ORDERED FAMILIES OF DISTRIBUTIONS!

By E. L. LEHMANN
University of California, Berkeley

1. Summary and introduction. A comparison is made of several definitions of
ordered sets of distributions, some of which were introduced earlier by the
author [7], [8] and by Rubin [10]. These definitions attempt to make precise the
intuitive notion that large values of the parameter which labels the distributions
go together with large values of the random variables themselves. Of the various
definitions discussed the combination of two, (B) and (C) of Section 2, appears
to be statistically most meaningful. In Section 3 it is shown that this ordering
implies monotonicity for the power function of sequential probability ratio
tests. In Section 4 the results are applied to obtaining tests that give a certain
guaranteed power with a minimum number of observations. Finally, in Section
5, certain consequences are derived regarding the comparability of experiments
in the sense of Blackwell [1].

2. Some definitions of order. Let X = (X,, ---, X,) be a random vector
with probability distribution Py, depending on a real parameter 6. In the prob-
lems occurring in applications such distributions are usually ordered in the sense,
roughly speaking, that large values of 6 lead on the whole to large values of the
X’s. This intuitive notion can be given a precise mathematical meaning in
various ways, some of which we shall now describe.

(A’) For any 6 < ¢’ there exists a vector-valued function f = (fi, -+, fa),
depending in general on 8 and ¢, such that®

(i) z = f(x),

(ii) if X has distribution Py, then the distribution of (fi(X), ---, fo(X)) is
Py .

This condition, which was used by the author in [7] and [8], states that one
can pass from a random vector with distribution Ps to one with distribution
Py by a transformation which increases all of the components of the vector.
An example is the case of a location parameter 6 where one can then put

filx) =z;+ 6 — 6.
For technical reasons the following slightly weaker condition, which was given
in [8], is sometimes more convenient.
(A) There exists a random vector Z and functions ¢ = (g1, -+, ga), ¢’ =
(g1, -, gn) such that
(1) g(z) = ¢'(2) for all 2,
(ii) the distributions of g(Z) and ¢’(Z) are Py and Py respectively.

.

Received September 14, 1954.

1 This paper was prepared with the partial support of the Office of Naval Research.

2 Here, as throughout, an inequality between two vectors means that this inequality
holds for all the components.
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400 E. L. LEHMANN

A function ¢ defined on an n-dimensional euclidean space is said to be in-
creasing if z < z’ implies ¢(x) < ¢(2’); a set S is said to be increasing if its
characteristic set function is, that is, if z £ S, z < 2’ implies 2’ ¢ S.

Condition (A’) is the special case in which Z = X, g is the identity function,
and ¢’ = f. Condition (A) clearly implies:

(B) If # < ¢, then for every increasing set® S

(2.1) Py(S) = Po(S),

and also the seemingly stronger
(B’) If § < @, then for every increasing function® ¢(z; , - - - , )

(2.2) Ey¢(X) = Epp(X).

Actually, (B) and (B’) are equivalent. To see this, assume without loss of gen-
erality that ¢ is non-negative, and consider the approximation of ¢ by a sequence
of nondecreasing simple functions

z_—T for z e 8™
¢n(x) = 2
n for zeS
where
S = {x: L ; 1 < o(x) < %}, i=1,---,n2"
8§ = (z:¢(x) > n} N =n2"4+1.

Then it is seen that Ej ¢,(X) can be written in the form

N
2 aiPo(S{V + S+ oo 4 S)
where the a; are = 0. But each set S§ M4 8 s increasing, and it follows
from condition (B) that Ey¢.(X) < Ep¢.(X) and hence Ey ¢(X) = Epo(X).
A somewhat different condition supposes that all of the distributions Py
possess probability densities with respect to a common o-finite measure u.
(C) If 6 < ¢, the probability ratio

(2)
(2.3) DertT)

\ po(x)
s increasing.

3 Throughout, we restrict consideration to sets and functions which are Borel measur-
able.

4 Probability densities being defined only up to sets of measure zero, condition (C) and
similar conditions to be considered later, for example in connection with Theorem 3, should
be interpreted to mean that there exist versions of these densities satisfying the condition
in question. Furthermore, the condition is not meant to carry any implication as regards the
points z at which both densities vanish.



ORDERED FAMILIES 401

Slightly more generally it is enough to assume the existence of real-valued
functions ¢, - - - , & such that

Do () - for(t(x), - - -, tu(x))
po(x)  foltu(x), - -+, te(x))

Then #(x), ---, &(x) are sufficient statistics, and without loss of generality
fo(ti, - -+, &) may be taken to be the generalized probability density of T =
(t(X), - -+, %(X)). Condition (C) is therefore essentially a generalization of one
investigated by H. Rubin [10] to the effect that the ratio (2.3) is a monotone
function of a real-valued statistic. We note the obvious lemma:

LemMa 1. If for each x the density ps(x) is a differentiable function of 9, then a
necessary and sufficient condition for (C) to hold is that 9 / 30(log pe(z)) be nonde-
creasing.

It was pointed out above that (A) implies (B). The following examples show
that (A) and (B) are not equivalent, and that in general (C) is not directly
comparable to (A) or (B).

The situation is summarized in Table I in which the sign 4 or — indicates
that the condition in question does or does not hold.

