THE GENERAL CANONICAL CORRELATION DISTRIBUTION

) By M. S. BARTLETT
University of Cambridge, England and University of North Carolina

1. Summary. The general canonical correlation distribution is given as a
multiple power series in the true canonical correlations p;. When only one
true correlation is not zero, this series is expressible as a generalized hyper-
geometric function, for the cases both of non-central means and of correlations
proper. In the general case of more than one non-zero true correlation the
coefficients in the expansion depend on the conditional moments of the sample
correlations between the pairs of transformed variables representing the true
canonical variables, when the sample canonical correlations between the sample
canonical variables are fixed. Methods are given of obtaining these coefficients
for both cases, non-central means and correlations proper; and their form up to
the fourth order, corresponding to O(p") in the expansion, listed in Appendix I.
The detailed terms making up these coefficients are given, in the case of two
non-zero correlations, up to the fourth order, and in the general case, up to the
third order, in Appendix II.

2. Introductory remarks; the case of zero roots. In the statistical theory of
the relation of one vector variate with another (see Hotelling [1]), the simul-
taneous distribution of the canonical correlations r;, which are the roots of a
certain determinantal equation, was first obtained in 1939 (Fisher [2], Hsu [3],
Roy [4]) in the special but important case when the true roots or correlations p;
are zero. Roy [5] has since investigated the case where the true roots are not
zero when these non-zero values arise from non-central means. The present
investigation is primarily intended to cover the alternative case where non-zero
roots arise from the existence of true correlations p; . The method developed is,
however, also applicable to the case of non-central means; and it is shown that
the general distribution, which for more than one non-zero root becomes very
complicated, does not in the case of non-central means agree with the distribu-
tion given by Roy [5] except in the case of only one non-zero root."

It will be convenient in this introductory section to sketch (with slight modi-
fications) the method used by Hsu [3] to obtain the solution in the case of zero
roots, as some of his intermediate formulae are useful for the present develop-
ments. We consider a dependent vector variate with p components, and an
independent® vector variate with ¢ components. For definiteness we assume

1 This conclusion has also been reached by T. W. Anderson, who has given a solution
of the non-central means problem in the cases of either one or two non-zero roots, (Annals
of Math. Stat., Vol. 17 (1946), pp. 409-431).

2 This classification of a variate as the ‘‘dependent variate” or ‘‘independent variate’
is in the regression sense, and does not necessarily imply statistical dependence or inde-
pendence.
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2 M. S. BARTLETT

P < g, and the sample with n(>p + ¢) degrees of freedom corresponding to the
dependent variate is divided in the usual way (see, for example, [6]) into a part
with ¢ degrees of freedom corresponding to the independent variate and the
remaining part with n — ¢ degrees of freedom. If a;;, b;; denote the sums of
squares and products corresponding to this division, then it is known that the
joint distribution of a;; and b;;, if the dependent vector variate is normal and
actually, in the statistical sense, independent of the second vector variate, is

»
IA ! $(g—p—1) IB li(n—q—m—l) exp [___1_ Z (a“ + b“)] da db
W 2

2 o T (s - Il = ¢ = i)

where | A | denotes the determinant of the matrix A = {a;;}, and da the product
of differentials da;;, and where for convenience the variance matrix of the
dependent variate is taken to be the unit matrix.

We make the transformation specified by
A = WDW’,
(2)
A+ B=WW,

where D is a diagonal matrix of the quantities r; in descending order of magnitude,
and W = {w;;} is a matrix (with transpose W’) uniquely determined by (2)
except for an ambiguity of sign for each column ; this ambiguity can be eliminated
by choosing positive elements in the first row. The Jacobian A of the trans-
formation may be shown to be

P P
3) a=22|ww |"II 11 (% = 7).

