THE MINIMUM DISTANCE METHOD!

By J. Wovrrowitz
Cornell University

1. Summary and Introduction. The present paper gives the formal statements
and proofs of the results illustrated in [1]. In a series of papers ([2], [3], [4]) the
present author has been developing the minimum distance method for obtain-
ing strongly consistent estimators (i.e., estimators which converge with prob-
ability one). The method of the present paper is much superior, in simplicity
and generality of application, to the methods used in the papers [2] and [4] cited
above. Roughly speaking, the present paper can be summarized by saying that,
in many stochastic structures where the distribution function (d.f.) depends
continuously upon the parameters and d.f.’s of the chance variables in the struc-
ture, those parameters and d.f.’s which are identified (uniquely determined by
the d.f. of the structure) can be strongly consistently estimated by the mini-
mum distance method of the present paper. Since identification is obviously a
necessary condition for estimation by any method, it follows that, in many
actual statistical problems, identification implies estimatability by the method
of the present paper.

Thus problems of long standing like that of Section 5 below are easily solved.
For this problem the whole canonical complex (Section 6 below; see [1]) has
never, to the author’s knowledge, been estimated by any other method. The
directional parameter of the structure of Section 4 seems to be here estimated
for the first time.

As the identification problem is solved for additional structures it will be pos-
sible to apply the minimum distance method. The proofs in the present paper
are of the simplest and most elementary sort.

In Section 8 we treat a problem in estimation for nonparametric stochastic
difference equations. Here the observed chance variables are not independent,
but the minimum distance method is still applicable. The treatment is incom-
parably simpler than that of [4], where this and several other such problems are
treated. The present method can be applied to the other problems as well.

Application of the present method is routine in each problem as soon as the
identification question is disposed of. In this respect it compares favorably with
the method of [4], whose application was far from routine.

As we have emphasized in [1], the present method can be applied with very
many definitions of distance (this is also true of the earlier versions of the mini-
mum distance method). The definition used in the present paper has the con-
venience of making a certain space conditionally compact and thus eliminating
the need for certain circumlocutions. Since no reason is known at present for
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76 J. WOLFOWITZ

preferring one definition of distance to another we have adopted a convenient
definition. It is a problem of great interest to decide which, if any, definition of
distance yields estimators preferable in some sense. The definition of distance
used in this paper was employed in [9].

As the problem is formulated in Section 2 below (see especially equation (2.1),
the “‘observed” chance variables {X} are known functions (right members of
(2.1)) of the “unobservable” chance variables {Y;} and of the unknown con-
stants {6;}. In the problems treated in [3], [9], and [11], it is the distribution of
the observed chance variables which is a known function of unobservable chance
variables and of unknown constants, and not the observed chance variables
themselves. However, the latter problems can easily be put in the same form
as the former problems. Moreover, in the method described below the values
of the observed chance variables are used only to estimate the distribution
function -of the observed chance variables (by means of the empiric distribution
function). Consequently there is no difference whatever in the treatment of the
problems by the minimum distance method, no matter how the problems are
formulated.

The unobservable chance variables {Y;} correspond to what in [11] are called
“incidental parameters”’; the unknown constants {6;} are called in [11] “‘struc-
tural parameters”. In [9] there is a discussion of the fact that in some problems
treated in the literature the incidental parameters are considered as constants
and in other problems as chance variables. In contradistinction to the present
paper [3] (in particular its Section 5) treats the incidental parameters as unknown
constants. The fundamental idea of both papers is the same: The estimator is
chosen to be such a function of the observed chance variables that the d.f. of
the observed chance variables (when the estimator is put in place of the param-
eters and distributions being estimated) is “closest’”’ to the empiric d.f. of the
observed chance variables. The details of application are perhaps easier in the
present paper; the problems are different and of interest per se.

