STOCHASTIC ESTIMATION OF THE MAXIMUM OF A REGRESSION
FUNCTION!

By J. KiefEr anD J. WoLFOWITZ

Cornell University

1. Summary. Let M (z) be a regression function which has a maximum at the
unknown point 8. M (x) is itself unknown to the statistician who, however, can
take observations at any level z. This paper gives a scheme whereby, starting
from an arbitrary point z;, one obtains successively x;, 23, - - - such that z,
converges to @ in probability as n — .

2. Introduction. Let H(y | ) be a family of distribution functions which
depend on a parameter x, and let )

@.1) M@ = [ yaHy)a).
We suppose that
(22) " &~ M@y G D 5 8 < =,

and that M (z) is strictly increasing for x < 8, and M (x) is strictly decreasing
for z > 6. Let {a.} and {c,} be infinite sequences of positive numbers such that

(2.3) Cn— 0,
(2.4) D> an = o,
(2.5) D aatn < ,
(2.6) Dancat < .

(For example, a, = n, ¢, = n %)

We can now describe a recursive scheme as follows. Let z; be an arbitrary
number. For all positive integral n we have

(2.7) Zap1 = 2n + an (yﬁn - y2n—-1) ,

where y2.—1 and ¥z, are independent chance variables with respective distribu-
tions H(y | z. — ¢s) and H(y | 2. + c.). Under regularity conditions on M (x)
which we shall state below we will prove that z, converges stochastically to
0 (asn — o).

The statistical importance of this problem is obvious and need not be dis-
cussed. The stimulus for this paper came from the interesting paper by Robbins
and Monro [1] (see also Wolfowitz [2]).
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While we have no need to postulate the existence of the derivative of M ()
(indeed, M (x) can be discontinuous), the spirit of our regularity assumptions
postulated below is as follows. (a) If M(x) did have a derivative it would be
zero at = 0. Hence we would have expected the derivative not to be too large
in a neighborhood of x = 6. (b) If, at a distance from 6, M(x) were very flat,
then movement towards 6§ would be too slow. Hence outside of a neighborhood
of £ = 8 we would have liked the absolute value of the derivative to be bounded
below by a positive number. (¢) If M(x) rose too steeply in places we might
through mischance get a movement of z, which would throw us far out from 6.
If there were many such steep places z, could be made to approach + « or— o
with positive probability. We would therefore have postulated a Lipschitz con-
dition.

From the mathematical point of view it would be aesthetic to weaken the
conditions. From the practical point of view it might be objected that these
conditions prevent M (x) from being a function which flattens out toward the
z-axis, for example, M(x) = e_"z, or from being a function which drops off
steadily faster to — o, for example, M(z) = —z’. Now in any practical situa-
tion one can always give a priori an interval [C;, C;] such that C; < 6 < C,.
It will be sufficient if our conditions are fulfilled in this interval.

Suppose, however, that some z, + ¢, falls outside the interval [C;, (2] and
one cannot take an observation at that level. If one then moves z, so that the
offending 2z, =+ ¢, is at C; or C;, as the case may be, and proceeds as directed
by (2.7), then our conclusion remains valid.

We postulate the following regularity conditions on M (z).

ConpitioN 1. There exist positive 8 and B such that

(2.8) |2’ — 0|+ |2" — 6| < Bimplies | M(z') — M(x")| < B|2' — 2"
ConpiTiON 2. There exist positive p and R such that
(2.9) |2’ — 2" | < p implies | M(2’) — M(z") | < R.

ConpiTioN 3. For every & > 0 there exists a positive =(§) such that

210) |z —6|> 6implies inf (Mt —Me—¢]

$6>e>0 €

> 7(8).

