ON THE THEORY OF SYSTEMATIC SAMPLING, I
By WiLLiam G. Mapow anp LirLian H. Mapow!?

1. Introduction. It is no longer necessary to demonstrate a need for the
theory of designing samples. Many of the policy and operating decisions of
both government and private industry are based on samples. There has been
an increasing tendency in government and industry to make use of sampling
theory.?

Unfortunately there are still considerable differences between the theory and
practice of sampling. The origins of these differences are, on the one hand, the ig-
norance of administrators concerning the practical contributions that samp-
ling theory can make, and on the other, the lack of sampling theory permitting
the evaluation of some useful sampling designs.

Much has been and is being done towards bringing theory and practice into
agreement." Administrators and samplers are each successfully educating the
others. However, there still exist sampling designs for which an adequate
theory has not been developed, even though experience indicates that if such a
theory were developed it would demonstrate the superiority of those designs
over others for which a theory has been developed.

Perhaps the major omission of sampling theory today is the lack of any statisti-
cal method for reaching a decision on whether to take a completely random
sample of n elements of a population of N elements, or to take a systematic
sample, that is, to begin with element 7, and select elements 7,7 + &, --- , 7 4
(n — 1)k, as the sample, the starting point 7 being chosen at random and N =
kn approximately.® It is with respect to this question of whether to take a
systematic® or random sample that the statistician is in a dilemma because he
has the alternative of recommending a systematic sampling procedure for which
no theory exists, or a random sampling procedure that may well yield worse

1 Bureau of Agricultural Economics and Food Distribution Administration, U. S. De-
partment of Agriculture, Washington, D. C.

2 Presented at a meeting of the seminar in statistics of the Graduate School, U. 8. De-
partment of Agriculture, November 2, 1943.

3 The recognition of the need for statisticians who know sampling theory has resulted
in courses in sampling being given in some of the colleges and universities.

4 One need only refer to the recent development of positions, the duties of which include
giving advice on sampling techniques as well as working in the field of application.

8 In this paper we will assume that N = kn. To do away with that assumption would
not add much in the way of generality while it would require some fairly detailed discussion.
It may be remarked that when N is not exactly kn, then systematic sampling procedures in
which all starting points have equal probability of selection are biased, although the bias
is usually trivial. If N is known this bias can be removed by sampling proportionate to
possible size of systematic sample.

¢ As we define systematic sampling procedures, a systematic sampling procedure is a
random sampling procedure in which many of the C¥ selections of n from N items are ex-
cluded.
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results than the systematic procedure. The purpose of this paper is to resolve
that conflict by providing an adequate theory of systematic sampling.

In the following sections we present the first parts of our research in the theory
of systematic samples. Although this research covers both the theory of samp-
ling single elements and sampling clusters of elements, we shall consider, in this
paper, the sampling units to be single elements, not clusters of elements. The
latter problem will be dealt with in a later paper. We shall present the theory
of systematic sampling both from an unstratified population and a stratified
population. Formulas for the mean value and variances of the estimates are
derived. Comparisons with random and stratified random sampling designs
are made. Furthermore, the estimates of the variances and formulas for “opti-
mum’’ size and allocation of samples are derived.

A fundamental part of the analysis is the demonstration that from a knowl-
edge of the variance of the population’ and certain serial correlations or serial
variances, can be estimated the variance of estimates based on systematic
samples. The basic results are:

a. if the serial correlations have a positive sum, systematic sampling is worse

than random sampling,

b. if the serial correlations have a sum that is approximately zero, systematic

sampling is approximately equivalent to random sampling, and

c¢. if the serial correlations have a negative sum, systematic sampling is better

than random sampling.

2. The use of a finite population. In this paper we assume, for the calcula-
tion of the expected values, that we are sampling from a finite population of ele-
ments even though the size of the population may be large enough to permit the
use of limiting distributions. Often, this is, mathematically, a matter of choice.
The same results would be obtained by assuming a correctly defined multivariate
normal distribution and using the notions of conditional probability. From a
physical point of view, however, there are several factors that lead to the use of
the finite population. We are most frequently sampling an existing population
whose laws of transformation are either unknown or not mathematically ex-
pressed.® Consequently, the notion of a normal or other specified distribution
from which we sample and use conditional probability is not part of our thinking
concerning the physical problem. On the other hand, if we consider the popula-
tion to be a finite population, and use a table of random numbers to draw our
sample from the finite population, we are using only mathematics implicit in
our physical problem. Furthermore, we do obtain a repeatable experiment,
that of selecting a random number, that we know is in a state of statistical
control.

In the usual problems of the theory of random sampling, the number of

7 By “variance of population’ without further qualification is meant the variance of a
random sample of one element of the population.
8 In other words, our population is not in a state of statistical control over time.
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possible samples yielding different sample means is large enough so that the
sample means may, with a sufficiently large size of population and sample, be
expected to be approximately normally distributed. In systematic sampling,
however, the number of possible sample means is usually very small and even if
the sizes of population and sample are large, it is difficult to assume a normal
distribution. Consequently, in our interpretation of the means and variances
of systematic samples we are led to regard the elements of our populations as
being the results of single observations on random variables, the distributions
of which may vary from element to element. The interpretations that we then
make become interpretations of conditional probability, and if the sizes of
population and sample are sufficiently large, we can assume that the arithmetic
mean of each of the possible sample means is normally distributed.

The theory of syvstematic sampling under the assumption of an appropriate
normal multivariate distribution will be dealt with at a later time.