TABLE 1

E
C
8

Evidently possible
Example 2.1

Impossible since (A) implies (B)

|+ +++

Example 2.2
Example 2.3
Example 2.4
Evidently possible

F++10++
L+ 1+ 0+ 1+

Exampre 2.1. Let X be a random variable having a Cauchy distribution, with
density

po(z) = = ‘I‘T'(%——T

Then if 9 < ¢, the transformation f(z) = z + (6’ — 0) shows that (A) holds,
and hence also (B). On the other hand, the ratio py(z) / po(x) —lasz — £,
and hence obviously is not monotone.

Exampre 2.2. Let n = 2, and let the probability be concentrated on the four
squares 4, - - - , D indicated in Fig. 1a. The conditional distribution over each of
the four squares is assumed uniform under both 6 and 6. The probabilities of the
squares are given in Table II.
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It is easily checked that (B) holds. Also

Py (1, 2,)
Po(xl, ZQ)

is larger in A than in either B, C, or D, so that (C) is satisfied. On the other
hand, if there existed vectors g(Z) and ¢'(Z) with distributions Py and P , and
such that g(z) = ¢’(2) for all 2, then ¢’(z) ¢ C would imply g(z) € C, and hence
Py (C) = Py(C). Thus (A) does not hold.

r(zy, 2) =

22

7

Fig. la

A,J .

Fig. 1b
TABLE II
Py i Py
A 3/16 ; 12/16
B 6/16 ! 1/16
C 1/16 | 2/16
D 6/16 | 1/16

Here the parameter 6 takes on only two values. We obtain an example in
which 6 ranges over a continuum by means of the following lemma.
LeEmMA 2. Let Py and Py be two probability distributions, and let

Py = 6P, + (1 — 9)P,, 0<6<1.

Then each of the conditions (A), (B), and (C) holds for all0 < 0 < ¢ < 1 if and
only if it holds for the pair 6 = 0, ¢’ = 1.
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Proor. A direct calculation shows that if (B) or (C) holds for the pair § = 0,
¢’ = 1, it holds for all # < #'. To prove this for (A), suppose that f;(Z) has dis-
tribution P; (« = 0, 1) and that fo(z) =< fi(2) for all 2. Consider a random variable
U, uniformly distributed on [0, 1], and let

if <9
9(U, Z) = {MZ) . ve
Hh2) if 6<U

if ¢
Xy =¢'(U,2) = {f o) it us
f1(zZ) it ¢ <U.
Then X, and X, have distributions Py and P, respectively, and g(u, z) =<
g'(u, 2) for all 4 and 2.

The required example is now obtained by taking for P, and P; the probabilities
denoted in the example by Py and Py, and by defining Py as in the lemma.
This remark applies also to the examples that follow.

ExampLe 2.3. In Fig. 1a of Example 2.2 replace the square A by two squares
Ay, A, as indicated in Fig. 1b. Let the probabilities Ps(A) = % and Py (4) =
1% be divided among 4, and A so that

Py(A1) = 15, Po(4dr) = 7%;  Pe(4) =%  Pe(4) = T

Then as before (A) does not hold and (B) does. However, (C) now also does not
hold since the ratio r(z; , z,) has the value 2 in region C but only the value 3
in region A4, .

ExampLE 2.4. The (z,, z)-plane is divided into 6 parts 4,, 4,, By, B, C1,
(. as indicated in Fig. 2. The probability ratio and the probabilities under 6 and
6’ of the six sets are given in Table III.

X

1
A, | A,
-
B| Bz
C | Cy
Fia. 2
TABLE III
Py Py’ r(x, x2)
A .27 .45 54
A, .03 .05
B, .30 .30 1
B, .10 .10
(o .03 .01 14
C, .27 .09
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It is seen that (C) holds. On the other hand Py(d: + B, + () = .40,
Py (A; + B + C2) = .24, so that (B) and hence (A) is not satisfied.

The rather chaotic state of things indicated by these examples is replaced by
a much simpler one if the components of the vector X are independent, though
not necessarily identically digtributed.

TueorewMm 1. If X, - -+, X, are independent, then

(C) — (B) = (A).

Proor. Consider first the case n = 1. Suppose that (B) holds, and let Fy and
Fy denote the cumulative distribution functions of the distributions P, and
Py respectively. If g(z) = Fy'(2), ¢'(z) = F5'(2), and Z is uniformly distributed
on [0, 1], then g(Z) and ¢’(Z) have the distributions Fy and F respectively.
That g(z) = ¢'(z) follows from the fact that Fyp.(x) < Fe(x) for all z since (B)
is assumed to hold.

To show that (C) implies (B) whenn = 1, letr(x) = pe () / pe(x). Given any
constant k there exists a number p between 0 and 1 such that

(24) Po{X > k} = Po{r(X) > r(k)} + pPo{r(X) = r(k)}.

It is then easily seen that (2.4) holds, with the same p, also when 6 is replaced hy
¢'. Consider now the problem of testing 6 against 6, at the level of significance
a, which is the value of the probability (2.4). Then the critical function, given by

1 if r(@) > rk&)
p if r(x) = rk)

has size a, and is the most powerful level « test for testing 6 against ¢’. It follows
by comparison with the test ¢(z) = « that

Py{r(X) > r(k)} + pPo{r(X) = r(k)} = Po{r(X) > r(k)} + oPo{r(X) = r(k)}
and hence that for each £,
Po{X >k} £ Pp{X > k}.

The same relation for X = k follows by a limiting argument.
Suppose now that n» > 1 and that (B) holds. Then in particular

(2.5) Py{X; > k} = Pp{X: > k} for all k&

¢(z) =

and it follows from the case n = 1 that (A) is satisfied.