2. The minimum distance method. Let m, m’, k, k', be integers such that
0=m=m,0=k=Fk.Forj=1,2, --- adinf. let (Y, ---, Yj») be inde-
pendent, identically distributed vector chance variables with the common d.f.
G\ which is unknown to the statistician. The constants 6; , - - - , 6. , are also un-

known to the statistician. It is known that, for j = 1, 2, - - - ad inf.,
2.1) in=li(ij,"j,lec',ely"'aom’) t=1---,h
where the t; ,forz =1, - - - , h, are known Borel-measurable functions of the argu-
ments exhibited. Define the common d.f. of (Y, -+, Yu),7 = 1,2, -+ ad.
inf., by

G(yl) e 7yk) = GO(yI, oy Yk, + y " +°°)
Let 6 = (61, -, 0n). Let A = {(&, g}) be a space of couples (&, g), the first

member of which is a real m’-dimensional vector (a1, - - - , @), and the second
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member of which is a k’-dimensional d.f. It is known that (8, G;) isin A. On 4
we define a metric § as follows:

o([ay, g1, [@s, ga) = Zl | are tan a;; — arc tan az; |
=

(2.2)
+ _[ lgl(z) - g2(2) ’ e_lzl dzl e dzk:
where
ai=aﬂ,"fyaim' 7:=1,2
2 = zl’ Y ’zk,

We shall also use 6 to denote a metric on any Euclidean space or on any space of
d.f.’s of the same dimensionality. In that case § is to be understood as the ex-
pression corresponding, respectively, to the first or second term of the right
member of (2.2). :

Our problem is to give (strongly) consistent estimators of G and (61, - - - , 0m),
ie., forn = 1,2, --- ad inf., to construct measurable functions (Q@n1 , @ns) from
hn-dimensional Euclidean space (of Xu, ---, X, -+, Xn, -+, Xn) t0 4
such that, whatever be (8, Gy) (in A), we have, with probability one (w.p. 1), both

Qf»il)'—)oi; j=17"'7m
where Q%7 is the jth component of Q. , and
Q'ﬂ(yl;"' » Yk +°°,"' )+°°)_’G(yl"" 73/’#)

at every point of continuity of the latter.

Let J(&, g) be the (h-dimensional) d.f. of (X, -+, X;») when § = & and
Go = g¢. In this notation the generic point in h-space is suppressed since it will
rarely come explicitly into play, and the emphasis is on the fact that this is a
transformation from A into the space of h-dimensional d.f.’s. We shall make the
following Identification and Continuity (1.C.) Assumption:

Let {a;, g;} be any Cauchy sequence (i.e., as ¢ — «, 8[a;, gil, [@itn , gisn]) — 0
uniformly in n) such that

(2.3) 5(J(&t ’ gi)’ J(o’ Gﬂ)) -0

ast— . Then,as i — =,

(2.4) a;;— 0;, j=1 ,m
(as; is the jth component of &;) and
(25) gi(yly"',yk:+°°""1+°°)—')G(yly""yk)
at every point of continuity of the latter.
Let

Co = {(Xﬂ;"'.yXih),j:: 1,"',1’&}
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and F,.(C,) be the empiric d.f. of C,, i.e., an h-dimensional d.f. such that its
value at (y1,---, w) is 1/n times the number of elements in C, for
which X;; < y;,7 =1, ---, h. Let y(n) be any positive function of n which ap-
proaches zero as n — . Let S,(C,.) = (6%, GF,) be any function from the An-
dimensional Euclidean space of C, to the space 4 which is measurable and such
that
(26)  SUOF,68), FaC) < inf 8((a 0), Fa(Co)) + ()
a, g)e

Sa(C) is a minimum distance estimator, for which the following holds:

THEOREM. If the I.C. Assumption holds, then, with probability one (w.p. 1),

2.7 0n; —6;, j=1,--,m
(6%; is the jth component of 6%) and
(28) G:"(yly"'>yk7+°°7"'>+°°)_)G(y1"";yk)

at every continuity point of the latter.

(In view of (2.7) and (2.8) it is actually the appropriate components of S,(C,)
which could be called minimum distance estimators of the 6; and G).

Proor: By the Glivenko-Cantelli theorem we have that, w.p.1,

(2.9) 3(F.(Cr), J(8, Go)) — 0

as n — . Hence, w.p.1,

(2.10) (_inf | 3FA(Cn), I (3, 9)) = O
@, g)E

Hence, w.p.1,
(211) 6('](0:; G:n), J(07 GO)) — 0.