3. Proof that z, converges stochastically to 0. Let
(3.1) bn = E(zx — 0)’,
B2)  Ua@) = (2 — 0) E{ysn — yona| 2. = 2},
33)  Un) = 3(Ua(2) + | Ua@) | ), Un(e) = 3(Uae) — | Ua(d) |),
(3.4) P, = E(Ui(2n), No = E(U3(20)),

(3.5) enp = E(y2n - y2n—l)2-
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From (2.7) we have
2
(3.6) Dasr = bn + 222 (P + No) + S e
<Cn c”

Adding the expressions obtained from (3.6) for bjy; — bjfor 1 < j = n, we
obtain

] n n . n 2
@7 i = b+ 20 B P42 YN, + 2 Y.
=1 Cj j=1 Cj =1 ¢}

Noting that U%(2) = 0 and that U(z) > 0 implies that |z — 6| < ¢, because
M(z) is monotonic for z < 8 and for > 0, it follows from (2.8) that, for all
n for which ¢, < 38, we have

3.8) 0 < Uik) <2Bc
It follows from (2.5) and (3.8) that the positive-term series
(3.9) > Zp,

ne=l Cﬂ

converges, say to «. From (2.9) we have
(3.10) M (20 + o) — M(24 — ¢o)* < R
for n sufficiently large. Also for large enough =,

E{(yen — Yanmr)’ [ 2a}
(3.11) = E{(yn — M(2n + ¢n))’ + (W21 — M(2n — ca))* | 24}

+ [M(zn + cn) = M(za — ca)/ 28 + B?

by (2.2) and (3.10). Hence for large enough n
(3.12) Elysn — o]’ S 28 + B
Consequently from (2.6) we obtain that the positive-term series
(3.13) :.1 g’} én

converges, say to y. Hence, since bn41 = 0, it follows from (3.7) that

n
(3.14) 2§%N,;—bl—2a—-y>—w,

so that the negative-term series

(3.15) > %N,

n=1 Cp

converges.
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Let
(3.16) K, = | MGt ) — MG — c) |
Cn
Then .
(8.17) B{K,|zm —0]) = £ = Na

From the convergence of (3.9) and (3.15) and the divergence of 3 a,, it fol-
lows that

(3.18) lim inf B{K, |2, — 6]} = O..

Let n1 < ny < -+ be an infinite sequence of positive integers such that
3.19) lim E{K.;|2.; — 0]} = 0.
j—s00
We assert that (2,; — 6) converges stochastically to zero as j — «. For if not,

there would exist two positive numbers § and ¢ and a subsequence {¢;} of {n;}
such that, for all 7,

(3.20) P{lzy; —0]|> 8} > ¢
which implies that

3.21) E{Ky |2, — 0]} 2 ber (%) >0

for all j for which ¢;; < 36. But (3.21) contradicts (3.19) and the stochastic '

convergence to zero of (z,; — 6) is proved.
Let n and e be arbitrary positive numbers. The proof of the theorem will
be complete if we can show the existence of an integer N (7, €) such that

(3.22) P{|z, — 6| > n} < eforn > N(n, €.
Let s be a positive number such that
€

2
s+ s
’72 <20

Because z,,; converges stochastically to 6 there exists an integer N, such that

(3.23)

(3.24) P{lzn, — 0| = s} <§.

We may also choose N, so large that

(3.25) ¢» < min <§, g) for all n = Ny,
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and
© an
(3.26) n§o & < 7 + SRT T IS’
and )
(3.27) > Gnen < S

n=Ng 8B

Proceeding in a manner similar to that used to obtain (3.7), we have, for each
n > N 0,

n—1

E{(en — 0)'l2wy = 2} = ¢ — 0" +2 2 Y E{Uj| 2w, = 2}
j=Ng G

n—1

(3.28) + Z (y2: - ?/21—1) lzNo = z}

Sk—0"+2 Za’E{U+lz~o—z}+(R + 25) g}; (z — 0" + s.

j=Ng Cj

Using (3.23), (3.28), and Tchebycheff’s inequality, we have

(3.29) P{len— 0] >n|lzn, — 0] <s} <3
The inequalities (3.24) and (3.29) show that (3.22) holds for N(9, ¢ = N,
and the proof is complete.

4. Further problems. The following remarks about further.problems apply
also to [1].

A. An obvious problem is to determine sequences {c.} and {a.} which would
be optimal in some reasonable sense.

B. An important problem is to determine a stopping-rule, that is, a rule
by which the statistician decides when he is sufficiently close to 6.

C. This problem is a combination of B and a generalization of A, that is,
to determine an optimal procedure with its stopping rule.
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