Thanks are due to Dr. J. C. P. Miller, Technical Director, Scientific Computing Service, Limited, London, England, for helpful suggestions in the preparation of this paper.

REFERENCES

- [1] T. A. Bancroft, "Some extensions of the incomplete beta function tables." (in preparation)
- [2] Karl Pearson, Tables of the Incomplete Beta-Function, Cambridge University Press, 1934.
- [3] WILHELM MAGNUS UND FRITZ OBERHETTINGER, Formeln and Sätze für die Speziellen Funktionen der Mathematischen Physik, Julius Springer, Berlin, 1943.
- [4] T. A. Bancroff, "On biases in estimation due to the use of preliminary tests of significance, Annals of Math. Stat.," Vol. 15 (1944).

ON A THEOREM BY WALD AND WOLFOWITZ

BY GOTTFRIED E. NOETHER

New York University

Let $\mathfrak{H}_n = (h_1, \dots, h_n)$, $(n = 1, 2, \dots)$, be sequences of real numbers and for all n denote by $H_{e_1 \dots e_m}$ the symmetrical function generated by $h_1^{e_1} \dots h_m^{e_m}$, i.e., $H_{e_1 \dots e_m} = \sum h_{i_1}^{e_1} \dots h_{i_m}^{e_m}$ where the summation is extended over the n(n-1) \dots (n-m+1) possible arrangements of the m integers i_1, \dots, i_m , such that $1 \leq i_j \leq n$ and $i_j \neq i_k$, $(j, k = 1, \dots, m)$. According to Wald and Wolfowitz [1] the sequences \mathfrak{H}_n are said to satisfy condition W, if for all integral r > 2

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(h_{i}-\bar{h})^{r}}{\left[\frac{1}{n}\sum_{i=1}^{n}(h_{i}-\bar{h})^{2}\right]^{r/2}}=O(1)^{1}$$

where $\bar{h} = 1/n \sum_{i=1}^{n} h_i$.

Given sequences $\mathfrak{A}_n = (a_1, \dots, a_n)$ and $\mathfrak{D}_n = (d_1, \dots, d_n)$, consider the chance variable

$$L_n = d_1 x_1 + \cdots + d_n x_n$$

where the domain of (x_1, \dots, x_n) consists of the n! equally likely permutations of the elements of \mathfrak{A}_n . Then it is shown in [1] that if the sequences \mathfrak{A}_n and \mathfrak{D}_n satisfy condition W, the distribution of $L_n^0 = (L_n - EL_n)/\sigma(L_n)$ approaches the normal distribution with mean 0 and variance 1 as $n \to \infty$. These conditions

¹ The symbol O, as well as the symbols o and \sim to be used later, have their usual meaning. See e. g. Cramér [2, p. 122].

for asymptotic normality can be weakened. It will be shown that the following theorem holds:

THEOREM. L_n^0 is asymptotically normal with mean 0 and variance 1 provided the sequences \mathfrak{D}_n satisfy condition W while for the sequences \mathfrak{A}_n

(1)
$$\frac{\sum_{i=1}^{n} (a_i - \bar{a})^r}{\left[\sum_{i=1}^{n} (a_i - \bar{a})^2\right]^{r/2}} = o(1), \qquad (r = 3, 4, \cdots).$$

We note that L_n^0 is not changed if a_i is replaced by $[1/n\sum_{i=1}^n (a_i - \bar{a})^2]^{-1/2}(a_i - \bar{a})$ and d_i by $[1/n\sum_{i=1}^n (d_i - \bar{d})^2]^{-1/2}(d_i - \bar{d})$. Therefore it is sufficient to prove asymptotic normality provided

(2)
$$D_1 = 0, \quad D_2 = n, \quad D_r = O(n), \quad (r = 3, 4, \cdots);$$

(3)
$$A_1 = 0, \quad A_2 = n, \quad A_r = o(n^{r/2}), \quad (r = 3, 4, \cdots)$$

Then

$$EL_n = D_1 E x_1 = 0,$$

$$\operatorname{var} L_n = EL_n^2 = D_2 E x_1^2 + D_{11} E x_1 x_2$$

$$= \frac{1}{n} A_2 D_2 + \frac{1}{n(n-1)} (A_1^2 - A_2)(D_1^2 - D_2) \sim n,$$

and it is sufficient to show that $n^{-r/2}EL_n^r$ tends to the rth moment of a normal distribution with mean 0 and variance 1.