Since the space 4 is (sequentially) conditionally compact (with respect to the
metric 6) it follows that, at every sample point and from every subsequence of
S.(Cn), n = 1,2, ---, we can select a Cauchy subsequence. For every such se-
quence the relation corresponding to (2.11) holds, except on a set of sample
points of probability zero. When the relation corresponding to (2.11) holds,
then, by the I.C. Assumption, relations corresponding to (2.7) and (2.8) hold.
Thus, we have proved that, except on a set of sample points of probability zero,
every subsequence of S,(C,) contains a subsequence for which the equations cor-
responding to (2.7) and (2.8) hold. But this easily implies the theorem.

3. Discussion of the Identification and Continuity Assumption. We have
seen that the proof of the strong consistency of the minimum distance estimator
follows almost trivially from the I.C. Assumption. Let us now examine this as-
sumption more carefully.

The constants (6, , - -+, 6,) and the d.f. G, which belong to the “structure”
(system) (2.1), are said to be “identified in A” if, when (&, ¢g) isin 4, and

(3~1) J(07 Go) = J(& 9)
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identically in the h arguments, then

(3.2) 0; = a; i=1-,m
(3'3) G(y17'°')yk)=g(y1""7yk7+°°""7+°°)

identically in ¢, - - - , yx (of course (4, Go) is in A). It is obvious that identifica-
tion in A is an indispensable condition for our problem of estimating consistently
the constants 6; , - - - , 0., and the d.f. G, for no particular value of the sequence

{(Xﬂ’ tee 7th)’j = 172’ }
can furnish more information than the function J(8, Go) itself.
In most, if not all, actual statistical problems, J will be a continuous function
on 4, i.e., whenever
(@i, g:) — (&, 9) in 4,
then
(3.4) 8(J (&, g3), J (&, g)) — 0.

We shall assume that this is so in the remainder of this section. Then the follow-
ing considerations will help to understand the I.C. Assumption and to furnish a
convenient way of proving that it is satisfied.

Let C, be the map of 4 under J, i.e.,

Ci= {J (& 9), (& g)ed}.
Let {&:, g:} be any Cauchy sequence in A which does not have a limit in 4,
and for which
J({&,g:}) = lim J (&, gi)
exists. Let C; be the totality of all such J({a:, ¢g:}). (C; and C, need not be
disjoint).
The indispensable condition of identification’ in A may be stated as follows: If

(3.5) (@,9:) = (@& ¢)in 4

and

(3.6) J (@&, g:) — J(8, Go)

then

(3.7 a; = 0;, j=1-,m
(3.8) g, o Yk, F o, e, o) =Gy, -0, Yr)

identically in y;, -+, yi . If esther of the two following conditions is also met
the I.C. Assumption is fulfilled:

2 We remind the reader that J is assumed to be continuous on 4.
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A) J(6, Go) is not a member of C,

B) If J(6, Go) = J({ai, gi})is®in C,, then ai; — 6;,7 = 1,---, m, and
g‘:(yl vty Yk, R, e +°°) _)G@/l) ] yk) at every POint of con-
tinuity of the latter.

Thus the I.C. Assumption is, for most 4 to be encountered in actual problems
where J is continuous, not much more onerous than the indispensable identifica-
tion condition. In the important examples to be discussed below condition A,
and hence the I.C. Assumption, will hold.

4. A linear relationship between two chance variables subject to independent
errors. We illustrate the last two sections by application to the following very
important structure: Suppose it is known to the statistician that,forj = 1,2, - - -,
ad inf.,

(4.1) Xp=§&+vi
(4.2) Xjp= a4 Bt +vp

where « and 8 are constants' unknown to the statistician, and {v;}, {v;2}, and
{¢;} are sequences of independent, identically distributed chance variables, with
respective d.f.’s L; , L, , L; , say, which are unknown to the statistician. The dif-
ferent sequences are known to be independent of each other. We shall consider
first the problem of estimating £.

Let d be the generic designation of a complex

{ay b’ pl’p27p3}

whose first two elements are real numbers, and whose last three elements are
one-dimensional d.f.’s. Let

do = {a7 B, Ll) L2) L3}

The symbol J(d) will have the same meaning as’in Section 2.