Finally let 7 > 1, po(21, < -+ , #a) = f32(21) - - - f§™(z,), and assume (C) to be
satisfied. Then for each 1, f§?(z;) / f¢” (z:) is nondecreasing in z; as is seen by
holding the other coordinates fixed. It follows from the case n = 1 that (2.5)
holds, and the proof is complete.

We shall in the present paper be mainly concerned with families of distribu-
tions that are ordered in the sense that both conditions (B) and (C) hold. It is
a consequence of Theorem 1 that this is the case in particular if X, ---, X, is
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a sample from a univariate distribution with density fs(z) where for § < 6’ the
ratio for () / fo(x) is nondecreasing in z.

3. Monotonicity of the power function of some sequential tests. As a first
application we consider the problem of testing sequentially the hypothesis
6 < 6, against the alternatives § = 6, , where 6, < 6, . Wald proposes as a solu-
tion the sequential probability ratio test, according to which observations are
taken as long as

S pe,(xi)
3.1) a < ; log o (@) <b.
At the first violation of (3.1) the hypothesis is accepted or rejected according as
the probability ratio is then <a or =b.

Wald mentions ([12], p. 73) that in many important special cases the power
function 8(8) of this test is an increasing function of 6. If a and b are adjusted so
that 8(6)) = « and B(6;) = B, this then implies that 3(8) = o« for § < 6, and
B(8) = Bfor 6§ = 6, and hence satisfactory control of the probabilities of both
kinds of error. The following result establishes such monotonicity for a large
class of problems. The test treated is the generalized probability ratio test, where
in (3.1) the constant boundaries a, b are replaced by variable boundaries, say
an and b, , and where some of the strong or weak inequality signs defining the
test may be replaced by weak or strong ones respectively. This includes in
particular the case of a single sample, or, more generally, of truncated sampling
schemes if at some stage an, = b, .

TueoreM 2. Let X1, X., - - - be a sequence of random variables such that for all
m the joint density p§™ (x1, -+ , Tm) of X1, -+, X satisfies (B) and (C). Then
the power function B(8) of any generalized probability ratio test ¢s nondecreasing.

Proor. Let

2 Pth)(xl y "y xm)
m .
e,y v 5 Tm)

Then for § < 6 we have that for all &
Po{Zn > k} £ Po{Zn > k}.
This follows from the fact that by (C), the set

(m)
{(11«'1, ,.’Em): Do, (xl, ,xm) > k}

pgz‘)(xly ey xm)

is increasing, and that by (B) the probability of an increasing set is monotone in
6. Since Z,, is real-valued, there exists by Theorem 1 a real-valued function f,.
such that f,.(2) = 2 for all 2, and the distribution of f.(Z,) is given by

Po{fm(Znm) = u} = Po{Zn < u} for all u.

Consider now the points (1, Z1), (2, Z.), - - - and the path they describe in the
(¢, Z)-plane. With the generalized probability ratio test, observations are taken
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as long as this path lies within a certain prescribed band, and the hypothesis is
accepted or rejected according as the path leaves the band for the first time
through the upper or lower boundary. Now the path €’ formed by the points
(1, fi(Z1)), (2, fo(Z,)), - - - lies entirely above the path @ formed by the points
(¢, Z:), and hence whenever € leads to rejection by leaving the band through the
upper boundary, so does €’. But the probability of € and €’ leading to rejection is
exactly 8(6) and B(6") respectively, which completes the proof.

It may be worth noting that use was made of condition (C) only for the pair
of values (6, 61).

Some simple applications of this theorem are to cases in which X;, X,, ---
are independently, identically distributed random variables, with probability
density fo(x) for which fy(x) / fo(x) is nondecreasing in z whenever § < ¢'. In all
such cases it follows from Theorems 1 and 2 that the power function of a gen-
eralized probability ratio test is nondecreasing,.

ExampLE 3.1. Let the density of the X’s be given by

folx) = 6g(x) + (1 — 6)h(z), 0<6=1.

IIA

This is the situation in which the population under investigation is a mixture of
two populations. In an experiment, for example, there may be the possibility of
“gross errors” in addition to normal errors. Or it may be the problem of detecting
the frequency of mutation of some gene, the effect of which is not directly ob-

servable. Since
’ g(x) _ :I
@ _° i -]+

it is seen that for § < ¢ this ratio is increasing in x provided this is the case for

9(x) / h(z).
ExampLE 3.2. Let

(3.2) fo(x) = g(x — 0).

Then (A) clearly holds without any restriction on the function g. On the other
hand, (C) is exactly the condition of twice positivity of Schoenberg [11], a real-
valued measurable function g being m times positive if, for every k(=1, --- m),
U < U < - < wp,v < v < .-+ < v implies that the determinant

det || g(us — ;) || 2 0.
A trivial specialization of Lemma 1 of [11] shows that a probability density g is

twice positive if and only if (i) its domain of positivity is an interval (a, b),
—w < a <bz= o, (ii) the function — log g is convex (and hence automatically
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continuous) in the open interval (a, b), and if g is correctly defined at the end
points, as can always be achieved.’
As specific examples, let

gi(z) = "‘\/1‘2——1‘_ e (Normal)

go(z) = ¢

@) =€ for =0 (Exponential)

gix) =1 for -1 =<zx=<3} (Rectangular)

gs(x) = (—l——i-%_z—)z (Logistic)

gs(z) = 3! (Laplace)
1 1

gi(x) = o g (Cauchy)

In the first six of these cases —log g is convex while in the last it is not. A general
class of densities of form (3.2) that satisfy condition (C) is formed by the cases
in which g is a Polya frequency function. This class was defined and investigated
by Schoenberg (see for example [11]) who showed these functions to be totally
positive (that is, k times positive for all k = 1, 2, ---) and hence in particular
twice positive.

