Translator Disclaimer
2019 On the Farrell–Jones conjecture for algebraic $K$-theory of spaces: the Farrell–Hsiang method
Mark Ullmann, Christoph Winges
Ann. K-Theory 4(1): 57-138 (2019). DOI: 10.2140/akt.2019.4.57

Abstract

We prove the Farrell–Jones conjecture for algebraic K -theory of spaces for virtually poly- -groups. For this, we transfer the “Farrell–Hsiang method” from the linear case to categories of equivariant, controlled retractive spaces.

Citation

Download Citation

Mark Ullmann. Christoph Winges. "On the Farrell–Jones conjecture for algebraic $K$-theory of spaces: the Farrell–Hsiang method." Ann. K-Theory 4 (1) 57 - 138, 2019. https://doi.org/10.2140/akt.2019.4.57

Information

Received: 4 October 2017; Revised: 10 September 2018; Accepted: 27 September 2018; Published: 2019
First available in Project Euclid: 9 April 2019

zbMATH: 07051947
MathSciNet: MR3936015
Digital Object Identifier: 10.2140/akt.2019.4.57

Subjects:
Primary: 19D10
Secondary: 18F25 , 57Q10

Keywords: algebraic $K\mkern-2mu$-theory of spaces , Farrell–Jones conjecture , poly-$\mathbb Z$-groups

Rights: Copyright © 2019 Mathematical Sciences Publishers

JOURNAL ARTICLE
82 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.4 • No. 1 • 2019
MSP
Back to Top