the generating function.

8. Asymptotic expansion for the distribution of chi-squared. It was pointed
out in Sec. 4.3 that for the equiprobable multinomial distribution,

(8.1) ) Y = % — N, where S = g ny,

and that

(8.2) Pr (S = M) = coefficient of z"y" in N1£7¥(f)},
where

o n?on
x

fay =221,
n=0 N!



SADDLE-POINT METHODS 877

The equations for p and p’, in Theorem 6.2, are

0 2 a2 4n 0 n?
np M pp
83 =
(83) 0 n! tzo: n! ’
0 n? m w a2
np" p" N p' p
84 = —
(84) ; n! tzo: n!

When M is a possible value for S these two equations have a unique solution,
and this solution could be obtained by means of an iterative process on
a general-purpose computer. (Each equation can be shown to determine p

uniquely given p’ and conversely.)
As an example that can be worked out by hand calculation, we consider the

special case

when

p=p =1
(p = 1 is on the boundary of convergence of f, but this does not affect the va-
lidity of Theorem 6.2.) We have

o n2ttny 0,1.2.-

e rs
e ) = ST Y ey
where
, - 0 n2r+c
Hrs = ﬂ;o Y] = b27+s’
where
z 62:; b2$2
e =1 +€z+§+ =e<bo+b1$+7 + );

br = br—l -+ (7‘— l)br_g+ <7’ ; 1) br—3+ cee 4 bo,

bo = 1, b1 = 1, bz = 2, b3 = 5, b4 = 15,
bs = 52, bs = 203, b, = 877, bs = 4140.

Write p.. for the product moments about the mean of the (artificial) distribu-
tion with probability generating function e~'f(z, ), and we find by using known
relationships between bivariate moments, moments about means and cumulants
(see, for example, Kendall [16] Sec. 3.29 and exercise 3.15, and Kendall [15]),

> (5) (§) i

_1rw1 n2 ’ s
2 Zm<§—1> (n — 1)

n=0

Mrs
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Hence
Mg = 0, Mor = 0, M20 = 11, M1y = 3, Moz = 1;
w3 = 129, pn = 25, ez = 5, Moz = 1
uy = 2828, us1 = 488, use = 90, s = 18, Moe = 4;
koo = 1, koo = 11, K = 3, ke = 1;
k30 = pgzo = 129, K1 = pg = 25, K1z = p1z = 5, Koy = poz = 1;
Ko = pao — Supo = 2465, K31 = Mg1 — Speounn = 389,
Koo = M22 — M20Mo2 — 214%1 = 61, Kig = M13 — SMogpir = 9,
Koa = Mos4 — 3#32 = 1.
A = kpkp — Ki1 = 2, = 3/4/11.
Ao = 11/2, M= (3VID)/2, e = 11/2;
Mo = 129/(2v/2), M= (25v11)/(2V/2), e = 55/(2v/2),
N = (11v/11)/(2v/2);

Mo = 2465/4,  Aa = (389+/11)/4,

Mo = 671/4, Mg = (994/11)/4, I = 121/4.
Theorem 6.2 now shows that

1 1

(85) Pr(x2=t|N=t)=2\/7_rz(1+a+...>,

The coefficient of 1/(24¢) in Theorem 6.2 reduces to 4 in this example, al-
though one of its terms is over 30,000. The mere fact that (8.5) looks sensible
is therefore quite a good check of the arithmetic and algebra. It is important
to remember for future applications that the coefficient of 1/¢ in Theorem 6.2
is liable to be ill-conditioned, especially for machine programming.

It seems likely that the application of the theorem to x* would give better
results for its cumulative distribution than for the individual probabilities
Prx® = ((M/N) — N]. This opinion is supported by the earlier discussion of
the lattice-point problem. When ¢ is small, say ¢ = 2, the first term, cy say, of
the asymptotic formula for the lattice-point problem is misleading since no
prime of the form 4n + 3 can be expressed as the sum of two squares; but
¢ + ¢+ -+ + cx give a good approximation to the number of lattice points
in the circle ©* + 4 < N.

9. Some exact formulae for Py(2 | N, t). In order to illustrate the ‘‘discrete
“method” of section 5.2 we now consider the probability Po(2 | N, ) in more
detail.

We have (with p = /2), from (4.2),
NI 1 ["(2" + 2p + 2¢%)° @b

2 2pn L, W0

Po(le)t) =
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We can apply (5.2) with
u>t+|N—t],

and we obtain the following exact finite series.

N2 + 12)"
P0(2 | N: t) = _—(Z#V—Z%—Nﬁ)—
[u_;l] 211’7‘(t -_ N) 2T ¢
(9.1) 1422 cos——u—{l — (4 —2v2) sin‘a—}
r=1 /
]
+ (=B - 2v?2) ’e} ;
where
0 if u is odd
e —1
1 if u i even.
It follows that

Py2|2t — N,t) _ (2t — N)!
P2[N,t) — gMN2e’

a formula that also follows directly from the fact that £Pe(2 | N, £)2*/N! is
the coefficient of 2" in (1 4+ /22 + 2°)’, which is equal to that of 2’ by sym-

9.2)

metry.
Some further combinatorial formulae, which we give here without proof, are
_ (t — 1)!
Nt < 1
94) Po2|N, ) === 2

W S (N — 29)(t — N + s)lsl2e”

Pym|N,t) = (1 —21-) Py(m|N,t — 1)

N\1 "

+ ... _|.(]7:/;> <t1>m<1 —-tl->N_mP0(m|N —m,t— 1)

(9.5) =t<> l_lepo(m_uN—m,t—l)

14
+ <;> m'm'(N m!m!(N — 2m)! ¢ —2’1—

¢ N! 1 3\
+ <3> mimimi(yV — 31 (1 - t’)

-Pom — 1|N — 3m,t — 3) + ---

N—2m
(1 > Pym — 1|N — 2m, ¢ — 2)
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10. Combinatorial formulae for chi-squared. In most statistical work the
interesting values of x2 (or equivalently of S) are those greater than the expec-
tation given the null hypothesis. If we are interested in Pr(S = M), where M
is greater than the expectation, then Pr(S = 2M) 4+ Pr(S = 3M) + --- will
be negligible and we get, from (5.2), to an adequate approximation (writing
w = exp (2wi/M)),

Pr(S = M) = Pr(S =0 (mod M))

! )
— M times the coefficient of y" in

tv-M
; M—-1 1 M—1 2 M—1 2 2ms t
SR ED g et
m=1 1‘[ r=0 s=0
if M is odd. The expression »_, &™" is the Gaussian sum and is equal to

(m/M)NM

or i(m/M)\/M according as M = 1 or 3 (mod 4), where (m/M) is Legendre’s
symbol. The question arises whether the methods of Vinogradov [24] could be
applied to the problem of the distribution of x*.
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