ExampLE 3.3. Let

1 [z

(3.3) fol@) = 59 (5>
where ¢ is an even function, and where, without loss of generality, one may re-
strict  to be nonnegative since the absolute values | X; |, | Xz |, - -+ form a set
of sufficient statistics for 0. It is then seen as in the previous example, or can be
deduced from it by transforming to ¥ = log X, that (C) holds if and only if
the domain of positivity of ¢ is an interval (a, b) and —log g(e®) is convex for
log a < z < log b. This holds in the cases g1, g4, gs and g; of the previous ex-
ample. Since the convexity of —log g(z) implies that of —log g(e®) but not con-
versely, condition (C) in the case of an even function is more restrictive for a
location parameter than for a scale parameter.

ExampLE 3.4. A well-known example, which satisfies also the stronger con-
ditions investigated by Rubin [10], is that of an exponential family, with

fo@) = a(9)e” Ph(z)

5 The same condition was encountered in a slightly different context by Ruist, ‘‘Compari-
son for tests of nonparametric hypotheses,”” Arkiv. for Mathematik, Vol. 3 (1954), pp. 133~
163. Logarithmically convex functions have also been considered by Artin in his “Ein-
fihrung in die Theorie der Gammafunktion,”” Hamburger Math. Einzelschriften, No. 11,
B. G. Teubner, Leipzig, (1931).
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where b(f) is a strictly increasing function of 6. This includes among others
the binomial and Poisson families of distributions. It also includes the cases
fo(y) = gy — 6) where g is one of the densities g1, g- of Example 3.2, in the
first case with ¥ = x and in the second with y = e ° ", Still further special cases
are obtained by putting fs(y) = (1/6)g(y/8) with g one of the functions g1, g3
or gs of Example 3.2 and y = —z',y = —z and y = — |z| respectively.

Without going into details we mention as further application of Theorem 2
some sequential tests of composite hypothesis, discussed among others by Wald
[12], Cox [3], Johnson [4], such as the sequential -tests or sequential analysis
of variance tests. In those cases the variables X;, X,, --- are dependent.
That (C) holds follows from the fact that the noncentral ¢- and F- distribu-
tions satisfy (C) (see Section 4, Examples 4.3 and 4.4), while (B) is easily checked
in all these cases.

4. Tests with guaranteed power. As another application consider the problem
of testing that # < 6, against the alternatives § = 6, on the basis of X =
(X1, -++, X,). It is desired to find that test which, subject to

4.1) B0 = «a for 6 < 6,,

maximizes the minimum power over § = 6,, that is, which gives the greatest
possible guaranteed power in that range. The solution to this problem is to
determine a least favorable pair of distributions Ao, A\; over the sets w2 =
{:0 < 6} and &, = {6:6 = 6}, and to reject the hypothesis when

f Po(xl, *tty Zn) d\(6)
21 = k.

f Do(z1, ++ -, Ta) dNo(6) -

If the family of distributions is ordered, it seems reasonable to expect that the
least favorable distributions are those assigning probability 1 to the points
6o and 6; respectively, in which case (4.1) reduces to the probability ratio test

(4.2)

Do, (T1, <+ * , Tn)
43 Sy TR >k
( ) peo(xl) "',xﬂ)

It follows from Theorem 8.3 of [9] that (4.3) is the solution to the stated problem
provided 8(8) < B(6) = a for § < 6, and B(6) = B(6:) for 6 = 6;. But this
is certainly the case if 8(6) is nondecreasing. A sufficient condition for this is
that both (B) and (C) hold since then the critical region (4.3) is increasing and
hence its probability is a nondecreasing function of 6. (Actually, this is a special
case of Theorem 2.) That (B) alone is not enough is seen, for example, in the
Cauchy case. If X;, ---, X, are independently, identically distributed with
density #*/ (1 + (z — 6)%), it is seen that the region in which

1+ (o — 6)°
o1l + (x; — 6p)?

is a bounded set in n-space. Its probability therefore tends to zero as § — .

>k
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A limiting case, as 6; — 6y, of the property that the minimum power over
6 = 6, be a maximum is that of locally maximum power. Here one seeks the
test which maximizes the derivative B’(6y) of the power function at § = 6.
If for any critical region w, the integral

56 = [ p@ @

can be differentiated under the integral sign with respect to 6, the problem be-
comes that of maximizing

860 = [ Flogn@|_ pul@) @

[

subject to (4.1). If we again tentatively replace (4.1) by the side condition
B(6o) = a, the best critical region by the Neyman-Pearson fundamental lemma
is given by

= k.
=09

(49 55108 @)

If (C) holds, it was seen earlier that the left-hand side of (4.4) is a nondecreasing
function of the z’s. Hence it follows from (B) that 8(8) = B8(6y) = a for 6 < 6,
and therefore that (4.4) is the desired result.

Let X;, ---, X, be independently and identically distributed with density
fo(z), which is either a mixture of two densities in proportion :1 — 6, or where
6 is a location or scale parameter, and suppose that the conditions of Examples
3.1-3.3 respectively are satisfied. Then the test maximizing the minimum power
over § = 6 is given by the rejection region

fﬂl(xl) c fh(xn)
«5) Fodw) — fouln) = "

and the test maximizing the power locally by

n

(4.6) > 2 logh@d| =z K.

i=1 00 0=0,
A uniformly most powerful one-sided test does of course usually not exist.
A notable exception is the well-known case of the exponential family of Ex-
ample 3.4.