Now we can write

$$\mu_{r} = n^{-r/2} E L_{n}^{r} = n^{r/2} \sum_{i_{1}=1}^{n} \cdots \sum_{i_{r}=1}^{n} E d_{i_{1}} x_{i_{1}} \cdots d_{i_{r}} x_{i_{r}}$$

$$= n^{-r/2} [D_{r} E x_{1}^{r} + \cdots + c(r, e_{1}, \cdots, e_{m}) D_{e_{1} \cdots e_{m}} E x_{1}^{e_{1}} \cdots x_{m}^{e_{m}} + \cdots + D_{1 \cdots 1} E x_{1} \cdots x_{r}]$$

where $e_1+\cdots+e_m=r$ with e_k , $(k=1,\cdots,m)$, positive integral and the coefficient $c(r,e_1,\cdots,e_m)$ stands for the number of ways in which the r indices i_1,\cdots,i_r can be tied in m groups of size e_1,\cdots,e_m , respectively, so as to produce the terms of $D_{e_1\cdots e_m}Ex_1^{e_1}\cdots x_m^{e_m}$.

Since $Ex_1^{e_1} \cdots x_m^{e_m} \sim n^{-m} A_{e_1 \cdots e_m}$ we have

(5)
$$n^{-\tau/2}D_{e_1...e_m}Ex_1^{e_1}\cdots x_m^{e_m} \sim n^{-(\tau/2+m)}D_{e_1...e_m}A_{e_1...e_m} = B(r, e_1, \dots, e_m), \text{ say.}$$

Lemma. $B(r, e_1, \dots, e_m) \sim 0$ unless

(6)
$$m = r/2, e_1 = \cdots = e_{r/2} = 2.$$

In that case $B(r, 2, \dots, 2) \sim 1$.

Before proving this lemma we shall show that our theorem follows immediately. By (4) μ_r is the sum of a finite number of expressions $B(r, e_1, \dots, e_m)$.

Therefore if r=2s+1, $(s=1,2,\cdots)$, $\mu_{2s+1}\sim 0$, since at least one of the e_k , $(k=1,\cdots,m)$, in all the $B(2s+1,e_1,\cdots,e_m)$ adding up to μ_{2s+1} must be odd. If r=2s, $\mu_{2s}\sim c(2s,2,\cdots,2)$. Since the first index in (4) can be tied with any one of the other 2s-1 indices, the next free index with any one of the remaining 2s-3 indices, etc., it is seen that $\mu_{2s}\sim (2s-1)(2s-3)\cdots 3$. However these are the moments of a normal distribution with mean 0 and variance 1. This proves the theorem.

PROOF OF LEMMA. Define $A(j_1, \dots, j_h) = A_{j_1} \dots A_{j_h}$. Then $A_{e_1 \dots e_m}$ is the sum of a finite number of expressions $A(j_1, \dots, j_h)$, where the j_{σ} , $(g = 1, \dots, h)$, are obtained from e_1, \dots, e_m by addition in such a way that

(7)
$$j_1 + \cdots + j_h = e_1 + \cdots + e_m = r$$
.

