ON THE CONVOLUTION OF DISTRIBUTIONS

By Henry TEICHER
Purdue University

1. Summary. A systematic approach to distributions having the reproductive
property (see [1] p. 171) is attempted, and necessary and sufficient conditions
are given. The case of distributions depending on k¥ (> 1) parameters is con-
sidered; it need not be a straightforward generalization of the one-parameter
case.

2. Additively closed families of distributions. Let D = D(\) be an
Abelian semi-group under addition. In particular,-denote by D(I), D(I+),
D(r+), D(R+), and D(R+, 0) the semi-groups of integers, positive integers,
positive rationals, positive reals, and nonnegative reals, respectively. Let D(r),
D(R), D(I+, 0) and D(R+, 0) be defined analogously. The abbreviations c¢.d f.
and c.f. will be used for cumulative distribution function and characteristic
funection, respectively.

Dermirion. A one-parameter family of c.d.f.’s F(z; \) with X\ ¢ D, and D
as above, will be said to be additively closed or to belong to the class C, if, for any
two elements F(z; A\ and F(z; \,),

(1) F(z; M)*F (23 05) = F(z; M + Ay,

Among the following results, Theorem 1 is known in one form or another
but is required here for a unified presentation. Theorems 2 and 4 are new. Gen-
erally, the k-parameter case does not seem to have been considered previously.

TuroreM 1. If ()N e D(I+) or (#2) X € D(r+), a necessary and sufficient con-
dition that a family of c.d.f.’s F(x; \) be additively closed, that is, that F(x;\) € Cy,
is that the corresponding family of cf£.’s is ¢(t; ) = [f@)]", where f@) is a cf. not
depending on \. If (it7) N € D(R+), and ¢(¢t; \) is continuous in \, the same con-
dition is again necessary and sufficient. In cases (17) and (i47), f(*) is the cf. of
an infinitely divisible distribution.

Proor. The proof of sufficiency is trivial for the ensuing theorems. The three
alternatives for A are considered in turn.

(i), A e D(I+). Let f(t) = ¢(t; 1). Translating and iterating (1), we have, for
any positive; p,

o(t; p) = o(t; o(t; 1) - -+ ¢(t; 1) = [f(D)]".

(ii), A € D(r+). We have, from (1), f¢©) = ¢(t; 1) = [¢(¢; 1/p)]". That is, the
pth root of f(t) is a c.f. for every positive integral p, whence f(¢) is the c.f. of
an infinitely divisible (i.d.) distribution and hence never zero. (By the pth
root is meant that branch for which f/7(0) = 1, which is unambiguous since
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f(t) ¥ 0 for real t.) Again applying (1) we see that, for any positive integers
p and ¢,

o(t; ¢/p) = lo@t; 1/p)]* = [f()]"".

(iii), A & D(R+). Since ¢(¢; \) is continuous in A, it follows from (ii), by taking
a sequence of posmve rational numbers approa,clung any real nonnegative A,

that o(t; \) = [fOI"
If A ¢ D(R+) and the continuity assumption is removed, Theorem 1 is in

general untrue. For example, let F(z; \) be a family of normal distributions
with variance X and mean g(\), where g(A) is a discontinuous solution of Cauchy’s
functional equation g(z) 4+ ¢g(y) = g(x + y). Then

$(t; \) = explitg(\) — P}
is not of the form [f(¢)]* although Fx;\) eCy.

TueoreM 2. If ¢(t; \) for \ € D(R+) 18 real-valued (for real t), a NSC that

F(x; \) € Cy ds that (t; ) = [fOT.
Proor. The set of zeros of ¢(t; N) is independent of X. For if ¢(fo; A1) = 0

and A, > A1, then
) ®(to; A2) = ¢(fo; A2 — M)gp(fo; M) = 0.

If As < M and n isaninteger, [p(to; M/n)]" = ¢(fo; A1) = 0 whenceg(to; A;/n) = 0
for every positive integer n. But for sufficiently large n, we have \; > \;/n. Ap-
plying (2), we deduce ¢(f; A;) = 0.

For N\ = r, a rational number, we have from Theorem 1 that o r) = [f@O
with f(t) never zero. It follows from the above that ¢(¢; \) is never zero. Conse-
quently, the properties of c.f.’s that ¢(0; A\) = 1 and that ¢(¢; \) is continuous
in ¢ for every A, show that ¢(¢; \) is never negative.

Now ¢(t; A) = log ¢(t; N) is well defined, and, from the translated form of

(1), satisfies Cauchy’s functional equation. As
6N = s N)| = 1

¥(¢, \) is nonpositive whence the only solution is the continuous one ¥(f; \) =
K. Thus, for all real A > 0,

¢(t;\) = exp (K} = [h(O]".