=1 Jmmi4l
By direct substitution, we obtain from (1) the distribution
plas;, bis) = plwij, r) = plw: )p(ri),

where p(z) is a general notation® for a distribution function in one or more
variates z, (including the differential elements); for p(w;;) and p(r?) we have

P
4) p(wi;)) = CL|WW'| =) oxp [— % > wﬁ,:l dw,

3,7=1

D ¥4
® o6 = Gl {0 o - e 1T ¢ - ) e,

=141

3 The probability symbol is not of course to be confused with the number p of components
in the dependent variate. It should also be noted that for convenience p(z;) is used to
denote the joint probability for a set of quantities z; , whereas p(x,) or p(x2) denotes the
probability for the specified variate z; or x, considered separately.
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the constants C; and C, being arranged to give unity on integration of p(w;;)
or p(r%), i.e. we have

©) ¢ = 27 T (1 - /i - o),

(the w;; varying from — « to « except that wi; > 0), and
p—1

7 C = r”’g {T(n — D/ TP — DI — IR — ¢ — D).

3. Formal determination of the general distribution. The method to be
adopted of obtaining the general distribution from the particular case quoted in
equation (5) above is the same in principle as the one adopted by Fisher [7] in
his derivation of the general distribution of the multiple correlation coefficient.
Since the argument is more involved in the present problem, it will be presented
first in formal probability terms, before the details of the solution are examined.

We consider a transformation of the components of each vector variate to the
true canonical components. Let the observed ordinary correlation coefficients
of these mutually independent components for one vector variate with the
corresponding components of the second vector variate be denoted by s;. The
true correlations are the true canonical correlations p;. Then we have for the
general canonical correlation distribution denoted by* p(r; | p), the expression

p(r: | pi) = _/;.P(Te y Si | pi)
= [ Bl se, 0p(oc ] 09

= [t sdptes | p0p(se [ 0 -+ Doy | o),

the substitution p(r; | s;) for p(r; | si, p:) following from the sufficiency of the
independent correlations s; of the corresponding pairs of canonical components,
as statistics for the p; . We now define the function ¢(s;, p1) by the relation

p@si| p) = p(si| p = 0) g(s1, p),
wher- we have the general solution

p(ril ) = [ B0 59pG | o1 = 0)g(o1 , p0P(st | 2 = Ogler, p0) -

(8) = ‘/;.p(ri y Si | pi = 0)g(81 , pl)g(82 X P2) e

= p(r:i| ps = 0) f.p(si [ 7:, pi = 0)g(s1, p)g(se, p2) -+~

for p(r; | p:) in terms of the special case p(r; | p; = 0).

4 Quantities to the right of the vertical stroke in a probability bracket are given quanti-
ties on which the probability distribution depends.
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Now according as the independent vector variate is considered as (a) a normal
variate with which the dependent variate is correlated, (b) a fixed vector in
sample space (this includes the non-central means case) Fisher [7] has shown that
the distribution of the multiple correlation R of a single dependent variate with
an independent variate comprising m components is p(R | p = 0)g(R, p), where

(2) g(R, p) = F(&n,in;Lm; R 1 — o),
(b) g(R, p) = F(3n; 3 m; 3 R ¢,

where we replace p’ by a parameter 8 in case (b), and the notation for hyper-
geometric functions used is:

(9)

v
Fla; :2) = 1 oz ala + 1)z e
(a; B; ) + 5 +ﬂ_(l3 Fel +
o _ a (o + Do + 1)1172 ..
Floyeai o) =14 —=g= + =g hyer 1"
It follows that we may write g(s;, p1) above in the form
ag & g(si, p) = F(3n, 3335 s (1 — oD,
(b) glst, p) = F(§n; 3; 46ishe ™1,

by putting m = 1 in (9), (the signs of the s; are arbitrary, so that we are essen-
tially concerned, as in the multiple correlation distribution, with the squares
of the correlations ). From these series expansions the integral in (8) consists of
terms corresponding to the conditional moments, for any set of positive integers
hyb, b,

p’(tl ) t27 R} t?) = E{(Sf)h(sg)tz e (SZP)tp l 7'.‘}
- [ (D" o () ploi | 7is 5 = 0)

In the particular case when only p; 5 0, the moments u(f) = E{(s)’ | ;} from
the single factor g(s; , p1) are all that arise, but in the general case it is important
to notice that the quantities s? , while statistically independent when unrestricted,
are no longer independent for the conditional distribution p(s; | i, pi = 0).
This completes the formal solution. It remains to evaluate u(t, &, -+ , tp).