3. Definitions. Let the finite population to be sampled consist of N elements,
Ty, *** , XN .

By a sample design is meant the combination of a method of classifying these
N elements into k classes that may or may not overlap, and a method of select-
ing one of these k classes, each class having a designated probability of being
selected. The sampling procedure associated with a given sample design is the
operation of selecting one of the & classes according to the method stated in the
sample design. The sample is the particular class obtained by the sampling
procedure.

By a random sampling procedure is meant any sampling procedure such that
if the sampling design vields k classes then the probability of selecting anyone
of these classes is 1/k. Any sample design having a random sampling procedure
associated with it is a random sampling design. One of the nonrandom samp-
ling procedures that is being used is the procedure in which the classes have
associated to them numbers, called sizes, and the probability of a given class
being the sample is proportionate to its size." Other nonrandom sampling pro-
cedures are doubtless being used.

By an unrestricted random sampling design for selecting n elements from N
elements is meant the sampling design such that there are C’, classes, the possible
selections of n from N elements, each having a probability of 1/C% of being the
sample. The associated random sampling procedure might consist in identify-
ing each class by a number ¢, ¢ = 1, ---, Ch and selecting a number ¢ from a
table of random numbers. The random sampling procedure might also consist
in identifying the N elements with numbers j = 1, ---, N, and then selecting
a number j from a table of random numbers, then selecting a different number j
from a table of random numbers, and following that procedure until n numbers

? For a discussion of this problem see the paper entitled, “On the theory of sampling
from finite populations,’” by Morris H. Hansen and William N. Hurwitz, Annals of Math.
Stat., Vol. 14 (1943), pp. 333-362.
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from 1, - - - , N without repetition have been selected from the table of random
numbers. The elements associated with these integers would be a random
sample. It is easy to see that the two procedures are equivalent.

A random sampling design that is not unrestricted is said to be restricted.
There are many types of restricted random sampling designs of which what we
call systematic designs are only one. Among these restricted designs are
stratified, cluster, double, matched, polynomial, and other sampling designs,
each having been developed as attempts to bring theory and practice together,
to suggest improvements in practice, and to solve problems arising in practice.

By a systematic sampling design is meant a classification of the N elements
into k classes, S,, - -, Si where S; consists of ;, Ziyx, - , Tiv@-r, and a
random sampling procedure for selecting one of the S;.

It is thus clear that a systematic sampling design is a type of cluster sampling
design. It will be shown that the new aspect of cluster sampling introduced in
systematic sampling is that a knowledge of the order of the elements in the
population is used to obtain the values of the intraclass correlation coefficient
and changes in the value of that coefficient as the size of sample changes.

Sampling designs may involve combinations of random and systematic samp-
ling designs, as well as random and nonrandom sampling procedures.

The population from which these samples are drawn may or may not be strati-
fied and the sampling units mayv be single elements or clusters of elements.

4. Bases for selecting among sample designs. From the many sampling de-
signs that can be constructed in order to obtain desired estimates, one will be
chosen for use on the bases of administrative considerations, cost, and sampling
error. It has become customary, on the basis of limiting distribution theory
and the theory of best linear unbiased estimates to use the standard deviation
of the sample estimate about the character estimated as the measure of sampling
erTor.

Although in this paper we shall continue this practice, it must be pointed out
that as more sampling designs are constructed, there is the danger that for some
of these designs the limiting distribution theory is not valid, and the use of the
standard error becomes more a matter of custom than the result of analysis.
This danger is present for systematic sampling designs and is being further in-
vestigated.

It is perhaps desirable to remark that bias, consistency, and efficiency are
properties of the sampling design and estimation functions used, not of the
particular sample obtained. Any estimate based on a sample will probably
differ from the character estimated. It is the function of statistical analysis to
indicate how large this difference may be.

6. Notation. The letter, P, with appropriate subscripts is used for popula-
tion, and subpopulations such as strata.
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The number of strata is denoted by L, and the number of elements in the i™
stratum is denoted by N;. Sizes of sample are denoted by n with appropriate
subscripts.

The arithmetic mean of the elements of a population or subpopulation is de-
noted by I with appropriate subsecripts.

Any particular subclass of a population as defined by the sampling design is
denoted by S with subseripts. Estimates based on an S with subscripts are
denoted by % with subscripts.

6. Unstratified systematic sampling, the sampling unit consisting of one ele-
ment. The values assumed by the subseripts used in this section are given in
Appendix A.

Let the population, P, consist of N elements z;, ---, 2y . It is desired to
estimate the arithmetic mean, Z, of P.

Let® N = kn, and let the class S; consist of the n elements z;, ziys, -
Ziym—nk - Then; the systematic sampling design for estimating & from a sample
of size n, consists of the k£ classes, S;, -+, S, and the requirement that the
sampling procedure be such that the probability is 1/k, that S; is the class se-
lected by the sampling procedure.

Let %. be the arithmetic mean of the elements of S;, i.e., n¥; = x; + vy +
-+« 4+ Ziym-1k, and let Z be the sample mean, ie., # = &; if S; is selected by
the sampling procedure.

In dealing with systematic sampling, we shall have occasion to use both the
circular and non-circular definitions of the serial correlation coefficients and the
associated serial variances.

We shall assume that if o > kn then 2, = Tn_tn . This is used in the circular
definitions.