We shall assume that 4 is the totality of all d’s such that g; is not a normal
d.f.; for the purposes of this definition and elsewhere in this paper a d.f. which
assigns probability one to a single point is to be considered normal (with variance
zero). It was proved by Reiersol [5] that 8 is identified in 4 ; actually an examina-
tion of his proof (especially equation (4.5)) shows that Reiersol proved somewhat
more, namely that, if

(4.3) J(do) = J([d", V', p1, P2, p3))

3 The preceding symbol has been defined in the first displayed equation which pre-
cedes (3.5).

4 This formulation does not include the case when the regression line is parallel to the
axis of X; , i.e., when 8 = oo;in that case X; = constant + » , X2 = ¢ + v . This omis-
sion is made only in the interest of simplicity. We invite the reader to verify that the for-
mulation where this case is also a possibility can be treated by the methods of the present
paper in exactly the same way as this-is done in Sections 4, 5, and 6.
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where @’ and b° are finite, p] and pj are d.f.’s, but the d.f. p} is not required to be
not normal, then b° = B and p3 must be not normal. Thus (a°, ?°, p3, P2, P3)
78 in A.

It is obvious that J(d) is a continuous function of d (on 4).

Let {d; = (a:, b, pua, P2, Pis), 2 = 1,2, --- } be any Cauchy sequence in A
which does not have a limit in 4 and which is such that
4.4) J({di}) = 1'112 J(d:)
exists. Let d* = (a*, b*, pt , ps , p7) be such that 8(d;, d*) — 0. Then at least
one of the following four properties must hold:

1) p¥ is a normal df., ¢* and b* are both finite, and p} and ps have variation
one.

2) p¥ is a normal d.f., either a* = 4 or b* = =4 or both, and p¥ and p3
have variation one.

~ 3) ps is a non-normal d.f. (therefore has variation one), either a* = =+ or
b* = = or both, and both pT and p5 have variation one.

4) the variation of at least one of py , ps , ps is less than one.

We shall now show that the I.C. Assumption is satisfied in the present prob-
ent problem. We shall try first to show that J(ds) is not in C, ; we will be able to
to achieve this except for one obstacle which we will treat somewhat differently.
Suppose then that J(dy) = J({d:}) were’ in C,. Then d* could not have the
first of the above properties, because of Reiersol’s result cited above. If d* had
property 2 above then either the variation of J({d;}) would be less than one
(which cannot be true of J(do)) or else J({d}) is the same as J(a”, b”, p1, Pz, P3 ),
where a” and b” are finite, p; assigns probability one to a-single point and is
therefore normal, and pi and p; have variation one (which cannot be true of
J(do) because of Reiersol’s result cited above). If d* had property 3 above then
J({d;}) would be of variation less than one, which cannot be true of J(do). If
d* had property 4 above then either J({d;}) has variation less than one (in which
case J(do) is not in Cy) or else J({d:}) = J(do) is in C! To see how this can hap-
pen we note that, if z and 2’ are any real numbers,

gitva= (& +2)+ (va —2)
a+ B+ v = (a+2 — B2) + B+ 2) + e — 7).
If either z or 2’ or both approach = « the variations of some or all of pf , Py, Pi
will be zero. This difficulty is easily overcome. One can show that in this case
condition B of Section 3 holds. A method which is essentially the same but for-
mally simpler is the following: Without changing the problem or any loss of
generality we can reduce the set A so as to prevent the occurrence of this case.

We simply define A as the totality of all d’s which, in addition to the conditions
previously imposed, satisfy the requirement that the smallest median of both p;

5 The preceding symbol was defined in (4.4).
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and p, is zero. It is clear that the estimation of 8 is not affected by this additional
restriction, and that, under this restriction, J(do) cannot be in C;. (The defini-
tion of do , but not the value of 8, may be affected by this restriction).

It is obvious that, unless the space A is suitably reduced, the parameter «
cannot be identified. In [5] Reiersol states the result that, if the space 4 is that
subset of the originally defined A = {d} where the d’s are subject to the further
restriction

(4.5) median of p; == median of p, = 0,

then « is also identified on (the new) 4. It seems to the writer that one must
make precise which median is meant in order to make the proof of [5] go through.
Either of the following conditions, for example, will permit the proof of [5] to
go through:

(4.6) p1 and p. each have zero as the unique median

4.7 p1 and p. have zero as the smallest (largest) median.

What will suffice is a condition such that, if pi(x), p.(x) are the third and fourth
components of a point in 4, pi(x + ¢1), p2(* + ¢2) cannot be the third and fourth
elements of any point in 4 unless ¢; = ¢; = 0.