4. The conditional moment u(t;, &, - -+ ,%). First of all we note from the
choice of the components of the dependent vector variate, applying the analysis
of section 2 to such components, that the multiple correlation R; between the
7th component and the ¢ components of the independent variate is given by

2 2 2 2 2 2 2
i = aii/(ai + bi) = aary + aprz + <o+ + aipr'p,

where

aij = Wi/ V (wh + wh + o0 + wip).
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To obtain the distribution of the a;; from that of the w;;, we note that the w;;
distribution (4) is normal (allowing for convenience w;; to vary from — o to )
except for the “linkage factor”

p—1
27 [ ww 1 I {Tl4(p — /Tl — )]},
=0
Hence if we transform to the variables ¢;: , 6;; defined by
Ci = Wi 4 wa 4 -+ + Wiy,
ai = ¢os 0, ,

. Qi = sin 0,1 cos Oy ,
(11)

R
&
I

= gin 6; sin 6, cos 6,3,

aip = §in 6; sin By sin ;3 -+« sin 6;,5 ,
the sets ¢ , 6;; which for normal w;; would all be independent with distributions:
p(ci) — x* distribution with p degrees of freedom,
(12) p(6;) « sin®7'6;; do;;,
O0<b;<mforj=1,2,---p—2;0 < bip1 < 2m),

in general retain their independence for given ¢, but the linkage factor results
in an elevation of the x* distributions to n degrees of freedom, and a linkage
factor for the 8;; distributions of

(13) ape 1 {fw—(ﬁ{—;%%} !

where
A = {aaaj + asap + - + aipajp).

‘We may now, having obtained the distripution of the a;;, note their geometri-
cal interpretation. Let us denote the p components of the dependent variate
in n-dimensional sample space by the p vectors &, &, ---,§,. Let the p
orthogonal canonical components corresponding to the sample canonical correla-
tions r; be denoted by the p unit vectors x;, x2, - -+, x, . Let the corresponding
components for the independent variate be m;, y;. The “linkage factor”
merely represents the allowance that must be made in the mutual relations of the
&-vectors for the fact that while they must lie in the p-space of the x-vectors,
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they really belong to the original n-space. We may identify the w;; with the
coefficients in the equation

(14) & = waxi + waXe + -0+ Wipky,
where
£o=wi +whh + oo 4wl

is a x* with n, and not p, degrees of freedom. If we now suppose for convenience
£; to be a unit vector, we have in place of (14)

(15) & = auXs + apXs + -+ + aipXp,
with a projection, on the g-space of the y-vectors, of ; , say, where
G = apnys + aonls + -0+ aiplplp,
and hence, as already noted in the algebraic derivation,
Ri = (& - &)°/0 = ol + abrs + -+ + iy,

where (£ - {) denotes a scalar product. The linkage factor (13) indicates that
the ¥; vectors in (15) are not independent in the p-space of the x-vectors, the
distribution of their mutual configuration being determined by n-space.

This interpretation enables us to determine the moments of the distribution
p(si|r:). For if corresponding to (15) we write

(16) n = Bayr + BuY: + -+ + Bila,
then
) 8 = aufurt + apBers + -+ + aipBiplp -

If we are considering case (a), the relations of the n; to the y-vectors in g-space
will be similar to the relations of the £; to the x-vectors in p-space. In case (b),
however, the n; , which represent the true canonical components of a set of ¢
fixed vectors, must remain strictly orthogonal to each other although their
relation to the y-vectors can vary. This means that the relations of the n;
to the y-vectors are determined by a random rotation of a rigid orthogonal set
of ¢ vectors in case (b). We may note that if in case (a) we allowed n to tend to
infinity, the n; would also become rigidly orthogonal, so that the solution in case
(b) may conveniently be obtained from case (a) by retaining the same distribu-
tion of the «; , and for the 8;lettingn — «.

Thus in either case the moments of the s; can be obtained from (17) in terms
of the moments of «;; and 8;;, two independent sets of coefficients for which the
distribution of each set is known. The above comments suffice theoretically to
complete the required solution for (s7)*(s3)* - -- (s3)" is a function of a;; and
B:; ; the a;; and the corresponding linkage factor can be expressed in terms of
sin 6;; and cos 6;;, and similarly for the 8;;in terms of, say, sin ¢:; and cos ¢;;,
and integration carried out over the 6;; and ¢;;. This method is unfortunately
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too cumbersome algebraically to be of any practical value except in the case of
one non-zero root. This case is considered separately before the general case is
discussed further.