Let kne® = D o(z, — %)},

and let knChy = X ( — &)@ty — Z).

v
Then, the circular definition of the serial correlation coefficient py, is ¢’p, =
Ci, , which we shall use unless » is even, when we define pin2 by the equation

2
20 pinsz = Chnpa

in order to simplify the writing of the formula for o3 .
Similarly, if we define the serial variance, sy, , by the equation knsy, = 2

14
2 . . oy . o
(x» — Zy4x)", then we are using the circular definition of the serial variance.
The circular definition of the serial variance ratio v, is then o'n, = s, which
we shall use unless 7 is even, when we define v4./2 by the equation

2
20 Vinse = Skny2 .
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The non-circular definitions of the serial correlations and serial variances are
given by '

(1) k(n — 8)Cis = ;(1‘1 — ) (T4 — T),

o’ors = Chs s

k(n — 8)sts = 2 (x5 — Zi4m)s

and - ,’

O tks = Sk

The intraclass correlation coefficient px is defined by the equation

o = &z — B)(z — 2),

where the random process consists in first sampling one of the S; at random and

then selecting two of the z’s at random from the S; that was selected. Then,
since

koz = 2.(%: — %),

and,

(2) oo = (n/n — a3 — (1/n — 1)d*
we have

®) =0+ (- Da

It is easy to see from (1) that the intraclass correlation coefficient is given by
2 ’
Bh = e —
Pr n(n — 1) 2&: (n i

2

n—1%

Pru oy

and that consequently, if n is odd, px is the arithmetic mean of the pz, while if
n is even, px is equal to the arithmetic mean of the p, multiplied by n/(n — 1).

TueoreMm': Using the systematic sampling design, the estimate % is an un-
biased estimale of ¥, and has variance o5 where

1
ol = 02{1 - 715; (n — 6)v;',a}

2 1
- (1-3%m)
2 ,
@ =7l 25 - o)

19 §‘q» 3'q

1+ 2;%)

2

{1+ (n — Dai}.

n

10 A proof of Theorem 1 that is somewhat simpler to follow but which, in the authors
opinion, is not as informative as that given below could be obtained by substituting for
7% using equations (2) and (3). The lemmas in Appendix B are, of course, of interest in
themselves in finite sampling.
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ProoF: From the definitions of expected value, ¥, #, and the systematic samp-

ling design, it follows that Z is a variate with possible values #, , - - - , &, the
probability that Z = &, being 1/k. Then
5) k§f=5)1+"'+.’i’k,

and, when the values of the Z; are substituted in (5), it follows that &% = 7,
that is, Z is an unbiased estimate of Z.

Having calculated &%, it is necessary to calculate &% in order to evaluate
o3 . From the definition of expected values, it follows that

6) k6% =z + -+ + @k,
and when the values of the Z; are substituted in (6), it follows that
) n'kEx = E Tit(a—1)k Tit(y—Dk

La,Y

Then, when f(u) is replaced by u in Lemma 6 of Appendix B, it follows, from
the definition of the variance, that o3 = (—1—> Z (x, — %) — (—1—) > (x; —

kn 14 kn2 8,7
Tim) = o — 7—12 Zs:(n — 8)sus, and when f(u) is replaced by u in Lemma 8, it

follows that
1 _ 2 ) ]
U; = (El—z) Z (IE. - 1«')2 + (W) ‘Z'J: (13,' - x)(xj+k6 —_ JJ)

= (l>62+3,2(n— 5)0{1’-
n n G
If in Lemma 9 of Appendix B we now replace f(z,, %,4) by (; — 2jx)’
then o3 = o — (1) Z Sky
n/ w
and if we replace f(z;, z;4x) by (z; — Z)(x ;425 — Z) then
1
oz = = (& + 22 ).
n B
Finally, we have, then
¢r§=az(l—lzvku )
N u
and

2
PH =";(1+2}:m..).

7. Possible values of the py; , pwwand oz . Letus investigate briefly the effects
of different patterns of variation on the values of pis and o . Now o’op; =

1 ~ -
W =3 ; (®; — )@+ — ). Suppose that z; = zipas, 8 = 1, -+, n — 1,
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1= , k. ThenZ (x, — &)’ = nZ (z: — %)%, andZ (x; — 2)(@jpus — T)
(n — 0) Z (x: — x) Upon substltutlon it follows that prs = 1,and o3 = o

This result for os is intuitively clear, since all the variability is among the
possible samples, and thus any particular systematic sample is equivalent to
one observation.

Suppose, on the other ha,nd, that isye = Zisyge, 8 =1, -, k;6 =1, ---,
n — 1. Then Z (x, — %)’ = kZ (Titani — Z)° for anyz' =1, Ic and

Z (x; — x)(xm:a - %)=k Z (@iro-nr — &)@iro4s—nx — Z). Furthermore
0 = [ @itane — D = E (@it e — E)° + 2 g (@ivo—nr — E)@itots-nk

— %). Hence

oy " =% 4= —1 and oi=o.
T N
It is possible to construct examples in which any particular ps = — 1, but in
such cases the remaining p;; each vanish. It is well known that the minimum
value of pxis — 1/(n — 1).
Finally, let us consider the expected values of pi; and o3 if the z’s have been

assigned their subscripts at random. “These values are o = —1/(nk — 1)
and of = a_z nk —n
7 w\nk — 1

In most practical applications of systematic sampling it will be highly unlikely
that the distribution of the 2’s will be such that the z’s may be said to have been
assigned their subscripts at random. In general, there will be logical reasons
to expect that the z’s will have some fundamental trend. Thus, information
will often be available, or may be obtained by a small subsample, on the basis
of which a decision can be made to use some approach differing from that of
assuming the subscripts of the 2’s to have been assigned at random.

8. Estimates of the parameters. The formulae obtained in section 6 for the
variance of the mean of a systematic sample are population formulae. Their
values depend on the values of all the elements of the population. However,
even in tests of possible sampling procedures, we rarely have available the re-
sources with which to study the entire population. Consequently, it becomes
necessary to investigate the possibility of estimating the population variances
and serial correlations from samples. It will be shown that the estimates of the
variances and correlations derived from a single S, are biased and inconsistent
whereas it will be possible to construct unbiased or consistent estimates from
samples of more than one of the S;. The sampling variations of these estimates
must be left for further study.