Taking A = 1, we have ¢({; 1) = h(f) = f(t), which proves the theorem.
DEriniTION. Let A; be an element of the Abelian semi-group (additive) D; for

i=12, , k. A k-parameter family of c.d.f.’s will be said to be additively
closed or to belong to the class C if for any two members F(z; A", - - , M)
and F(z; N2, -, M),

(3) F(x )\(l) . 1))*F($ >\(2) 2)) Z F(:L’ D\(l) (2)] .. [ (1) +>\(2)])

There may be a set of donnant parameters which are unaffected by the con-
Volutlon but these may simply be ignored.

ey
e,
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In generalization of Theorem 1, we have:

TaeOREM 3. Let F(x; A1, - -+, A\s) be a k-parameter family of c.d.f.’s with
Nj & Djwhere D; = D;(I+,0), D;(r+,0) or D;(R+,0). Further, let $(¢; N1, -+ , Ax)
be continuous in all \; for which the corresponding D; = D;(R+,0). Then a NSC
that F ¢ Cy 1s that

FIGR VU PRI W 1}1 [FEG) R

where each f;(t) is a c.f. independent of all N; , and is i.d. providing the correspond-
ing Dj is D;(r+,0) or D;(R+,0).

Proor. Asin Theorem 1, ¢(t;0, -+ ,0,X;,0, -+ ,0) = G;(t; \;) = [f;O)].
Hence,

% % '
St N1,y o0 M) = ’I;Il Gi(Ny) = E [f; (1.

The inclusion of the value zero in each domain D; immediately implies that
each f;(t) is itself a c.f. The question arises whether this is necessarily so if zero
is deleted. Provided the product space D; x D. x - -+ x Dy is suitably altered,
the answer is in the negative.

TueoreEM 4. Let F(x; A1, N\2) be a two-parameter family of c.d.f.’s where \;
D(r+) and X e D(r), with A1 = |\ defining the parameter space. A NSC
that F(x; M\, N\2) € Cz is that

é(t; M, ) = T [0,

i=1

where f2(t) is mot necessarily a c.f.
Proov. Since for any positive integer n,

[0t 1/n, 1/n]" = ¢(t;1,1) = r(®), (say),

r(t) is an i.d.c.f., and ¢(¢; p/n, p/n) = [r(#)]"'" for any positive integers p and n.
Similarly,

[8(¢; 1/m, 0)]" = ¢(¢; 1, 0) = f1(t), (say),

where f1(¢) is an i.d.c.f. Hence ¢(t; M1, 0) = [fi(®)]* for Ay & D(r+). Let fo(t) =
r(¢)/f1(t). Then fo(t) is defined and nonzero for all real ¢.
Now if A, > 0 and A\; = \;, we have

ot My M) = bt M, \) = [r@OM = LA IL@1.
If)\z > 0but>\1 # )\2,
-t N, he) = d(E A — Ao, 0)B(; N2y Ne) = I}; [F;O1.

, Furthermore,
¢(ta M ’ >\2)¢(t; >\1 ’ —>\2) = ¢(t; 2>\1 ’ 0)'
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Substituting in this last equation and solving, we find
¢t M1, —Na) = [AOMHOI™,

completing the proof. It is clear from the definition that f,({) need not be a

cf.

The following example illustrates Theorem 4. Define ¢,(f) = exp {a;(e” — 1)}
with au > 0 and @, = 0, and rational for j = 1 or 2. Let \; = a1 + a; and
A = ag — ap y with

(4) $(t; M, M) = du(B)ga(—1) = [T

The parameter space is given by A € D(r+) and \; € D(r), with A; = |As|. Finally,
exp{s sin ¢t} cannot be a c.f. as

6)) exp{isint} = 1+ 4t + ¢ + o(f®),

which would imply that the corresponding r.v. had unit mean and zero variance
and hence (by the uniqueness theorem for c.f.’s) a c.f. equal to exp{it}.

The proof of the following generalization of Theorem 4 is very similar and
will not be given.

THEOREM 5. Let F(x; M1, A2, *-+ , M) be a k-parameter family of c.df.’s,
where \y € D(r+) and \; € D(r+,0), with j = 2 and\ = N2 = -+ = N defining
the parameter space. A NSC that F(x; M, Ny -+ , M) € Ci 18

k
Bt M Ney v oe M) = 1}1 [ (O,

where f;(t) is not necessarily a cf. for j > 1.
The last two theorems could be extended to real values of A under suitable

assumptions.
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