As an illustration consider the case that fy(x) = g(x — 6) where g is one of
the densities g; (z = 1, -+, 7) of Example 3.2, and that 6, = 0. For ¢ = 1,2
these are exponential families, and the test given by (4.6) is uniformly most
powerful against the alternatives § = 0. The same conclusion holds also for
7 = 3 since in that case Y = min (X;, ---, X,) is a sufficient statistic with
density n exp [—n(y — 6)] for y = 6. The case ¢ = 4 is interesting in that again
a uniformly most powerful one-sided test exists, although the minimal sufficient
statistie is (Y, Z), with ¥ = min; X;, Z = max; X, , and hence two-dimensional.
The explanation is that the statistic ¥ by itself is sufficient for § = 0 when
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attention is restricted to the part of the sample space that is possible when
6 = 0. In the case of the logistic distribution the locally most powerful test
can be written down by substituting in (4.6). It is not uniformly most powerful,
but is unbiased since (C) holds. For 1 = 6, when the sample is drawn from a
Laplace distribution with unknown location parameter 6, the power function
of a test may not be differentiable. However, it turns out that a locally most
powerful test, in the natural sense of the term, still exists and, perhaps somewhat
surprisingly, is given by the sign test, as will be shown in the appendix. Finally
in the case ¢ = 7, that of a Cauchy distribution, (C) does not hold, and the
locally most powerful test does not seem to have a simple structure even when
n = 1.

We now turn to some applications in which the variables X;, ---, X, are
not independent. Dependence may for example be introduced through the
elimination of nuisance parameters by the principle of invariance or because the
observable variables involve some common unobservable components, and the
joint density of the z’s will be a mixture of densities of independent variables.
We first give a sufficient condition for (C) to hold in that case.

THEOREM 3. Let x = (21, -+, &.) and let go(x, £) be a family of densities de-
pending on two real parameters § and £ and jointly measurable in x and ¢. For
each 0, let Ny be a measure for ¢ such that for all x, the integral

p@ = [ iz, &

exists. Then a sufficient condition for the family of densities po(z) to satisfy (C)
is that for 6 < 6 condition (C) holds (i) for ge(x, £) when & is fired and 0 is taken
as the parameter, (ii) for go(x, &) when 0 is fized and & is taken as the parameter,
(iii) for dhe(£).

Here in assumption (iii) the densities d\s(¢) and dhs(¢) may be computed
with respect to any o-finite measure » that dominates both of the given measures,
since only the ratio of the densities matters. In the proof that follows and later
in the paper we shall therefore denote this ratio by d\s (£) / d\e(£). This should
not be taken to imply that A is absolutely continuous with respect to \s, but
should be interpreted as a shorthand notation for (d\s / dv): (dNs / dv).

Proor. We must show that + < z’ implies

[a@, 0 a® [, e
<

[a@da® [0 an

Let A and A’ be the probability distributions given by

A = &80 oA = @@
[ a0 o) [ @0 o)

4.7
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These are the a posteriori distributions of ¢ given z, corresponding to 6 and
0’ respectively. Then (4.7) may be rewritten as

go(a’, £) gor(z', &
(48) prae s [LDa.
By assumption (i) it is enough to prove that
*9) ML lan'y - ano) 2

By assumption (iii) the £-axis can be divided into two mutually exclusive and
exhaustive intervals S_ and S, such that S_ lies to the left of S and
dA'(£) /dA(E) is =1 in S_ and =1 in S, . We then have that the left-hand
side of (4.9) equals

@10)  af @@ - da@)+b [ @n @ - )

where a and b are mean values of gs(z’, £) / gs(x, £) in S_ and S respectively
so that by assumption (ii), @ < b. Since A and A’ are probability measures,
(4.10) becomes

0o [ lav® - @ = 6-a [ [2O-1]aw =0

and was to be proved.
COROLLARY. Let £ be vector-valued, £ = (&1, +++ , &) say, and let

@) = [ oo, ©) da®.

Suppose that the measure Ag is the product of s linear measures Ay = A x

A2 % .- x A each of which satisfies condition (iii) of Theorem 3, and that

go(x, £) satisfies condition (i) of this theorem. Suppose that condition (ii) is replaced by
(ii’) for eachj = 1, --- , s — 1, the ratio

go(x;) e ,xﬁ,,f{, e )E;7£j+17 tte aEs)
g"(xh 7xn’$1’ ) Ej) Ei+l’ Tt Es)
s nondecreasing in £;.1, -+, & provided x; < zi(@=1,---,n)and & < &
Proor. It is seen from Theorem 3 by induction over j that

[€))
90] (xl’ "'7xn:£i+1) ""ES)

= [ [a@, oz, 8 DO - AP

satisfies-conditions (i) and (ii’), and this yields the desired result.
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As an application we consider:
ExawmpriE 4.1. Let U, ---, U, be a sample from an unobservable random
variable with density fs(u). What we observe are

Xij=Ui+ Vi

where the V’s are independently normally distributed with mean zero. For
the moment we shall assume the variance of the V’s to be known, and hence
without loss of generality to be equal to 1. A typical example is the usual simplest
model II problem in which 6 is a scale parameter. We shall assume that f5(u)
is an even function of v and that for 6 < 6’ the ratio fs:(u) / fo(u) is an increasing
function of |u|, and consider the problem of testing § < 6, against § = 6; . The
joint density of the X’s is given by

po(z) = i1 f (\/—)n exp I: Z (i — :Ifo(ut) du;.