Let us assume that instead of sampling only one of the 8;, as we did in section
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6, we sampled g of the S; at random. Then our sample would consist of all the
elements in the Ss. The sample mean, £, is defined by

gi=zﬂ:fﬂ

if the subscripts of our sample classes are 7, , -+ , 7,.

Then it is easy to see that £ is unbiased Furthermore, since we can regard
this sampling procedure as the sampling of g of k¥ elements at random, it follows
that o2 = ]]z—:—fg o3 and, we have evaluated o in section 6."

Since

koz = 2. (& — 2),

1

we shall consider estimating o: by s} where
gs; = ; (@ — £)*

EX 5 =1 20 = gloi +7)

it follows that &s? = o3 , and hence s is an unbiased estimate of o2 . Further-

more &s; = g—%—::él—) ol.
We now turn to estimates of the pi, and o’
Let
gns; = ; (Totta-v — £)°
and let

gnéiug = ﬁz: (%54 @a—k — f':')(xﬂ+(a+u—1)k — ).
QX

Then, it may be shown that

22 2 2
55,, =0 — 0:,
and
A 2
@’Ck,.s = Ck,,, — 0:.
Hence
A2 2 v = 2
&5, + si( -+ g ) =g

*k-1)

1t It may be wondered why we sample these S; at random rather than systematically.
If we sampled the S; systematically, it would be equivalent to taking a single systematic
sample having smaller intervals between elements of the sample. Furthermore, we could
not derive the unbiased estimates of the sampling variance that we can now.
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and

. o k -
@?CLW + S5 (ﬁ) = Ck,. .

The estimate, 7, , of o defined by

; (k=9 \_ e o k=g
Gina 55 (g(lc——TS> = T [g t (g(k = 1))]

is thus biased but in many cases the bias will be small Of course, if 4 =

Lol

when 7 is even then 7y, is multiplied by 2 to estimate pxn/2 as previously define
Another approach would be to consider

2 - \2
gn s = ; (Tps(a—1k — )",
a

and

9N urug = ; (Tps ik — %) (Tpy @tu—1k — Tp).
&

When that is done, it follows that
6w.§: = ¢’ — o} R
and
8 wityy = Cru — 03,
and
8@ + &) = o,
E(uwbiuo + 85) = Chu -
Another estimate of pz, is thus defined by the equation
obiwe + 8 = urnlfs + sl

When g = 1, s> = 0 and we are unable to provide unbiased estimates of ¢°,
Ci, , and o3 from the sample. However, since

2 .
1 - Tky _ §, — Ckug

3 " ’
1 — 7 §; — Ciurg

it follows that approximately

1 —pw _ g l=1m
1—pk“' 1—7');‘.'

’

since &[§; — é) = o> — Ch,. Similar equations hold for the .7, .
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When we estimate the prs , then the “within class” definition is simpler. Let
’ - -
k(n - 5)wck6a = Z); (xi-}()\—l)k - 1axi)(x;+(>‘+.;_1)k - 25234), where

(n — O)uts = ; TitO—D)k »

(n — 8)asZs = )‘Z Tit =Dk 5

and let
gn — 8)ubiss = pz; (@s+o—nrk — 1636) (Torats—nie — 2535)-

Let

kockss = 2o (uEi — Bl — ),
and let

gslrsg = Zﬁ: (6% — Z)(sds — Z),
Then

C;d = wcl’c&a + bcl,dg y

and

N N /7
&(wbrse + s6ss) = Cus .
Thus, as estimates of the prs We obtain s Where
al al / 2 2
wCksg + Ckig = Tk&(wsg + so)-

In cases where Z is known simpler estimates of the px, , prs , and o” may be easily
obtained since

5; (a4 @tk — %) @st(arurk — £) = gnCiu,
5%: @sronk — E)@srossve — ) = gn—>8)Chs

and
2

5’52 (@4 (a-nk — z)’ = gno’.
Thus, in pilot studies, when Z is known it is possible to estimate the param-
eters in o2 from even a single sample.

9. Changes in the variance with changing size of sample. The chief reasons
for expressing the variance of a systematic sampling design in terms of the
variance of a random sample and the serial correlation coefficients were

1. To enable the making of comparisons with random and other sampling

designs
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2. To simplify the analysis of causes for the difference in the efficiencies of the

systematic and random designs, and

3. To simplify the making of estimates of the variance for different sizes of

sample.

In this section we are concerned with the third of these reasons. We shall
discuss only the p, since the analysis in terms of the s 1S very similar.

The problem with which we are concerned is the estimation of the function,
pr, of k. In order to show how this may be done for all values of k¥ when the
pr, have been computed for one value of k, let us first note that since o* does
not depend on k we may confine our considerations to the Cy, . In section 6
we have defined Cy, by the equation

nCh = 2 (@ — £)@are — £).

Thus, if we wish to evaluate the Ci., where k' is such that k¥’ = k and k'n’ =
kn = N, we have the result Cy,» = Cy, if k'u’ = ku and, thus, for any given
values k¥’ and u’, we have

Ckl“p = Ck kI“I/k

Ky’

e

This procedure will involve, if ¥* < k, some interpolation, but if the ps, are
plotted against u, this interpolation may often be carried through graphically.
However, it is usually advisable to take k so that the possible values of &’ are
such that £’ > k.

