Open Access
Translator Disclaimer
March, 1948 A $k$-Sample Slippage Test for an Extreme Population
Frederick Mosteller
Ann. Math. Statist. 19(1): 58-65 (March, 1948). DOI: 10.1214/aoms/1177730290

Abstract

A test is proposed for deciding whether one of $k$ populations has slipped to the right of the rest, under the null hypothesis that all populations are continuous and identical. The procedure is to pick the sample with the largest observation, and to count the number of observations $r$ in it which exceed all observations of all other samples. If all samples are of the same size $n, n$ large, the probability of getting $r$ or more such observations, when the null hypothesis is true, is about $k^{1-r}$. Some remarks are made about kinds of errors in testing hypothesies.

Citation

Download Citation

Frederick Mosteller. "A $k$-Sample Slippage Test for an Extreme Population." Ann. Math. Statist. 19 (1) 58 - 65, March, 1948. https://doi.org/10.1214/aoms/1177730290

Information

Published: March, 1948
First available in Project Euclid: 28 April 2007

zbMATH: 0031.37102
MathSciNet: MR24116
Digital Object Identifier: 10.1214/aoms/1177730290

Rights: Copyright © 1948 Institute of Mathematical Statistics

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.19 • No. 1 • March, 1948
Back to Top