Open Access
March, 1953 Contributions to the Statistical Theory of Counter Data
G. E. Albert, Lewis Nelson
Ann. Math. Statist. 24(1): 9-22 (March, 1953). DOI: 10.1214/aoms/1177729079


A new mathematical model is proposed for the action of counters such as the Geiger-Mueller or the scintillation counters. It is assumed that after each registration the counter is inoperative for a time interval of random length. The distribution of lengths of the inoperative periods is so defined that the Type I and Type II models familiar in the literature on counters are special cases. More important, it also allows an action that is a compromise between those two types. Assuming that the sequence being counted is a Poisson process with mean rate of occurrence $mT, m > 0$, in an arbitrary interval of length $T$, the process generated by the counter is discussed and rules are established for obtaining confidence intervals for the parameter $m$ from various types of counting experiments.


Download Citation

G. E. Albert. Lewis Nelson. "Contributions to the Statistical Theory of Counter Data." Ann. Math. Statist. 24 (1) 9 - 22, March, 1953.


Published: March, 1953
First available in Project Euclid: 28 April 2007

zbMATH: 0050.13905
MathSciNet: MR53447
Digital Object Identifier: 10.1214/aoms/1177729079

Rights: Copyright © 1953 Institute of Mathematical Statistics

Vol.24 • No. 1 • March, 1953
Back to Top