In some cases it may be possible to construct a correlation function. For
example, if the z, may be represented by a polynomial in », then p; may be
represented by a polynomial in 6. From that fact we conclude that if the z,
vary about a smooth trend the p; will also vary about a smooth trend and it
may be possible to interpolate. Further investigation of this problem is neces-
sary.

where we have replaced p by

10. Stratified systematic sampling. In sampling practice it is customary to
deal with stratified populations. The variance of an estimate based on a
stratified population will usually not include the variability among the strata.
Consequently, when a population is well stratified the variability of estimates
based in a sample of size n will usually be considerably less than the variability
of an estimate based on a random sample of size n, ignoring the strata. We
now discuss the theory of systematic sampling from a stratified population.

Let us assume that the population, P, consists of L strata, Py, ---, P,
the ath of which contains N, elements x4, - -+, Zav, . It is desired to estimate
the arithmetic mean, Z of P. Let the arithmetic mean of P, be denoted by
Zo. Let No = kan,.

We shall consider two possible cases, the first of which is often used because
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of the administrative simplicity of giving identical operating instructions to the
people selecting samples in different places. The results of this section will
indicate when this method may be used.

Sampling Procedure I—Suppose that k; = k. = .-+ k. = k, and that the
sampling procedure consists in selecting one of the integers, 1, - - - , k at random,
each integer having a probability 1/k of being selected. Then, if the integer
selected is, for example, ¢, the sample of P, consists of Zai , Taitk s * ** » Tait(na=Dk -
Thus, there are exactly k‘possible samples, S; , - -+ , Si, each having probability
1/k of being the actual sample obtained by performing the sampling procedure.

Sampling Procedure 1I—The sampling procedure consists in selecting one of
the integers 1, - - -, k, at random, for each value of a, each integer having a
probability of 1/k, of being selected. Then, there are exactly k- -+ - k,
possible samples, each having probability 1/k; - --- - k. of being the actual
sample obtained by performing the sampling procedure.

Other sampling procedures for stratified sampling, of course, exist. The two
listed above, however, cover most practical problems except those involving
cluster sampling. These will be treated in a later paper. Furthermore, from
the conclusions derived concerning these proeedures it will be possible to infer
conclusions concerning other stratified sampling procedures.

Let S.: be the class of elements ai, Zaizk, *** 5 Taitma—nyk - We consider
sampling procedure I. A systematic sample of size n, is to be selected from P, .
The possible samples are S;, - -, Sy where S; consists of all the elements in
Sii, +++, Swi. Let the arithmetic mean of the elements in S,; be denoted by
Z,;. Let the arithmetic mean of the sample from P, be denoted by %, and let
the sample mean be denoted by Z, where

N?é = N1§71+ e +NL§:L.

Then N6& = 3 N6 = L N7 T = NE.
It follows from Appendix C, that

1
or = 2 % NoNyos,z,

where
O2,2, = g’(ia - fu)(ib - i'b)

= %Z (im‘ - ja)(ibi _ib)'

Although the expression for oz,2, can be further simplified, the important fact
is that if corresponding items in different strata are positively correlated, it is
inadvisable to use sampling procedure I unless other considerations than sampling
error are dominant. But if the corresponding items are negatively correlated
then sampling procedure I will yield a smaller variance than sampling proce-
dure II.
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We now consider sampling procedure II. The difference between sampling
procedures I and II is that in sampling procedure II we know that oz,z, = 0,
if @ # b because of thé separate selection of sample in each stratum. Thus,

under sampling procedure II, o3 = ]—\17—2 > N3, where o3, has been derived in

section 6.

11. A comparison of the efficiences of systematic and random sampling
procedures. The study of any sampling technique is incomplete unless some
comparisons are made with other possible sampling techniques. In this section
the systematic sampling procedure is compared with the unrestricted random
and stratified random sampling procedure.

The means and variances associated with the random and stratified random
sampling procedures will be denoted by the use of primes () and double primes
(") respectively.

Then we know that

o3/os = (1 4+ 2 “Zpk“) (kn_—l)

kn — n
and consequently o3 < o3/ if
2 o < —(n = 1)/2(kn — 1).
"

If n is large relative to k, we may use —3}k as an approximation to
—(n — 1)/2(kn — 1).

In order to make more specific comparisons, it is useful to assume that the
population elements x, are given by some function of v, and to assume some func-
tions such as

z, = Ao+ Ay + - + A,
or

2ry

N

x,=Bo+Alsin2—;'+Blcos

+ ...

+ A;,sin2f—1$w + B, cos 2—7;#',

and then to investigate the efficiencies of the various possible sampling proce-
dures on the bases of such assumed distributions of the x, . It should be noted
that the use of the systematic sampling technique involves the assumption that
it is possible to order the elements of the population in a logical way, and then
use this ordering in selecting the sample systematically.

We shall now consider several possibilities. Let us first note that if we are
sampling but one element from a stratum then the variance of the stratum
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sample mean is the same whether the sampling is random or systematic. On
the other hand, it follows from section 10 that if we stratify the population into
L strata so that a systematic sample of size L chooses the jth element of each
stratum, say, then the variance of the mean of the stratified random sample will
be greater or less than the variance of the mean of the systematic sample de-
pending on whether the average correlation between strata sample means in the
systematic sample is negative or positive.

Let us now consider the origin of the warnings against the use of systematic
samples from a population having a periodic distribution. If k is the period,
the correlation between the strata means of the systematic sample is 41 and
hence the random sample.is superior. However, if the period is 2k then we
shall show that the systematic sample will probably have a smaller variance.

Suppose that the period is 2k and that within two adjoining strata of size &
we alwayshave x; = Tox , T2 = Toky, -+, Tk = Tpnand x; — & = — (Tpyps — &).
Then, if we are sampling one element from each stratum, the correlation between
the systematic sample means, (the individual elements in this case), will be —1
if the strata subscripts differ by an odd number and +1 if the strata subscripts
differ by an even number.

