
Ann. Funct. Anal. 8 (2017), no. 2, 215–230

http://dx.doi.org/10.1215/20088752-0000007X

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

GEOMETRIC CONSTANTS OF π/2-ROTATION INVARIANT
NORMS ON R2

YUKINO TOMIZAWA,1 KEN-ICHI MITANI,2

KICHI-SUKE SAITO,3* and RYOTARO TANAKA4

Communicated by J. Chmieliński

Abstract. In this article, we study the (modified) von Neumann–Jordan con-
stant and Zbăganu constant of π/2-rotation invariant norms on R2. Some esti-
mations of these geometric constants are given. As an application, we construct
various examples consisting of π/2-rotation invariant norms.

1. Introduction and preliminaries

This paper is concerned with geometric constants of Banach spaces, the (mod-
ified) von Neumann–Jordan constant, and the Zbăganu constant. For a Banach
space X, let BX and SX be the unit ball and unit sphere, respectively. The von
Neumann–Jordan constant CNJ(X) of X was defined in [8, Theorem II] by

CNJ(X) = sup
{‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, (x, y) 6= (0, 0)

}
.

The constant CNJ(X) can be viewed as a measure of the distortion of BX from
the viewpoint of the parallelogram law, and the estimation 1 ≤ CNJ(X) ≤ 2
holds for any Banach space X. Moreover, it is known that CNJ(X) = 1 if and
only if X is a Hilbert space (see [8]), and CNJ(X) < 2 if and only if X is uniformly
nonsquare (see [15]). To date, many works have been devoted to studying the von
Neumann–Jordan constant of Banach spaces (see, e.g., [2], [4], [14], [16], [17]).
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The modified von Neumann–Jordan constant C ′
NJ(X) of a Banach space X

measures the distortion of SX in the sense of the parallelogram law; that is,
C ′
NJ(X) is given by

C ′
NJ(X) = sup

{‖x+ y‖2 + ‖x− y‖2

4
: x, y ∈ SX

}(
≤ CNJ(X)

)
.

This variation of CNJ(X) was introduced by Gao [5] (first in the form sup{‖x+
y‖2 + ‖x − y‖2 : x, y ∈ SX}), and its properties were studied, for example, in
[5], [6], and [19].

As another variation of the von Neumann–Jordan constant, we have the Zbă-
ganu constant CZ(X) of a Banach space X introduced in [18] as

CZ(X) = sup
{‖x+ y‖‖x− y‖

‖x‖2 + ‖y‖2
: x, y ∈ X, (x, y) 6= (0, 0)

}
.

It follows from 2‖x + y‖‖x − y‖ ≤ ‖x + y‖2 + ‖x − y‖2 that CZ(X) ≤ CNJ(X).
However, in general, CZ(X) does not necessarily coincide with CNJ(X). There is
a specific example of a (2-dimensional) normed space X with the property that
CZ(X) < CNJ(X) (see [1]).

In 2011, Mizuguchi and Saito [10] studied the relationship between the above-
mentioned three constants in the case of absolute normalized norms on R2, and
applied their results to the construction of some interesting new examples (see
[7], [11], [12] for related results). A norm ‖ · ‖ on R2 is said to be absolute if
‖(a, b)‖ = ‖(|a|, |b|)‖ for each (a, b) ∈ R2, and normalized if ‖(1, 0)‖ = ‖(0, 1)‖ =
1. Typical examples of such norms are the `p-norms ‖ · ‖p given by

∥∥(a, b)∥∥
p
=

{
(|a|p + |b|p)1/p (1 ≤ p <∞),

max{|a|, |b|} (p = ∞).

Let AN2 be the collection of all absolute normalized norms on R2, and let Ψ2 be
the family of all convex functions ψ on [0, 1] satisfying max{1− t, t} ≤ ψ(t) ≤ 1
for each t ∈ [0, 1]. Then, as was shown in [3] (and in [14]), AN2 is in a one-to-one
correspondence with Ψ2 under the equation ψ(t) = ‖(1− t, t)‖ for each t ∈ [0, 1].
The absolute normalized norm corresponding to ψ ∈ Ψ2 is denoted by ‖ · ‖ψ, and
it satisfies the following equation:

∥∥(a, b)∥∥
ψ
=

{
(|a|+ |b|)ψ( |b|

|a|+|b|) ((a, b) 6= (0, 0)),

0 ((a, b) = (0, 0)).

On the other hand, the convex function ψp corresponding to ‖ · ‖p is given by

ψp(t) =

{
((1− t)p + tp)1/p (1 ≤ p <∞),

max{1− t, t} (p = ∞).