Suppose, for example, one adopts the restriction (4.6) above. Then « is identi-
fied on (the new) 4, by the result of [5]. Let A be the totality of limit points of 4
which are not in 4. 4 will include points whose third and fourth elements will
not have zero as a unique median. In order to show, just as before, that J(dy)
is not in C,, we need the additional result analogous to the one implicit in [5]
about 8 and cited above, namely that, if J(do) = J({d;}), then the first element
of d* is &. However, this result does not seem to be implicit in [5] under the con-
dition (4.6), and a stronger condition may be needed.

b. A linear relationship between two chance variables whose errors are jointly
normally distributed. The following structure is a very famous one with a long
history of study (see [2] and [5], for example). Let it be known to the statistician
that X j; and X j, satisfy (4.1) and (4.2) respectively, that « and 8 are unknown
constants,’ that the two sequences {¢;} and {v;, v)},7 = 1, 2, -+, ad inf.,
of independent and identically distributed chance variables are distributed in-
dependently of each other, and that the common distribution of {(v;i, v;2)} is
normal, with zero means and covariances ou(= E®;)"), oi(= E@jwp)), and
(= E’(vfz)), unknown to the statistician. Designate the common unknown
d.f. of {¢;} by L.

Let m be the generic designation of a complex

(a, b, cu1, 12, €22, 1)

6 See footnote 4.
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such that a, b are real numbers, ¢, ¢z, and ¢y are real numbers such that the
matrix

is non-negative definite, and [ is a one-dimensional non-normal d.f. Let 4 be
the totality of all m. It follows from the results of Reiersol ([5]) and the Cramér-
Lévy theorem ([7], p. 52, Th. 19) that, if

J(u) = J(m)
where
p = (a, B, ou, 012, 092, L),
m® = (a, bo, ch , 2 , 032, lo),

u is of course in 4, and m"® satisfies all the requirements imposed on the elements
of A except that I’ is not required to be not normal, then I° must be not normal
and e = a’, 8 = b".

Obviously J(m) is a continuous function of m on A. We will show that condi-
tion A of Section 3 is satisfied, so that the I.C. Assumption is fulfilled, and the
minimum distance estimator of a and g is strongly consistent.

Let A for the present problem be defined as in Section 4. If a point m* =
(@™, b, 2, 13, cd2, ") is in 4, and, for a sequence {m;} in 4, m; — m™ and
J(m;) — J({m}) in Cs, at least one of the following must be true:

1) I®is a normal d.f., and ¢{i and ¢33 are finite

2) 1" is a d.f. which is not normal, and either a® = 4 or b® = 4 or both

* 3) either ¢jy = ® or cyy = ® or both

4) the variation of I is less than one
Suppose J (u) were in Cp and = J({m;}). If the first of the conditions above held
then either J({m;}) would be of variation less than one, or J({m;}) would be
normal, neither of which can be true of J(u). If one of conditions 2, 3, and 4 held,
then the variation of J({m;}) would be less than one, which of course cannot be
true of J(u). This completes the proof that J(x) is not in C. .

6. Estimation of the remainder of the structure of Section 6. Let H(y) be
any one-dimensional d.f. The Gaussian component of H is the largest value of
A for which H can be expressed as the convolution of a normal d.f. with variance
A, and another df. H is said to have no Gaussian component if its Gaussian
component is zero.

The elements o1, 012, 022, L of p are not, in general, uniquely determined by
J(x). Among the, in general, infinitely many m such that J(m) = J(u), there is
exactly one, say

0 0 0
mo = (a, B, 011, 012, 022, L),
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which is such that Lo has no Gaussian component. We have o311 + o2 > eu + ¢
for any other complex m such that J(m) = J(u) = J(u); all such complexes
are readily determinable from uo . These remarks follow from (4.1), (4.2), and
the results of Reiersol [5]. We shall call the complex uo “‘canonical” and estimate
all its components in a strongly consistent manner. Of course « and 8 have al-
ready been estimated in Section 5; the present method will also estimate them,
inter alia.