Therefore the absolute values of the means %, ---, & constitute a set of
sufficient statistics for 6, and we may restrict attention to them. Putting
= +/nZ; and { = \/nu, we obtain the joint density of the ¥’s as

Doy1, -0, Y. = CfI f exp [—3(y: — £)°1fo&: / V/n) dt;.

i=1

We shall now prove condition (C) for the density of the | ¥ |’s. Since we are
dealing with a sample it is enough to check this for the case s = 1. We have

(4.11) po(y) = Ce™’ fo (€ + e™)ef (e / v/n) dt.
Condition (iii) of Theorem 3 is satisfied by assumption, and we need only check
(i) and (ii) with

90y, £) = e (e + ) for &> 0.

Since this is independent of 6, assumption (i) clearly holds. Examining (i) we
have

0, O _ wrm €Y+ o
9y, &) e+ o

Now if |y| = |v'], it is easily checked that (6®" + €*') / (6% + %) is an in-
creasing function of |£|, and this completes the proof of (C). It follows that the
test which rejects when

pol(yl) e pol(y-?)
Poo(y1) -+ - poo(ys)

where py(y) is given by (4.11) maximizes the minimum power for testing § < 6,
against 6 = 6.
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We next consider the following somewhat more realistic case.

ExampLE 4.2. Suppose that the assumptions of Example 4.1 hold but that
the variance ¢” of the X’s is unknown. We assume further that the unknown
parameter in the distribution of the U’s is a scale parameter, say 7. The problem
is to test r/c =< 6 against 7/¢ = 6,. Putting 6 = /o the joint probability
density of the X;; is

.=1f(\/— )nexp[ 5 X s z](;af(%)dui.

Here the statistics V = >3 (Xi; — X, Xy, --+, X, are jointly sufficient.
Putting ¥; = v/nX:, £&i = v/nu., the joint density of V and the ¥’s is given by

c 1 i
;iv' p N9/t exp l: ] 11 f exp ': o0 (y: — Ei)z] of“zf ( \/7% 062) dt;.

Now the problem of testing § < 6, against § = 6; remains invariant under
multiplication of the ¥’s by a common positive constant a and of V by a?
and there exists a solution to the given problem which is invariant under these
transformations. We may therefore restrict attention to the maximal invariant
(21, - -+, 2) where z; = y; / \/v. The joint density of the Z’s is given by

o [O v [;1 f exp [—1(z:0/v g,)zl e (0\/—> dg,:| dv

_1 — /2
[ emrBo L
IT (75 V7 o b5 v) dv]da e db

t=1

Denoting the expression in brackets by g(z, £) we shall now show that
g(@', £) / 9(z, £) is increasing in £ for z < 2/, the other two conditions of Theorem
3 being satisfied as before. To prove that g(z, £) has the desired property we
apply once more Theorem 3 with 2, v, £ playing the role of 9, ¢ x in this order.
The weight function for u being d\(v) = Cv”e™”* independent of z, condition
(iii) is satisfied. Putting

h.(v, ) = Cexp [—1D £l I]; (8 5ivT o ghis VA

it is enough to show that h,.(v, &) / h.(v, £) is increasing in v and ¢ and
h.(v, &) / h.(v, £) in & where the £’s are assumed to be nonnegative and where
2| < |ei] fori =1, .-+, s. Now

h(v,8) | qp VT 4 oH

h.(v, &) i e tEve | plizivy

and each factor is increasing in v since |tz < |tiz|. Similarly b, (v, £) / h,(v, £)
is increasing in v and |£;|. Finally, condition (ii’) of the Corollary to Theorem 3
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is checked in the same manner, and it therefore follows from this corollary
that (C) holds for the density of the Z’s.

From this and the fact that the density of the Z’s is even in each of the variables
it is seen that the most powerful invariant test for testing 6, against 6, has a
rejection region which is increasing in |z, ---, |2|. That the probability of
such a region is increasing in # is a consequence of the fact that condition (A)
holds, 8 being a scale parameter for the Z’s.

As two further illustrations we prove that the noncentral ¢ and F densities
have monotone likelihood ratios, that is, satisfy (C), so that the associated
tests have the minimax property discussed at the beginning of this section.
The first of these results was earlier given by Kruskal [6]; the second was ob-
tained by Rushton (personal communication) and by Meyer (in “An applica-
tion of the invariance principle to the Student hypothesis,” Technical Report
No. 24, Department of Statistics, Stanford University, unpublished). A result
containing these two as special cases was obtained about simultaneously with
the present paper by Karlin (“On distributions (p(z|w) for which p(z|w1) - p(z|ws)
is monotone,” Technical Report No. 26, Department of Statistics, Stanford
University, unpublished), who considered densities of the form

go(x) — c(0)¢(x) feir(t)zeu d{[/(t).

ExampLE 4.3. Let py(t) denote the noncentral ¢ density with noncentrality
parameter 8, (including as a particular case the central density for 6 = 0),
that is, the density of Student’s ¢ statistic when the sample on which it is based
is drawn from a normal distribution N(s, ¢”). Then

p) = 0 [ oxp[ =2 (0 — 07 |t

where 7 is the sample size and 8§ = n/0. That s () / pe(?) is an increasing func-
tion of ¢ for ¢ < 0 follows directly from Theorem 3. For ¢ = 0 it can be seen
by noting that Theorem 3 remains valid if the ratios considered in (ii) and (iii)
are nonincreasing instead of nondecreasing, with the ratio considered in (i) re-
maining nondecreasing in z.