6. The case of only one non-zero root. Here we only require u(f) and a
comparatively simple solution is possible, the linkages within the #; and n; sets
being irrelevant. We have in fact, if ¢ is the angle between n; and ¢; , (where
{1 was the projection of & in the g-space), that ¢ is a random angle in the ¢-space,
since the a;; and 8;; sets are independent. Hence ¢n this particular case we may
conveniently write s = R} cos “, which is just the transformation used to obtain
the distribution of the multiple correlation Ri . Thus we may replace (10) by

(9), where R = aiyr} + ofors + -+ + afrs, and
®y = ¥ Lo

ugtugt o=t u1!u2!- .
2. o 2(t— 2 o 2(t—uy—
- cos™ 0y sin® 7 0y cos™2fyy sinZ T gy )

where the expected value of the trigonometric term is evaluated as

(18) {r(ul + DT + 3)-- } rp)
rHrG) -+ JTGp + 1)
We have now obtained the distribution, (p, = -+ = p, = 0),

p(ri| o = 0) = p(ri | pr = 0) Doupug, Clun, g, -+ ) (D)™ ()™ - -+,
where p(r; | p; = 0) is given by (5) ; and in case (a)

Ol ) = (1= sy [T AT
R ACTINCT)) ﬁ[r<u,-+%>]
I'3p + )TGGg + O iz L TE)w! 1’

and in case (b)
oy = ey DGn+OTEGPTGe) 15 [r(u,~ + )]
Gl 1y =0 = OB T + 00 + 0 1x L Tt 7
where u; + us + - -+ 4 u,is denoted by ¢. Zul,uz,- - - denotes summation of

all w’s from 0 to . The solution in either case contains a generalized hyper-
geometric function. If we dencte the general series

> {P(Oll + O (e + 2) L(r)T(re) 2 [1‘(57. + uj)x}"']}
upslg,e- T'(c)T(az) T(ry 4+ )T(re + t) 521 T'(8;)u;! ’

Z {P(a + 1) T(r)I(rz) 2 [P(ﬁf + ui)x;‘i]}
UL Uz, F(a) I‘(Tl + t)I‘(Tg + t) j=l I‘(ﬁ])uﬁl

by
F(al,a2;61;62,"';Bp;r],TZ;xI,xZ;"'7:1;17)7

F(a;ﬁlyﬁ‘ly°")Bp;rl’ri’;xl)x?a”'7x1))
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respectively (see [8, p. 300, example 22]), then we have in case (a)
(19) p(ri| pr # 0) = p(r: | pi = 0)(1 — p})*"

XFGn, 3n; %, %, -+ 5 5 30, 3g; oL, pirs, o, P17,
and in case (b)

p(ri| By # 0) = p(ri | pi = 0)e ™1

(20)

XF(% n; %; %7 ) }i; %P, %Q; %ﬁ%"% ] %Birg y T %ﬁirzp .
An alternative operational form is obtained by noting that the sum of terms for
givent = u; + uy + -+ -+ u, is generated by means of the coefficient of 2* in

P
2 2 \—%
11 a—piria)?,
j=1
where for definiteness we consider case (a). Hence if we write

P(al + t)I‘(ag + t) I‘(rl)l‘(rg) .’L't
I‘(oq)I‘(az) P(Tl + t)P(T2 + t) ’

F(ah az ;5 T, 1"2;113) = Zt

we have
2 2 2 2 2 2

F(%ny %n; %’ %) MY %; %pi %Qy piT1 y p1Te, =, plrp)

(21) »
—1 2 2 —
= OF(n, in; ip, 30527 1L (1 = firio)™,
paie

where 0 denotes the operation of taking the term independent of z (this might
possibly be done by multiplication by z ' and evaluation of a suitable contour
integral, but in the use of this formula here the operation © has been carried out
directly).

It is of some interest to examine a simple case, and, incidentally, to check that

];‘ p(TiIPi) = 1.

If we take p = 2, ¢ = 3, we obtain for p(ri , 75 | p = p2 = 0) the form
n — 2 — 3)n — A — )" — DY — ) drldrs .