It should be noted that ψp(t) = ψp(1− t) for each t ∈ [0, 1] (1 ≤ p ≤ ∞).
Recently, the notion of π/2-rotation invariant norms on R2 were investigated in

[9], where a norm ‖·‖ on R2 is said to be π/2-rotation invariant if the π/2-rotation
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matrix

R(π/2) =

(
0 −1
1 0

)
is an isometry on (R2, ‖ · ‖) or, equivalently, ‖(a, b)‖ = ‖(−b, a)‖ for each (a, b) ∈
R2. An example of a π/2-rotation invariant norm that is not isometrically iso-
morphic to any absolute normed space was given in [9, Theorem 5.13].

The purpose of the present article is to study the (modified) von Neumann–
Jordan constant and the Zbăganu constant of π/2-rotation invariant norms on R2.
In [9, Theorem 3.2], it was shown that any π/2-rotation invariant normed space

is isometrically isomorphic to some Day–James space of the form `2
ψ,ψ̃

, where ψ̃

is the element of Ψ2 defined by ψ̃(t) = ψ(1− t), and `2
ψ,ψ̃

is the space R2 endowed

with the norm ∥∥(a, b)∥∥
ψ,ψ̃

=

{
(|a|+ |b|)ψ( |a|

|a|+|b|) (ab ≥ 0),

(|a|+ |b|)ψ̃( |a|
|a|+|b|) (ab ≤ 0).

(See [13] for the general definition of Day–James spaces.) Of course, the norm
‖ · ‖ψ,ψ̃ is also π/2-rotation invariant for each ψ ∈ Ψ2 (see [9, Proposition 3.4]).

From this, since the (modified) von Neumann–Jordan constant and the Zbăganu
constant are invariant under isometric isomorphisms, for our purpose, it is enough
to consider Day–James spaces of the form `2

ψ,ψ̃
; and hence, throughout this paper,

π/2-rotation invariant normed spaces are assumed to be `2
ψ,ψ̃

for some ψ ∈ Ψ2.

Henceforth, fix an element ψ in Ψ2 (ψ 6= ψ2), and put ‖·‖ = ‖·‖ψ,ψ̃ for short. The

space `2
ψ,ψ̃

(= (R2, ‖ · ‖ψ,ψ̃)) will be simply denoted by Yψ. Under this hypothesis,

we obtain some estimations of the abovementioned geometric constants that are
similar to (but essentially different from) the results in [10]. As an application,
we present various examples consisting of π/2-rotation invariant norms on R2.

2. Auxiliary results on Yψ

We start our argument with some auxiliary results.

Lemma 2.1. Let ϕ, ψ ∈ Ψ2. Then ‖ · ‖ϕ,ϕ̃ ≤M‖ · ‖ψ,ψ̃, where

M = max
0≤t≤1

ϕ(t)

ψ(t)
.

Proof. We first note that ϕ(t) ≤ Mψ(t) for each t ∈ [0, 1], and hence ϕ̃(t) =

ϕ(1 − t) ≤ Mψ(1 − t) ≤ Mψ̃(t) for each t ∈ [0, 1]. Now, for a nonzero element
(a, b) of R2, we have

‖(a, b)‖ϕ,ϕ̃ =

{
(|a|+ |b|)ϕ( |a|

|a|+|b|) (ab ≥ 0),

(|a|+ |b|)ϕ̃( |a|
|a|+|b|) (ab ≤ 0),

and ‖(a, b)‖ψ,ψ̃ has the same form (with ψ in place of ϕ). From this, it follows

that ‖ · ‖ϕ,ϕ̃ ≤M‖ · ‖ψ,ψ̃. �
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We note that ‖ · ‖2 = ‖ · ‖ψ2 = ‖ · ‖ψ2,ψ̃2
. This, together with the preceding

lemma, shows that M−1
2 ‖ · ‖2 ≤ ‖ · ‖ ≤M1‖ · ‖2, where

M1 = max
0≤t≤1

ψ(t)

ψ2(t)
and M2 = max

0≤t≤1

ψ2(t)

ψ(t)
,

respectively.
As was mentioned in the last paragraph of Section 1, the norm ‖ · ‖ (= ‖ · ‖ψ,ψ̃)

is π/2-rotation invariant. For such a norm, we obtain the following property.

Lemma 2.2. If x, y ∈ Yψ are such that x± y 6= 0 and ‖x‖2 = ‖y‖2, then

‖x+ y‖2
‖x+ y‖

=
‖x− y‖2
‖x− y‖

.

Proof. Since ‖x‖2 = ‖y‖2, we have that 〈x+ y, x− y〉 = 0, and so

x+ y = ±‖x+ y‖
‖x− y‖

R(π/2)(x− y).