The variance within each of the n strata is o3 , where

k
kdi = Z (x.~ - 1‘3)2.
1=1

. . 2 2 .
The variance between strata means is zero. Hence ¢° = 1. The variance
of the mean of an unrestricted random sample of size n where n = L is then
2
2 N — Lai

o =T L and the variance of the stratified random sampling mean is
o3+ = (1/L)e} while the variance of the systematic sampling mean is
2 L
2 o1 —J
% = T MZ_I (=1)7(2 — &)

where 8;; = 1if 7 = jand §;; = 0if 7 » j.

Then it may be shown that if L is ever ¢’ = 0 while, if Lis odd ¢* = (1/L%)0} .

Consequently, the efficiency of the systematic sample mean is greater than
the efficiency of the stratified random sample mean if the population has a
periodic distribution and the size of stratum is half the period. It should be
noted that the same situation holds for k equal to an even or odd multiple of half
the period as held for k equal to the period of half the period.

The situation is quite different if we assume that the elements of the popula-
tion have a straight line distribution. Without loss of generality, we may
assume that the straight line distribution is given by z, = ». Then for an
unrestricted random sample of size n, the sample mean being denoted by %’
we have 63 = 7 = 3(kn + 1),
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and

s (k— Dkn + 1)
gz = 12 .

For a stratified random sampling design, let us assume that Ny = --- =

Ny = %V where ¢ may equal any of the integers 1, 2, --- , n;ie. L = :;_l Let
2
m=---=n,=c Thenos = ;Cz;cI;c — 11 >~ o2 where '’ is the sample mean of
the stratified random sample. If the ath stratum contains z,_, ev, , -, Z,e¥
212 212
then o = ck12 1 and o3/ = 2(:’; __11 6_10_1_2_1 Finally

1
012! =4 — e ; 72 (z; — xi+k3)2
ot — 102(7'1‘2 - 1)
12
B -1
12 °

To summarize

s _(k—Dln+1 _ k= DAV + 1)
7 = 12 = 12 '

N
. _etk— D@+ _ F <Z + 1)
I 12n 12L ’

K =1
5

Q
LTEEY

It is clear that both o3 and o3 are less than o3. . However o3/03» = L]ka +1) .

A + 1
Since kn = N and cL = n it follows that k = E]% and hence o3 < o3 if N >
—L— . In all cases N > c. It follows therefore
1 — L(L-1) ‘ A
AT
that for a value of ¢ to exist we must have — > —————N—[—J—— as a result of
L~ N-LL-1)
which we find that N must exceed 2L — L. Hence o3 < a3  if N > 2L — L

L
anch—:—L(l—:—l—).

1 N

L(L — 1) and ¢ >

Otherwise o3 > o3/ .
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This result follows from two facts:

(1) If one element is being taken from each stratum then the high average
correlation between strata means results in the efficiency of the stratified random
sampling mean being greater than the efficiency of the systematic sampling mean,
despite the equal within stratum variances.

(2) If more than one element is being taken from each stratum then the within
stratum variance of the systematic sampling mean is less than the within stratum
variance of the stratified random sampling mean and if the size of stratum and
sample from stratum are large enough, the smaller within stratum variance of
the systematic sample more than compensates for the correlation among strata
means.

Of course, in a straight line distribution there are much more efficient methods
of defining a stratified random sample than that we have used. Furthermore,
more efficient sampling procedures than those discussed are available. How-
ever, this example will be of use in indicating the general problems that arise
as well as the procedures that may be followed in attacking them.

Another comparison of systematic and stratified random sampling may be
obtained by considering the z, to be composed of two elements, a trend function
and a periodic function so that the deviations from the trend constitute a
periodic function.

Let z, = ¢1(») + ¢2(v), where ¢;1(») is a trend function and ¢.() is a periodic
function of period 2k, N = 2hQ.

Let ¢2(v) = y,. Then y; = yms; = ++* = Yme-—v+i,J = 1, -+, 2h and
Ymat; — § = — Wohatnr; — 9,5 =1, ,ha=0,---,Q — 1.

Since the sizes of sample that we shall consider for purposes of this comparison
are all multiples of & we shall calculate our variances and covariances so that we
obtain all the necessary information at once.

Let the mean of ¢1(») be denoted by @, and let the mean of ¢2(v) be denoted
by 4. Then % = @ + 7 and

No' = };, (x, — 2)°
= Z_) [e(») — & + Z’: o — 9" +2 Z le(v) — @il(yr — 7)
= ; (Prta-viti — @1a)" + b Za: (@ — &)’
+ aZ; He-vhes — Fa)* + h; @ — 9’
+ ; [era-vrts = @1a]Ya-vats — Fa) + b ; (@1a — 1) (s — 7)
wherea = 1, ---,2Q;¢ = 1, - -+, h, ¢14 is the arithmetic mean of ¢1j@-1)r+1] ,

-+, o1ian; and 7, is the arithmetic mean of y@—nat1, ~* -, Yar -
It follows from the assumptions with respect to the y, that ., = 7 and that
h

Z (y: — §a) is the same for each value of @ and is equal to Z:l (y: — 9)°
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Since yi = Yonyi = < = Yone—n+i N4 Yapi = Yshai = * 0 = Yoh(e—D+h+i
we have

h Q
Z lo.(v) — &lyy — §) = :;1 (ys — 9) GZ_:I [er20-hti — Pr2a—2)

2h Q
+ E (v — %) E [e1¢2a-nnt — @12a-2].
[ B am=]
Since y: — § = (yuar — §), we also have X [(») — 2l — §) =

h . Q
?;l w: — 9 {Z; e((2a — 2)h + 1) — @((2a — Dh + 7) — Pra2 + ‘Pl?a—l]}

which vanishes for example if ¢,(v) is a straight line or if ¢,(») is a succession of
straight lines each having length 2h.