Considering the distribution (19) with p = 2, ¢ = 3, and taking the most ele-
mentary case n = 6, we obtain on integration of 75 from 0 to 7} ,

2
) = 061" drt = 1) Do | "]

() TG+ wTG 4+ w) ()
(i +19 IGHr@Gwm!(we + 2)l!

where ¢ = u; + u2. Now from the identity (1 — 2)™*1 — 2)! = 1 — =z, the
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coefficient of 2***, (¢ > 0), is zero in the expansion of the left-hand side. This
provides the identity, for all ¢ > 0,
3, PG+ uw)lG+t—wi-3 _TG+t+1) _TE+t+2)
YO TEw!TE) (ue + 2)! e+ DY TEE + 2)!
_ 3¢+ 3¢ +9)
rHrE +3) ’

or
TG+uwlG+é—w) t+3 TEH+1)

22) 2 TG)u!TGE)(we +2)! 3 TE)IE+3)°
Hence

a2 .20 _ 2\3 P(3+t)(t+3) ¢

P(T1 | p1) = 6(7‘1) d7'1(1 Pl) Zt [I‘(3)] ( )

(23) 2\2 5 2 243 P(3+t)(§21’)(t+3)

= (7’1) d7'1(1 - p1) Zt I‘l()3§t'

=(1 - Pl) dTl 3/37‘1{(7'1) 1- P )_3}

which obviously gives unity on integration of 7; from 0 to 1. In purely algebraic
form

(24) p(ri | o) = 3(1 — p1)’(r)* dri/(1 — pird)™.

Alternatively, making use of formulae (21), we have for the same case p = 2,
q = 3, n = 6, the distribution

(25) 6(i — 13) dridri(1 — p1)* OF(3,3; %27 (1 — pirle) ™ (1 — pirde) ™.

Integrating with respect to 75 from 0 to 71 , we obtain

— 225 —
@26) 6dri(L = 4,3 557 (1 — pirta {2 4 ML= alrle) ”}.
P12 3(p12)

Discarding the term for which the irrational expression (1 — piriz)? cancels,
and hence leaves no terms independent of z, we obtain the distribution p(r; | py)
given in (23) or (24) by selection of the appropriate terms We may further
integrate directly the expression above with respect to 71 , and after discarding
again irrelevant terms we obtain

4

27 6(1 — p1)’'0F(3,3; 3327 )¢ — —5—

(1 - p%Z)}},

which is readily ascertained to be unity.

6. More than one non-zero root. In the general case the factor multiplying
p(ri | p = 0) is rather remarkable in being symmetrical in both the set r; and
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the set p; . As n increases, the convergence of r, to p;, 72 to p2, etc. when the
p: are also arranged in descending order of magnitude must result from the
restriction 7y > 7 > .-+ > r,. The limiting distribution has been discussed
by Hsu [9]. '

In view of the algebraic difficulty of obtaining u(t:, t, -+ ,%) by direct
integration, an unsymmetric method of obtaining the moments was developed.
This is fairly tractable in the case of two non-zero roots. The second set w;
of the original variables is transformed by an orthogonal transformation such
that the first new variable of the second set is determined by the correlation
between w;; and wy;. We may write, for example,

wi = (Wywn + Wigws + +++) /(W 4+ wh 4+ -+ + wiy}

—wn(’w% 4+ -+ w%p)wﬂ

5 + wpwe + - }
(28) way = 3 o PRV
{(wn 4wl + -+ w]p)}
2

W11
— 2 CECEEY 2
{ wi (Wi + . + wip)ws + wawy + - }
wiy = =
® (wis + -+ + wip) Wl + - + uﬁp)}*
w%fz

which conversely we can at once express as a relation of the w,;, in terms of the
’ . . . . . .

ws;, (since the reciprocal of an orthogonal matrix is simply its transpose). If

we write

29) o = wi/[(wn)® + (i) + -+ + (Wi,
Ol.éz = ’wéz/[(w;l)2 + (wéz)‘z + e+ (w;zz)2]*,
and write further .