ExaMmpLE 4.4. The noncentral F-density with r and s degrees of freedom and
noncentrality parameter 6 is given by

(%

po(u) = kZ% Po(k)hrsic st (10), u=0

where A, 4.4 is the central F-density with r 4+ k and s + k degrees of freedom,
and where
Po(k) = 6¢”° / k!

is the Poisson probability with parameter 6. It again follows immediately from
Theorem 3 that for § < ¢ the ratio pg(uw) / pe(u) is increasing in u.



ORDERED FAMILIES 415

We shall now mention some problems in which the conditions of Theorem 3
do not appear to be satisfied. In these situations it would be of interest to obtain
basic densities f under which the probability ratio test for testing 6, against
6: maximizes the minimum power against § = 6, . In all of these problems this is
easily shown to be the case when f is the normal density.

ProBrEM 1. Let X, ---, X, be a sample from (1/8)f((x — &)/ 6). Then
the distribution of the differences X; — X; depends only on 6. It follows from
the Hunt-Stein theorem that for testing 6 < 6, there exists a test depending
only on these differences and which maximizes the minimum power over 8 = 6, .
The problem mentioned then arises for the joint density of these differences,
which is easily written down and which is of course independent of £. An elabora-
tion of this problem is the case of two samples from densities (1/¢)f((x — £) / o)
and (1/7)f((y — 7) / 7) respectively, where § = ¢/7.

ProBrEM 2. Let X;, ---, X, be a sample from (1/0)f(x/c — 6). Here it is
the ratios that play the role of the differences in Problem 1. In the two-sample
version of this problem the samples came from (1/0)f((x — &) /¢) and
(1/a)f((y — )/ o),and 6 = (n — £) / 0.

ProBLEM 3. Let X, ---, X, be a sample from f(z — ), where f is even and
consider the problem of testing |§] < 6, against |§] = 8, . Here one would expect
the test that maximizes the minimum power to be given by the rejection region

f(l'l ) f(xn — 61) +f(x1 + 61) f(l'n + 61) > O
f@r — 60) -+« f(xa — 60) + f(x1 + 60) -+ flxa + 6) =

This will be the case provided the probability of this region is an increasing
function of |6|. The problem is to find conditions on f which would insure this.

6. Comparability of experiments. When a family of distributions {Ps} is
ordered, it seems reasonable to expect

(D). The pair of distributions (6s, 6;) is more® informative than the pair
(60, ) in the sense of Blackwell [1] provided 6y < 6, < 6; < 6; .

Let ¢, and ¢, be the most powerful level a tests for testing 6, against 6; and
8, against 6; respectively. Then Blackwell showed in [2] that (8, 61) is more
informative than (6, , 6;) if and only if 8.(6:) < B.(6;) for all @, where 8, and
B. denote the power functions of ¢, and ¢. .

A somewhat stronger property than (D) which one might also expect to hold
in an ordered family is:

(E). Let 6 < 6, and let Ao, A\; be any distributions over the sets § < 6, and
6 = 6, respectively. Then the pair of distributions (fps(x) dA\o(8), [ps(z) dN1(6))
is more informative than the pair (ps,(z), ps,(z)).

Clearly (E) is actually stronger than (D). As a trivial example, let X be
normally distributed with unit variance and mean ¢ and let 6, = 6, correspond
tof =0,6,tof = —1and 6; to £ = +1. Then (6, 6:) and (6, , 0{_) are equally

8 Throughout we shall understand with Blackwell ‘““more informative’’ in the weak sense
of ‘“‘at least as informative.”
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informative and both strictly more informative than (6, 36, + 26;). It would
be interesting to know whether more natural examples of this phenomenon
exist such as, for example, a family of densities g(x — 6) which satisfies (D)
for all 6, < 6, < 6, < @’ but for which (E) does not hold.

A condition equivalent to (E) is:

(E'). For every pair 8, < 6, and every « the power function 3(6) of the proba-

bility ratio test for testing 6, against 6, satisfies
B(6) = B(60) for 6 < 6,
B(6) = B(61) for 6= 6.

To see this, note that (E) states that at every level , the pair of a prior: dis-
tributions assigning probability 1 to 8, and 6, respectively is least favorable
for testing 0 < 6 against § = ;. It follows from Theorem 3.10 of [13] that
(E) implies (E’). The converse is also a special case of a well-known simple
decision-theoretic result, or alternatively can be seen from the proof of Theorem
4. Since (E’) is a consequence of (B) + (C), so is (E). On the other hand, the
following example shows that (B) is not enough to insure even (D).

ExamprE 5.1. Let X be uniformly distributed over the union of the two
intervals (0 — 4,0 — 1), (60 + %, 0 + ). Then (B) holds since 8 is a loca-
tion parameter. On the other hand, the pair of distributions (8 = 0, § = 1)
is clearly strictly more informative than the pair (8§ = 0, 8 = 1).

We shall finally show that (B) 4 (C) permit an even stronger conclusion
than (E).

THEOREM 4. Let po(x) be a family of probability densities satisfying (B) and (C).
Let (\o, M) and (Ao, A1) be two pazrs of probability dzstm"butwns for the parameter 0
such that the three ratios dho/d\o, d\i/dNo, d\i/d\ are all nondecreasing.
Then the experiment

IA

(5.1)

( [ vut@) di®), [ poa) dxi«»)
s more informative than the experiment
(] 2 o, [ 2te) @)

It is convenient to prove first the following lemma.