Let us now assume that ¢;(v) = A + Bv. Then@,. = A + B [(a — Dh +
h + 1]
2 I
e(@a = Dh+ i) — 1o =17 — ’i_’z*_l
B’h(h’ — 1)
12 ’

_ _w _ BRAQ — 1)(2Q)
; (@1a — @1)" = B )

Z: [er((@ — Dh +7) — ¢1n]2 =

A+B2h+1

2hQB’

}: (e(y) — &) = 4K — 1.

Then o* = o) + g [4h°Q* — 1] where hop = Z (y: — §)°, and the variance of

JV -n 0'2
N—-1n"

Let us assume now that the size of stratum is mh where m is a factor of 2Q,
say 2Q/m = L,,. Then the variance within each of the L,, strata is a constant,
B2
12

the mean of an unrestricted random sample of size 7 is o3 =

say, o; where o} = oi + — ['m’ — 1]ifm iseven. Ifm is odd then L, is even

h
and in half the strata the within stratum variance is o + 7}— Z (yi —
h + 1
2

while in the other strata, the within stratum variance is

Z(y-—J)< —U—l>.

M s=1 12

7) (i -
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Then, if ¢ elements are sampled at random from each of the L., strata, it follows
that
0_2, - l(mh— c)a_f
¥ La\mh =1/

—- 1 mh — C 1 2 B2 2 2 )

In order to evaluate the variance of the systematic sampling mean let us

evaluate Z (x; — zj) = k(n — 8)sis. Now upon substituting for z, , it
i
follows that k(n — &)sis = 2 (y; — yisn)’ — 2BkS 2 (y; — yjum) +
) K

k(n — 8)BKk’".

Then, if £ is a multiple of &, it follows that Z (y; — yj+rs) = 0. Furthermore,

K

if & is an even multiple of k, then y; = y;is and hence Z (y; — yeam)’ = O.

1
Finally, if £ is an odd multiple of A then, if § is an odd number y; — Yy =
2(y; — §) while, if § is even y; — y;3sx = 0 and hence

; (i — yism)' = 4 2’: i — )’
=420 2D 5 - gy

if k is an odd multiple of A and é is an odd number. Note that if & is an odd
multiple of h, then » is an even number. Since

2 2 1 ’
= - — 8)s.
=0 = 26: (n )St:s

it is necessary to evaluate Y (n — 8)ses. Now, if k is an even multiple of h,
[
it follows that (n — 8)sis = (n — 8)B’K’" and
> (n— 8)sis = B’k’{n; - 8%
) )
2, 2
_ 2 (n — 1)
= B ———— 3
272/ 2
Hence, if k is an even multiple of A, it follows that o3 = o* — B—k(rlt——zl)
On the other hand, if k& is an odd multiple of A, and if & is odd,
we have (n — 8)sis = (n — 8)B’S" + 4(n — 5)o) while if 5 is even (n — 8)ses =
(n — 8)Bk’S’.
Hence

2,2 2, 2
> (n— 8)si = Bknn — 1) iz D) + 0%y .
3
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Hence, if k is an odd multiple of A, it follows that

. _B¥E@ -1 _ .
12 '

2
Oz = O

Then, if k is an even multiple of A

B’ B’
2 2 b g9 _ b a2
0;—0,,+12(kn 1) 12k(n 1)
B2
=°'12¢+'1_2‘(k2—1)7

2
and, if k is an odd multiple of h, then o = % B (K —1).
Thus, systematic sampling will yield superior results if

L
120, _LL-1)°
B*(hm)(hm — 1) N

c >

1+

Since -]X > ¢ it follows that for a solution, ¢, to exist, we must have

L
2 __ _120’:( Lz)
N>2l=L=\yv=1/)

12. Summary. In this paper we have presented the theoretical basis for
systematic sampling for stratified and unstratified populations including the
derivation of the variances, a study of the possible values of the parameters,
estimates of the parameters, the effects of changing the size of sample, and
comparisons among systematic sampling, unrestricted random sampling, and
stratified random sampling. The paper contains for the case where the sampling
unit consists of one element, not only the theory necessary, but in addition,
some analysis of the conditions under which systematic sampling ought be used,
and formulas for calculating the variances.

In later papers of this series, we shall present the theory of systematic sampling
when the sampling unit is a cluster of elements, the theory when we assume we
are sampling not from a finite population but an infinite population, each of whose
elements is normally distributed, and further studies of various parts of the
theory and practice of systematic sampling.

APPENDIX A

Values Assumed by Certain Variables

In order to avoid repeating the limits of summation of variables, we shall give
these limits in this appendix.
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TABLE I
Values Assumed by Subscripts
Letter The letter will assume all integral values from 1 to
) k
A n—248
J kn — 9)
K n—1
v, v kn
o n
Y n
, e n—1., .
My n/2if nis even, 3 if nis odd
a, b L
The letter 8 will assume the values 4,4, - - - , i, where4;, - - - , i, are a selection
of g of the k integers 1, --- , k.

ArPENDIX B

On the Limits of Some Finite Sums

The difficulties that arise in the transformation of finite sums are very similar
to those that arise in the theory of transforming multiple integrals, i.e., the effects
of transforming variables or order of summation on the limits of summation.
Certain lemmas that have proved useful in this paper are presented separately
here in a more general form.

Let f(u) and f(u, v) be functions of » and v that are finite for all possible values
of u and v.