Since by (3) $A_1 = 0$, we need only consider those $A(j_1, \dots, j_h)$ for which $j_g \geq 2$, $(g = 1, \dots, h)$. If some $j_g > 2$ by (3) and (7)

(8)
$$A(j_1, \dots, j_h) = o(n^{r/2}).$$

If $j_g \equiv 2$,

(9)
$$A(2, \dots, 2) = A_2^{r/2} = n^{r/2}.$$

This last case can only happen if r is even and e_k , $(k = 1, \dots, m)$, equals either 1 or 2. Therefore, unless (6) is true

$$(10) m > r/2.$$

Similarly, writing $D_{e_1 \cdots e_m}$ as a sum of products of the kind $D_{j_1} \cdots D_{j_h}$ it is seen that by (2)

(11)
$$D_{e_1 \cdots e_m} = \begin{cases} O(n^m) & \text{if } m < r/2 \\ O(n^{r/2}) & \text{if } m \ge r/2. \end{cases}$$

Thus by (8)–(11)

$$(12) A_{e_1 \cdots e_m} D_{e_1 \cdots e_m} = o(n^{r/2+m}),$$

unless (6) is true. In that case

$$(13) A_{2\cdots 2} \sim A_2^{r/2} = n^{r/2},$$

$$(14) D_{2...2} \sim D_2^{r/2} = n^{r/2}.$$

(12)-(14) together with (5) prove the lemma.

Let a_1, a_2, \cdots be independent observations on the same chance variable Y. We may ask what conditions have to be imposed on the distribution of Y to insure—at least with probability 1—that condition (1) is satisfied. Wald and Wolfowitz state in Corollary 2 of [1] that provided Y has positive variance and finite moments of all orders the a_1, a_2, \cdots satisfy condition W with probability 1 and therefore insure asymptotic normality of L_n provided the sequences \mathfrak{D}_n satisfy condition W. On the other hand, it can be shown that the a_1, a_2, \cdots

satisfy condition (1) with probability 1, provided Y has positive variance and a finite absolute moment of order 3. Thus condition (1) constitutes a considerable improvement over condition W.

REFERENCES

[1] A. Wald and J. Wolfowitz, "Statistical tests based on permutations of the observations," Annals of Math. Stat., Vol. 15 (1944), pp. 358-372.

[2] H. CRAMÉR, Mathematical Methods of Statistics, Princeton, 1946.

ON SUMS OF SYMMETRICALLY TRUNCATED NORMAL RANDOM VARIABLES

By Z. W. BIRNBAUM AND F. C. ANDREWS¹
University of Washington, Seattle

1. Introduction. Let X_a be the random variable with the probability density

(1.1)
$$f_a(x) = \begin{cases} Ce^{-x^2/2} & \text{for } |x| \le a \\ 0 & \text{for } |x| > a, \end{cases}$$

obtained from the normal probability density $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ by symmetrical truncation at the "terminus" |x|=a, and let $S_a^{(m)}$ be the sum of m independent sample-values of X_a . We consider the following *problem*: An integer $m\geq 2$ and the real numbers A>0, $\epsilon>0$ are given; how does one have to choose the terminus a so that the probability of $|S_a^{(m)}|\geq A$ is equal to ϵ ,

$$(1.2) P(|S_a^{(m)}| \ge A) = \epsilon?$$

This problem arises for example when single components of a product are manufactured under statistical quality control, so that each component has the length Z = k + X where X has the probability density $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, and the final product consists of m components so that its total length S is the sum of the lengths of the components. We wish to have probability $1 - \epsilon$ that S differs from mk by not more than a given A. To achieve this we decide to reject each single component for which |Z - k| = |X| > a; how do we determine a?

The exact solution of this problem would require laborious computations.² In the present paper methods are given for obtaining approximate values of a which are "safe", that is such that

$$(1.3) P(|S_a^{(m)}| \ge A) \le \epsilon.$$

¹ Research done under the sponsorship of the Office of Naval Research.

² A similar problem has been studied by V. J. Francis [2] for one-sided truncation; he actually had the exact probabilities for the solution of his problem computed and tabulated for m=2,4.