a1 = c0S f11, Gy = COS fua, -+ , by = cOs 1,

by = cos O3z , - -+ , where az; = cos 63, asy = sin 651 oS fgy , * - -
we have in particular

o = abi — b V(1 —al) V(1 - D),

(30) omy = axbs \/ m + a1azbs \/(1———6‘{)—)
— by \/(1 — ai) \/(1 — bf) '\/(1 _ bﬁ),

where the distribution of the a’s and b’s is proportional to

(1 — a0 da} (1 — ad) P dag} - - - {(1 = b)Y dbi} {(1 — )PP o} - -+ .
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For the reasons discussed in section 4, it will be noticed that only the distribu-
tion of b; in the a, b set is affected by the linkage factor. By such methods the
expressions

p(1,1) = Efsis; | i}, w2, 1) = Efsis; | ri}

were fairly readily obtained. If we introduce the notation
b4
Se=2 09, Su =3 @D, ete.,
) %]

and also symbols for the products of the o and 8 moments, viz.
2 2 2 2 2 ) 2 2 2 52
9 = E(aualz} E{ﬁuﬁ%z}, 9 = E{auazz} E{ﬁnﬂza},

etc., we may list the moments u(t; , &, -« + , ¢,) as in Appendix I, which gives all
moments up to the fourth order in terms of the « and 8 moments (the numerical
coefficients arise from the numbers of ways of forming the two-way partitions).
“Half-factors’’ corresponding to the o moments are listed in Appendix IT against
their appropriate symbol, the corresponding factors coming from the 8 moments
being obtained in case (a) by writing ¢ for p and in case (b) by writing also®
n — . Thusin case (a)

w(l 1) = [np?p++22)] [nq729++22)] &
(32) + {[npg)p: 5 = 1)] [nq&q: o = 1)]

i [np@_ YOS 1)] {nq@_ O ‘1>}} 2u,

and in case (b)

wll, 1) = [np?p++22):| [q(q }l— 2)]82

{np+n —2)q+ 1) +2(n — p)} 05
(P +2)(p — Dglg +2)(g — 1))

By means of the transformation (28) it is possible to develop the moments
w(ty, &) in the case of two non-zero roots, though in obtaining the results quoted
in Appendix II, where the formula for u(3, 1) and u(2, 2) are included, it was
found convenient to supplement this method with the devices mentioned in the

33)

5 It should be remembered that we have assumed p < ¢. If p > ¢, we interchange
the dependent and independent vector variates, and hence must interchange p and ¢ in
these moment formulae, p(<q) now corresponding to the independent variate.
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next section. In the case of more than two non-zero roots, it is theoretically
possible to carry out a further transformation on the ws; variates, but with the
“partial” variates wij.2 = wy; — buwe;, where

b = (Wuwn + W 4 +++)/(Wir + Wiz + ++),

as coefficients. This enables us to express ws; in terms of new variables, of
which the first is related to the partial correlation of ws; with w,; for given we;,
i.e. to the second correlation factor which depends on the “linkage”; and so on.
This method is, however, again too cumbersome to be of much use, and a more
rapid method of evaluating u(t , &, - - - ,¢,) in general is desirable. This problem
has not been entirely solved to the author’s satisfaction in this paper, although
in the concluding section are mentioned devices which have been found useful,
and which enabled the terms for the remaining third-order moment p(1, 1, 1)
to be completed and added to Appendix II.

7. Relations among the a-moments. Equation (15) defining the a’s, the
£; being random vectors in the p-space of the x-vectors except for their mutual
configuration being determined by the properties of n-space, may be used to
provide relations among the a-moments. Thus in addition to the identities

(34) a%‘l+a2i2+"'+a2ip:1; (i=1:2;"'yp))

the correlation of any &; with a fixed vector in the p-space, e.g. with x; or with
(%1 + x2)/4/2, is a random correlation in p-space, whereas the correlation of any
£; with any other £; is a random correlation in n-space. The use of these facts
is best illustrated by an example and equations sufficient to determine the
six a-moments required for u(1, 1, 1) will be derived.

For convenience, denote the required mean values of

2 2 2 2 2 2 2 2 2 2 2
1100210031 , 01100210032 , (X11022(X33 4 (X110X120021 (220X31 4 (X110 120021(K22(X33 5 (X11(X12(K92(230X31 (X33

by A, B, C, D, E, F respectively. Multiply the second-order quantities afjo3; ,
1032 , ononpamass by expression (34) for 7 = 3; since this expression is identically
unity, the consequent mean values are unaltered. This gives the three relations

A+ (p— 1B =(n+2)/{np(p + 2)},
A+3p—-1DB+ (p— - 2C=1/p,
A+ @-1B+2(@m—-1({p-2D
+ (@ — D =2 —3)E = 1/(np).