LemMma 3. Let x = (21, * -+, 22), and let py(x) be a family of densities satisfying
conditions (B) and (C). Let N, N be two probability measures for 6 such that
d\'(8) / dN(6) s nondecreasing in 0. Then

f pa(z) dN'(6)
f pu(z) dNO)

is nondecreasing in x,
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(ii) #f ¢(z) vs nondecreasing in x,
(5.) [ Best@) @) = [ Bota) avie).

Proor. (i) follows from Theorem 3, since ps(z’) / po(z) is nondecreasing in z,
and d\'(6) / d\(6) is nondecreasing in 6. To see (ii), let () = Ep$(X). Then by
(B’), ¥(6) is nondecreasing and it is easily seen that

f ¥(O)[dN'(6) — dn(@)] = 0.

Proor oF THEOREM 4. Let ¢. and ¢. be the most powerful level « tests for
testing [pe(z) dho(6) against [ps(z) dAi(6), and [pe(x) dho(8) against [ps(z) d1(6)
respectively. Let

8@) = [ Buole) @, 8@ = [ Bugi) M)

denote the power of these two tests for their respective alternatives. Then the
desired result follows if for all @ we have B(a) S B’ (). It is seen from part (i)
of Lemma 3 that the rejection functions ¢, and ¢, are nondecreasing. Therefore,
by part (ii) of the lemma

[ Bot@ d0) 5 [ Bogula) @) =
so that ¢ is a level a test also for the hypothesis [py(z) d\o(6), and
[ Besa) i) < 8()

since '(a) is the power of the most powerful level « test. Also, by part (i) of
the lemma

8@ = [ Bosm) an® = [ Eugla) (o),

and the result follows.
In conclusion I should like to thank a referee of this paper for many very
helpful suggestions.

6. Appendix. A property of the sign test. It was recently shown by Hoeffding
and Rosenblatt (“The eﬁiciency of tests,” Ann. Math. Stat., Vol. 26 (1955),
pp. 52-63) that the sign test is asymptotlcally most efﬁclent for detecting
a small shift in the distribution with density 1¢~'*!. We shall show below that
the sign test is in fact locally most powerful for testing H:0 = 0 against the
alternatives § > 0 when

(6.1) Por, <+, ) = __1; e
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for any fixed sample size n. In this we shall restrict ourselves to levels of sig-

nificance a at which the sign test can be carried out without randomization,

that is, to one of the levels

(6.2) am=2<”>/2", m=0,1---,n— 1.

k=0 k

Since the power function 3(8) of a test of this hypothesis may not be differentiable,

we shall state the optimum property of the sign test more precisely as follows.
Let B*(8) be the power function of the sign test at one of the levels a., and

let 34(8) be the power function of any other test ¢ of H at the same level. Then

there exists A such that

(6.3) Bs(8) < B*(6) for 0 <6 < A.

To prove this, let us denote by Rx (k = 0, ---, n) the subset of the sample
space in which & is of the X’s are positive and n — k are negative. The proof
follows easily from the following lemma.

LemMma 4. Let 0 < k < I < n and let Sk, S; be subsets of R and R; respectively
for which

(6.4) Po(Sk) = Po(Sz).
Then there exists A, such that
(6.5) Pys(Si) < Po(81) for 0 <0< A,;.

Proor. We note that
']

e if <0
=" if 0<z<0
¢ if 6<z
and that ¢’ < & < ¢’ if 0 < z < 6. Let S, denote the subset of S; for
which the [ positive z’s are all >6. Then
Py(S1) = e® ™ Py(S16) + ¢ ™ Po(S: — Sus)
Py(Sk) = ™ VP(Sy).

Putting 7(0) = Po(S: — Sis) and denoting the common value of (6.4) by «,
we therefore have

Po(S1) — Po(Sk) 2 e® ™[y — n(0)] + ¢ "n(8) — ve™ "’
This will be positive provided
7[6(21—700 - e(‘.’k—n)t’] > 17(0)[6—”0 _ 6(%—")0].

Up to terms of order 6, the left- and right-hand sides are respectively 2v(I — k)8
and 7(6)(2k — n)@. Since 7(6) — 0 as 6 — 0, it follows that the desired inequality
holds when 6 is sufficiently small.

—|z—8
el |

e—|3|
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The result expressed by (6.3) is now an obvious consequence when the alter-
native test ¢ is nonrandomized. For consider any rejection region that does not
consist of the upper tail of a sign test. Then it can be converted into a sign
test of the same size by a finite number of steps, each of which consists in re-
placing an S; by an S; with £ < [ which satisfies (6.4).

Only minor modifications of the argument are required in case the alternative
test ¢ is-randomized. In particular, in the lemma, the sets S; and S; are re-
placed by critical functions ¢, and ¢; over R, and R; respectively, such that

E0¢k(X1 y T Xn) = Eod’l(Xl y T Xﬂ)?
the conclusion being that
Eyou(X1, -+, Xp) < Egpu(Xy, -+, X,) for 0 <6< A

It is interesting to note that the sign test, being similar for testing H:6 = 0
when the density (6.1) involves an unknown scale parameter, is also locally
most powerful for that problem.

It should be mentioned finally that the above proof may be modified to show
that the two-sided sign test maximizes $[8(8) + B(— 6)] for sufficiently small 6.
This test is therefore locally most powerful among all tests that are symmetric
with respect to the origin.
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