Open Access
November 2017 A quantitative version of the Johnson–Rosenthal theorem
Dongyang Chen
Ann. Funct. Anal. 8(4): 512-519 (November 2017). DOI: 10.1215/20088752-2017-0015

Abstract

Let X,Y be Banach spaces. We define αY(X)=sup {|T1|1:T:YXis an isomorphism with|T|1}. If there is no isomorphism from Y to X, we set αY(X)=0, and

γY(X)=sup {δ(T):T:XYis a surjective operator with|T|1}, where δ(T)=sup {δ>0:δBYTBX}. If there is no surjective operator from X onto Y, we set γY(X)=0. We prove that for a separable space X, αl1(X)=γc0(X) and αL1(X)=γC(Δ)(X)=γC[0,1](X).

Citation

Download Citation

Dongyang Chen. "A quantitative version of the Johnson–Rosenthal theorem." Ann. Funct. Anal. 8 (4) 512 - 519, November 2017. https://doi.org/10.1215/20088752-2017-0015

Information

Received: 5 October 2016; Accepted: 6 January 2017; Published: November 2017
First available in Project Euclid: 22 June 2017

zbMATH: 06841332
MathSciNet: MR3717173
Digital Object Identifier: 10.1215/20088752-2017-0015

Subjects:
Primary: 46B15
Secondary: 46C05

Keywords: ‎Banach spaces , Bessaga–Pełczyński theorem , isomorphisms , Johnson–Rosenthal theorem , quantitative versions

Rights: Copyright © 2017 Tusi Mathematical Research Group

Vol.8 • No. 4 • November 2017
Back to Top