The moment A is the mean of the triple product of the squared scalar products
of &, & and & with x;. The same value must be realized with any other fixed
vector in the p-space, e.g. with either (x; + x5)/A/2or with (x1 + %2 + -+ + x,)
/A/p. This gives two relations

A—B—-4D=0
(p+1DA =3B — 12D — (p — 2) (C + 6E + 8F) = 0.

(35)

(36)
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A final linearly independent relation is obtained from the mean triple product of
(&1 - &), (& - &), (& - &), which depends solely on the internal configuration of
&, & and & , and is easily shown (e.g. choose &; to coincide with one of the original
axes of the n-space) to be 1/n’. This gives

37 pA + 3p(p — DD + p(p — (p — 2)F = 1/n*.

The equations contained in (35), (36) and (37) determine 4, B, C, D, E and F.

Similar equations could evidently be constructed for the higher-order moments,
e.g. for the terms required for u(2, 1, 1) or u(1, 1, 1, 1), but the numbers of such
terms increase rapidly. From Appendix I it will be seen that there are 24
distinet termsin (2, 1, 1) and 16 in u(1, 1, 1, 1).

Appendix I '
u(l,l)=Sg(§)+2Su{(? 2>+2<} D}
o =5 () +sa{(t )+ D+ D))
+6Sm{ (2 2 é>+12<i } 2)}
u(3,1)=St<g)+sﬂ{((.5 é)+15(; 2 +12(i) i)}
+2sz2{1 (4 2)+20<3 ?f)}
rasan(* 7 )an( 2 Nrm(® 1 Yan(t ! Y)
+24S1111{15(? 22 §)+90G i : 2)}
M(2,2)=S4( )+Sal{12( é>+16<§ D}
(G GRS )
+2Sﬂl{6(‘-1 2 2>+36( 2>+72( §)+96(?1) } 2)}
+24S,m{9(? 2 0 2>+72(} } 2 )+24( } i i)}

+ 28:
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2 2 . 1 1
uw(1,1,1) = S, (2) + Su3{2 -})+12 <1 1
2 .2 2 .

(/2 - - 11 - 11 .
+ 6Sm - 2 )4+611 1 -)4+81- 1 1
. .2 . . 2 1 - 1
4 4 - 2 2
p,(2, 1, 1) = S4 2 + Sal 2 2 ° + 6 2 .
2 -2 2 .
3 1 4 - 4 . 2
+16({1 1)+4|1 1 + 28 - 21+6(12
2 - 1 1 - 2 .
3 1 2 2 4 - 2
+1611 1}4+1211 1 + 28 -2 )14+ 1212
-2 1 1/ e 2 .
-2 2 3 1 - 4 - - 2
+ 3{2 - -)4+16{1 1 -)+2(- 1 1}+24{1
2 . . . . 2 . 1 1 1
1 1 2 2 1 1 2 1 1 3
+4811 1 -} 4+48f1 1 -}+24{- 1 1)4+32{-
2 - . 1 - 1 2 - . 1
2 2 - . 2 2 .- . 1 1
+ 248m <31 - 2 )J4+6f(- - 1 1 +24({1 1
... 9 o101 .o

[2) ( (2 {11
<12 2 11
#(1:1;1,1)—84 21']'831 42 . +242 A
2) 2 2 )
(2 - 2 1 1)
2 - .2 11
+28293|7 51424 TI+81] ]
-2 11 1 1))
( (2 - - (2 - . 1 - 1
2 . . 11 - 11 -
+ 2821 (6 .92 . +481 1. + 48 11 .
2 -2 1 -1

)
")
)



(
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Appendix II.