By taking the Euclidean norms of both sides, one obtains

‖x+ y‖2 =
‖x+ y‖‖R(π/2)(x− y)‖2

‖x− y‖
=

‖x+ y‖‖x− y‖2
‖x− y‖

since R(π/2) is an isometry on the Euclidean space. Thus it follows that

‖x+ y‖2
‖x+ y‖

=
‖x− y‖2
‖x− y‖

.

This proves the lemma. �

We now present a key to the proofs of our results in the sequel.

Theorem 2.3. Let c, d > 0. Then the following two statements are equivalent:

(i) There exists a pair x, y ∈ SYψ with x±y 6= 0 satisfying ‖x‖2 = ‖y‖2 = 1/c,
‖x+ y‖ = d‖x+ y‖2 (and ‖x− y‖ = d‖x− y‖2).

(ii) There exist r, s, t ∈ [0, 1] such that ψ(s) = cψ2(s), ψ(t) = cψ2(t), and
ψ(r) = dψ2(r), where r, s, t satisfy one of the following conditions:
(a) s 6= t and

r =
ψ(t)s+ ψ(s)t

ψ(s) + ψ(t)
.

(b) (s, t) /∈ {(1, 0), (0, 1)}, s+ t ≥ 1, and

r =
ψ(t)s− ψ(s)(1− t)

(2t− 1)ψ(s) + ψ(t)
.

(c) (s, t) /∈ {(1, 0), (0, 1)}, s+ t < 1, and

r =
ψ(t)(1− s) + ψ(s)t

ψ(s) + (1− 2s)ψ(t)
.
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Proof. Suppose that (i) holds. Let x, y be the elements of SYψ having the prop-
erties set out in (i). Since R(π/2) is an isometric isomorphism on Yψ, we may
assume that x is in the first quadrant. Replacing y by −y if necessary, we may
also assume that y is in the first or fourth quadrant. Hence the argument separates
into two parts.

(A) If both x, y are in the first quadrant, then we have

x =
1

ψ(s)
(1− s, s) and y =

1

ψ(t)
(1− t, t)

for some s, t ∈ [0, 1]. By (i), we obtain 1/c = ‖x‖2 = ψ2(s)/ψ(s) and 1/c = ‖y‖2 =
ψ2(t)/ψ(t). Now, from the fact the function t 7→ t/ψ2(t) is strictly increasing, and
since

x+ y =
(1− s

ψ(s)
+

1− t

ψ(t)
,
s

ψ(s)
+

t

ψ(t)

)
and

x− y =
(1− s

ψ(s)
− 1− t

ψ(t)
,
s

ψ(s)
− t

ψ(t)

)
,

x± y 6= 0 is equivalent to s 6= t. Finally, one has that

ψ(s) + ψ(t)

ψ(s)ψ(t)
ψ(r) = ‖x+ y‖ = d‖x+ y‖2 = d

ψ(s) + ψ(t)

ψ(s)ψ(t)
ψ2(r),

where r is given by the equation set out in (a), and so ψ(r) = dψ2(r).
(B) Suppose that y is in the fourth quadrant. Then y = ψ(t)−1(t,−(1− t)) for

some t ∈ [0, 1] (and x has the same form as in (A)). As in the preceding paragraph,
it follows that ψ(t) = cψ2(t) for 1/c = ‖y‖2 = ψ2(1 − t)/ψ(t) = ψ2(t)/ψ(t). We
note that

x+ y =
(1− s

ψ(s)
+

t

ψ(t)
,
s

ψ(s)
− 1− t

ψ(t)

)
and

x− y =
(1− s

ψ(s)
− t

ψ(t)
,
s

ψ(s)
+

1− t

ψ(t)

)
.

In particular, x+ y = 0 if and only if (s, t) = (1, 0), and x− y = 0 if and only if
(s, t) = (0, 1). Moreover, from the fact that ψ(s) = cψ2(s) and ψ(t) = cψ2(t), one
has that

s

ψ(s)
− 1− t

ψ(t)
=

1

c

( s

ψ2(s)
− 1− t

ψ2(1− t)

)
.

Since the function t 7→ t/ψ2(t) is strictly increasing, it turns out that

r =
∣∣∣ s

ψ(s)
− 1− t

ψ(t)

∣∣∣(1− s

ψ(s)
+

t

ψ(t)
+
∣∣∣ s

ψ(s)
− 1− t

ψ(t)

∣∣∣)−1

=

{
ψ(t)s−ψ(s)(1−t)
(2t−1)ψ(s)+ψ(t)

(s+ t ≥ 1),
−ψ(t)s+ψ(s)(1−t)
ψ(s)+(1−2s)ψ(t)

(s+ t < 1).
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Since ‖x+ y‖ = d‖x+ y‖2, if s+ t ≥ 1, then an argument similar to that in (A)
shows that ψ(r) = dψ2(r). On the other hand, if s + t < 1, then x + y is in the
forth quadrant, and hence