Let Z,, ---, Z, be any independent chance variables with the common df.
H(z) and the empiric d.f. H,(2). Let d(n) be any positive function defined on the
positive integers such that d(n) — 0 as n — « and

P{3(H(2), H.(2)) > d(n) for infinitely many n} = 0.

There are many such functions; it is easy to verify that n/"° is such a function,

but this is a crude result. For H(z) continuous and one-dimensional and & the
Fréchet distance between two d.f.’s there is available the sharp result of Chung
[6], according to which the function

(log log n)” *
cn

is a function d(n) if 0 < ¢ < 2.
(6.1) U(Cy) = (a*(n), b*(n), cti(n), cha(n), cir(n), L)

Let
be any function from the 2n-dimensional space of C, to the space A = {m} which
is measurable and such that

(6.2) 8(J(U(Ch)), Fu(Ch)) < d(n)
and
(6.3) ctin) + c(n) + v(n) > sup (cu + cz)

where the supremum operation in the right member is performed over all m such
that
(6.4) 8(J (m), Fa(Cn)) < d(n).

When there is no m which satisfies (6.4) let U(C'») be defined in any manner pro-
vided it is measurable. It will follow from the general considerations of the next
section that

(6.5) " 3(U(Ch), o) =0

w.p.1. Thus the elements of U(C,) are strongly consistent estimators of the ele-
ments of the canonical complex.

7. The method of the maximum index. We shall now generalize the considera-
tions of the preceding section.
Consider the structure (2.1), and the totality of (&, g) in A such that J(&, g) =
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J(a*, G*); call this totality T'(a*, G*). In every T(&, g) let there be defined a
unique member called the canonical complex of T(@, g); we may denote this .
element by D(a, g). If (a1, ¢1) and (&, g») are such that J(a , g1) = J(az, g2),
then we must have D(a; , ¢1) = D(az, ¢2). Suppose that there is defined on 4 a
real-valued function ¥(&, g) such that, whenever

(7'1) ((—!g ] gi) - (5{, g) in A)
then
72 lim inf ¥(&, 6 S ¥(3, )

and such that, whenever (a*, ¢g*) is a canonical complex,
(7.3) ¥(@*, g*) > ¥(a, 9)

for every other (&, g) in T'(a*, g*).

Let d(n) be any function defined on the positive integers such that d(n) — 0
asn — o and
(7.4) P{5(J (8, Gv), F.(C,)) > d(n) for infinitely many n} = 0

Let U(C,) = (6%, Gox) be any function from the hn-dimensional Euclidean
space of C, t0 the space 4, which is measurable and such that

(7.5) 3(J(62%, Gox), Fa(Ca)) < d(n)

and

(7.6) ¥(0%, Gox) + v(n) > sup ¥(&, 9)

where the supremum in the right member is over all (&, g) such that
(7.7) 8(J (@, 9), Fa(Ca)) < d(n).

Whien there is no (& g) which satisfies (7.7) let (6%%, Gox) be defined in any
manner provided it is measurable. We will call U(C,) a maximum index esti-
mator (of D(6, Gy)) and prove the following

TueoreM. If J is a continuous function on A, i.e., whenever (&;, ;) — (&, g)
in A, J(@&, g;) — J(@a g), and if J(8, Go) 1s not in Cs , then, w.p.1,

(7.8) 8(U(Cy), D(6, Go)) — 0,

so that U(C,) is a strongly consistent estimator of D(8, Gy).
Proor: Obviously 8(J (8%, Gon), Fa(Cr)) — 0, w.p. 1. Hence

(J(6%*, Gi¥), J(DIo, Gil)) —» 0,  wp.L

If (7.8) were not true w.p.1, then, with positive probability, we may choose a
Cauchy subsequence (A4 is conditionally compact; the particular sequence may
depend upon the sample point in the probability space) which converges to a
point (a’, g) in A (since J (6, Gy) is not in Cz) and (&, ¢’) is not D[6, Gy].
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It is impossible that, with positive probability,
(7.9) Y(DI8, Gol) > ¥(&, ¢'),

because of (7.2) and the fact that, w.p.1, 8(J(D[6, Go]), F.(C,)) is eventually
less than d(n).
Suppose that, with positive probability,

(7.10) ¥(DI6, Go]) < ¥(&, ¢').