@) nprzp++2 2)’ (2 2) np?z? : 27;(; —2 1)’ G i) np(p_-l(-n2)—(pp)— 1)’
(4) 3(n + 4) (4 ) 3(np + 3n — 4)
2

2/ np(n +2)(p+4)’ np(p + 2)(p + D — 1)’

(22) np +n+2p —4 <22-> np + 3n — 4
2 )Japlp+2)p+4H@—-1)° 2/ nplp+2)p+ 4@ —-1)°

(3 1) —3(n — p) <1 1 2) —(n —p)
11)nmp(p+2)p+4)(@—1)’\1 1 -)nplp+2)p +Hp—1)’
(6) 15(n + 6) (6 ) 15(np + 5n — 6)
2/ np(p + 2)(p + 4)(p + 6)’ 2/ nmp(p+2)(p+4Hp+6)(p—1)°
2) 3(np +n + 4p — 6)
<) np(p + 2)(p + H)(p + 6)(p — 1)’
(4 2) 3(np + 3n + 2p — 6)
2)np(p + 2)(p + H(p + 6)(p — 1)°

4
2

(4 2 2) 3(np + 5n — 6)

np(p + 2)(p + 4)(p + 6)(p — 1)’

(2 2'2) np+3n+2p—6
2 - Japp+2)p + 40 +6)(p—1)°

(2 2 2 ) np + 5n — 6
. 2

np(p+2)p+HPp+6)p—-1)°

(5 1) —15(n — p)
1 1) np(p + 2)p + 4)(p + 6)(p — 1)’
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3> —9(n — p)
1) np(p + 2)(p + 9(p + 6)(»p — 1)’

(3 1 2) —-3(n — p)
11 -/np(p+2)p+4)p+6)p—-1)°

1 4) —3(n — p)
1 /nplp+2)(p+4)p+6)p—1)°

(1 1 2 2) —(n — p)
11 - Joplp+2)(p+4+6)(p—1)°

(4) 9(n + 4)(n + 6)
4/ n(n + 2)p(p + 2)(p +4)(p + 6)’

) 9{n* (p + 3)(p + 5) +2n(p + 1)(p + 3) — 8(2p + 3)}
4

N

nn+ 2)p(p +2)(p + )@ +6)(p — D(p+1) ’
2>3W@+3%HWP+D+&p—$}
) nln + 2)p(p + 2)(p + 4)(p + 6)(p — 1)’
2) nX(p* + 4p + 15) + 6n(p + 1)(p — 3) + 4(5p° + 2p — 6)
2 n(n + 2)p(p + 2)(p + 4)(p + 6)(p — D + 1) ’
)M#@+$@+®+4MW+D@+$—&%+&}
2/ an+2plp+ 2+ 4HP+6)@—-Dp+1) ’
)M@+3Y+%@+1mp+m+46—4p—®
2) aln+2plp +2)p + @+ 6)p — D(p+ 1)’

NN BN

VRS
BN
N -

N\
(SN
L )

62 -)#@+m@+&+%@+0@+m—&%+a
: 2 2) nn+2plp+2)p+4H@+6)p—Dp+1)°
(3 1) —9(n — p)(n + 4)
3 1/n(n+ 2)p + 2)p + 4@ + 6)(p — 1)’
(3 1) —9(n — p)(np + 3n + 2p)
1 3/nn+2)p(p +2)(p +4)@+6)p—Dp+1)°
<1 1 2> —(n — p)(np — 3n + 8p + 12)
1 1 2/n(n+2)p(p+ 2)(p+ 4@+ 6)p—1)p+1)
(3 1 ) —3(n — p)(np + 3n + 2p)
L 1 2/a(n+ 2)plp — 2)(p + 4)(p + 6)(p — 1)p + 1)
112-) —(n — p)(np + 3n + 2p)
11 2)n(n + 2)p(p + 2)(» + (@ + 6)(p — D(p + 1)’

—

N N

Pt et
jo—y

1 1) 3n — p)n —p — 2)
1 1/ n(n+ 2)p(p + 2)(p + (@ + 6)(p — D(p + 1)’
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2

2\ o+ram+y 2 kDt =4
o) M*p(p + 2)(p +4)’ . ofwp@ +2)p + 4 — 1)’
2, \w +3p—2) — bn(p+2) + 16

of ®p(p +2)(p+4H - Dp—2)°
11

1 —(n — p)(n +2)
9 .J7p(@+2)(@+4H 1)’

—

1 1
1 , —(n — p)np + 2n — 4)
. of @+ 2)(p + 4 — D~ 2),
11
.11 (n — p)(2n — p) )
1 . 1)+ 2)p + 40P - Dip - 2)
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