LemMA 1.
2 f@ircamvk s Tirr-vk) = D f(Tiromnie » Tyorrs—ni)

a,y [ BN
a<ly

ProoF: Let @ = Aandlety = A 4+ 8. Sincel < a < yandy < n, the possible
values of sare 1, --- , (n — 1). For any fixed value of & the possible values of
A then are 1 ton — & since A\ = ¥ — & and, for a fixed value of § the maximum
value of A is determined when ¥ = n. With these limits each term of f on the
left side of the equation occurs once and only once on the right side of the equa-
tion. Furthermore, no additional term occurs on the right side of the equation.
LeEmMmA 2.

Z ;f (Tiya—vk 5 Tirrps-nr) = Zf (@ , Tiyxs).
3 ?

Proor: Let j = ¢ + (A — 1)k. Then j is a monotone increasing function of 1
and A. The minimum value of j occurs when ¢ = 1. In that casej = 1. The
maximum value of j occurs when ¢ = k,\ = n — 4. Inthat casej = (n — 8)k.
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With these limits each term of f on the left side of the equation occurs once and
only once on the right side of the equation. Furthermore, no additional term
occurs on the right side of the equation.

LeEmMma 3.
._Z T @itk , Tirer-vk) = ; f@i, Tign).
a<y !
Proor: First apply Lemma 1 t0 2 f(%i4 ek , Tisy_ni) and then apply Lemma

a<y
2 to the resulting expression.
LEmMma 4.

;, [f@) + f@iswa)] = (n — 1) Z S(@).

Proor: Let m = j + k3. Then for any fixed value of 6 the minimum value
of m occurs when j = 1. In that case m = k6 + 1. For any fixed value of 5,
the maximum value of m occurs when j = k(n — §). In that case m = nk.
The letter m will assume all integral values from k6 + 1 to kn, and hence,

Z flx) + Z F(@iw) = ;: f&@) + éf(xm)-

If we sum & from n — 1 to 1 instead of from 1 ton — 1in 2 f(z.) we see that
ém

k(n—1) kn
L@+ D f@n) = X f@)+ 3 S
+ -

k kn
+ 2 f@) + 32 S

where the summations of x, are terms of f(x;) and the summations of z,, are
&
k(n—38) kn

terms of aZ f(xm). But Z} flx) + > flam) = 2 f(z,) and hence

memk(n—38)+1
Lemma 4 is proved.
LEmMA 5. Let

2 S @) f@ieerv8) = A
Then
A =n2 @)~ .,Y_;. (f(z) = f@isa)].
ProoF:

A= § [f(@ira-ne) + 2 ME.’ S @iria—e) f(@ircr-1rk).

aly
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By Lemma 3
2 2 f(@ircart) f(@is i) = 2 ;jf(xi)f(xjwk)

ay
<7

[ -

and since we have

@) (@im) = f)’ + f@uw) — [f) — f@an)l,

the proof is completed by using Lemma 4.
Lemma 6. Let knf = X f(z,). Then

A() ~ 7 = () T - 11 = (&) % @) = sl

Proor: This lemma is a direct consequence of Lemma 5.
LeMMa 7.

4 = @) = JF + 25 Ue) = Af @) — ) + kn'f
Proor: From Lemma 4, it follows that
A =nX f@) = 2 AUG) = IT + Ues) = IT + 22, [f@)) = I s10) = 1
and hence, from Lemma 3, it follows that
A = n2lf@) = ' + w4 — (o = DX () — JT
+ 2 i;:[f(x,-) = Nf@sm) — Jl,

whence the lemma is proved.
Lemma 8.

A() = 7 = () T 15w = 17 + (&) % 156e) = lsCasn = 11
This lemma is a direct consequence of Lemma 7.

LEMMA 9. Ifh > kn,letz,equal 2. . Let f(u,v) = f(v, u) i.e. f is symmetric.
Then, if we let

de = Zi:f(-’vi, Tj4ks)
it follows that |
dis + dins = Zf(xr y Tyiks)-
Proor: Obviously

Ef(xv y Typks) = dis + B,
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where
kn

B = Z f (xa ’ xa+k6)-
g=k(n—3)+1

Now, let h = g — (n — 8)k. Then

5k
B = hZ; J(Trpn-t)k » Thikn).

Since .’Eh.‘.k!, =T, and f(x;.+(,._5)k , .’Eh) = f(.’th y 2;..,'.(n_a)k), it follows that B = di._s
and the lemma is proved. It is noted that the symmetry of f(u, v) is necessary
as well as sufficient, for if f(x, , ,413) = 2, — Z,44s the theorem is false.

AprpEnDIX C

Stratified Sampling

Let the population P consist of L strata P, ---, P, . Let & be the arithmetic
mean of P, and &, the arithmetic mean of P,. Let %, be the sample estimate of
Za,and let T = Z CZa. Then 6% = D, cids, = A where 6%, = A,. Let

o3 be defined by o7 = &@& — #)°. Then o = &§@& — A)* + (A — )® and hence
it is easy to see that or = Z CaC0z,z, + (A — :i')2 where
ab

02,3y = 6(:"['“ - Aa)(ib b rlb),

(4 — ) = [Z (c,,Aa - %x)]

and if NC, = N,, then
(A -3 = 21‘ Colo(Aa — Fa)(Ay — )

9
and oz = Z CaCb0z,3,
a,b

where
orz, = 6@ — Fo)(@ — ).

These formulae hold whatever may be the method used in sampling the ith
strgtum. If % is an unbiased estimate of Z and %, is independent of %, , then the
usual formula o3 = Y clo3, holds. The formula for 3,2, will, of course, depend

a

on whether a random, cluster, systematic, or other sampling procedure is used.