Then (a/, ¢’) would not be in T'(6, Gs) and J(&, ¢’) and J(6, G,) would not be
identical. Since J is continuous we must have that, for the Cauchy subsequence,
lims.w J(OhF , Gony) = J(@, g'). Since 8(J(6%F, Go), J(8, Go)) — 0 w.p.1, it
follows that J (@', ¢) and J(6, Go) are identical, contradicting the above. Hence
(7.10) cannot occur.

Suppose then that, with positive probability,

(7.11) ¥(DIo, Go]) = ¥(@, ¢")

but (&, g’) were not D(6, Gy). Because of the maximizing property of ¢ (on eacu T')
it would follow that (a’, ¢’) is not in T'(6, Gy). But then J(&, ¢’) and J(8, Go)
could not be identical. We have already seen that this cannot be. This leaves,
as the only remaining possibility, that (&, ¢') is D(6, Gs), a contradiction which
proves the theorem.

It is easy to verify that the postulated conditions are verified in the problem
of Section 6. We have already seen that there J (8, Go) is not in C» . Let

Y(a, b, e, ce,Cn,l) = cu+ cn.

Then, in any T'(m), ¢ attains its unique maximum on the canonical comple:
The function ¢ is obviously continuous on A. Thus it satisfies the requirements
of the theorem of the present section.

8. Application to stochastic difference equations. Let it be known to the
statistician that w,, %1, 42, - - - are independent chance variables with the com-
mon one-dimensional d.f. G, which is unknown to the statistician. Also it is
known that, forj = 1,2, - --

8.1) X;=uj+ aujy

where « is a constant less than one in absolute value but otherwise unknown to
the statistician. The problem is to estimate a consistently, under minimal as-
sumptions on G.

Let.q be the generic designation of a couple (a, L), with a real and less than
one in absolute value, and L a one-dimensional d.f. which does not assign prob-
ability one to a single point. Let A = {q}. Let J(g) be the d.f. of (X, X;) when
a = a and G = L. Let F, be the two-dimensional empiric 'd.f. of

(8-2) {(Xﬁ—l ’ X2i)7 t1=12--- n}'
Finally let g0 = («, G); of course, gois in 4.
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If G were to assign probability one to a single point then it is obvious that «
would not be identified. The necessary condition, that G not assign probability
one to a single point, is also sufficient, and the d.f. of (X;, X:) then determines
a(|e] < 1) uniquely. Even more: Let ¢’ be a couple (a’, L"), where |a’| = 1,
and L’ is a d.f. which does not assign probability one to a single point. Suppose
that J(qo) = J(¢'). Then o’ = «, hence is less than one in absolute value, and
¢’ must be in A. For it follows from Theorem 1 of [10] that, if & were not uniquely
determined, G would have to be normal. The possibility that G is normal and
a % a is then easily eliminated. (In [1] through an oversight it is erroneously
stated that the d.f. of X, already determines a uniquely. Attention has been
called to this error in, e.g., [8], page 211, footnote 6.)

Although the members of the sequence (8.2) are not independent, the two se-
quences made up of alternate members of this sequeace are sequences of inde-
pendent chance variables, and it is easy to show, as was done in [4], that

(8.3) 8(J(go), Fa) — 0.

The minimum distance estimator of « is obtained in the usual manner. Let
S, = (a , G%) be any function from the 2n-Euclidean space of (X, - - -, Xan)
to the space A which is measurable and such that
(84) 8(J(an, @), Fa) < inf 8(J(9), Fa) + v(n).

qe

Then o} is a minimum distance estimator of «, to which it converges w.p.1.

To prove the latter we have only to show that J(a, G) = J(go) is not in Cs .
Let A be as defined in Section 4. Any member § = (@, L) of A has one of the
following properties:

1) L assigns probability one to a single point.

2) Lis a d.f. which does not assign probability one to a single point, and
é = =%x1.

3) L has variation less than one.

Suppose J(go) = J(§). Then g cannot have the first of these properties, be-
cause then X; = constant w.p.1. Also § cannot have the second of these proper-
ties, by the result described in the third paragraph of this section. If § had the
third of these properties then either J(q) would have variation less than one or
J(g) would assign probability one to a single point, neither of which can be true
of J(go). Hence J(qo) is not in C, .

The author is grateful to Professors Henry Teicher and Lionel Weiss for read-
ing the manuscript.
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