ψ(s) + (1− 2s)ψ(t)

ψ(s)ψ(t)
ψ̃(r) = ‖x+ y‖ = d‖x+ y‖2 = d

ψ(s) + (1− 2s)ψ(t)

ψ(s)ψ(t)
ψ̃2(r),

which proves that ψ(1− r) = dψ2(1− r). Noticing that

1− r =
ψ(t)(1− s) + ψ(s)t

ψ(s) + (1− 2s)ψ(t)
,

we have that (i) ⇒ (ii).
For the converse, let r, s, t be elements of [0, 1] satisfying one of the three

conditions set out in (ii). If r, s, t satisfy (a), then the vectors x = ψ(s)−1(1−s, s)
and y = ψ(t)−1(1− t, t) have the desired properties. Similarly, in the cases of (b)
and (c), it is enough to consider x = ψ(s)−1(1− s, s) and y = ψ(t)−1(t,−(1− t)).
The proof is complete. �

3. Geometric constants of Yψ

We first consider the (modified) von Neumann–Jordan constant CNJ(Yψ) (and
C ′
NJ(Yψ)) of Yψ when ψ ≤ ψ2. Then, as an application of Theorem 2.3, we have

the following results.

Theorem 3.1. Suppose that ψ 6= ψ2 and that ψ ≤ ψ2. Then

C ′
NJ(Yψ) ≤ CNJ(Yψ) ≤ max

0≤t≤1

ψ2(t)
2

ψ(t)2
(=M2

2 ).

In particular, C ′
NJ(Yψ) = M2

2 if and only if there exist r, s, t ∈ [0, 1] such that
ψ2(s)/ψ(s) = ψ2(t)/ψ(t) = M2 and ψ(r) = ψ2(r), where r, s, t satisfy one of the
following conditions:

(a) s 6= t and

r =
ψ(t)s+ ψ(s)t

ψ(s) + ψ(t)
.

(b) (s, t) /∈ {(1, 0), (0, 1)}, s+ t ≥ 1, and

r =
ψ(t)s− ψ(s)(1− t)

(2t− 1)ψ(s) + ψ(t)
.

(c) (s, t) /∈ {(1, 0), (0, 1)}, s+ t < 1, and

r =
ψ(t)(1− s) + ψ(s)t

ψ(s) + (1− 2s)ψ(t)
.

Proof. Let x, y ∈ Yψ with (x, y) 6= (0, 0). Then, by Lemma 2.1, it follows that

‖x+ y‖2 + ‖x− y‖2 ≤ ‖x+ y‖22 + ‖x− y‖22
= 2

(
‖x‖22 + ‖y‖22

)
≤ 2M2

2

(
‖x‖2 + ‖y‖2

)
,

and hence C ′
NJ(Yψ) ≤ CNJ(Yψ) ≤M2

2 .



GEOMETRIC CONSTANTS OF π/2-ROTATION INVARIANT NORMS ON R2 221

Next we consider restatements of C ′
NJ(Yψ) =M2

2 . Since the set SYψ ×SYψ with
the product topology is compact and the function

SYψ × SYψ 3 (x, y) → ‖x+ y‖2 + ‖x− y‖2

4

is continuous, C ′
NJ(Yψ) =M2

2 if and only if there exists a pair (x, y) ∈ SYψ × SYψ
with x± y 6= 0 satisfying

‖x+ y‖2 + ‖x− y‖2

4
=M2

2 ; (3.1)

for this, we note that if x + y = 0 or x− y = 0, then M2 = 1, which contradicts
ψ 6= ψ2 since ψ ≤ ψ2. Moreover, since ‖x± y‖ ≤ ‖x± y‖2, ‖x‖2 ≤M2‖x‖ =M2,
and ‖y‖2 ≤M2, one has C ′

NJ(Yψ) =M2
2 if and only if there exists a pair (x, y) ∈

SYψ × SYψ with x± y 6= 0 satisfying ‖x± y‖ = ‖x± y‖2 and ‖x‖2 = ‖y‖2 = M2.

Hence Theorem 2.3 applies (for c = M−1
2 and d = 1), and it turns out that

C ′
NJ(Yψ) = M2

2 if and only if there exist r, s, t (satisfying one of the conditions
(a), (b), (c) set out in Theorem 2.3) with ψ(s) = M−1

2 ψ2(s), ψ(t) = M−1
2 ψ2(t),

and ψ(r) = ψ2(r). This completes the proof. �

Corollary 3.2. Suppose that ψ 6= ψ2 and that ψ ≤ ψ2. If there exists a t0 ∈ (0, 1)
satisfying ψ(t0) = ψ(1− t0) and

ψ2(t0)

ψ(t0)
= max

0≤t≤1

ψ2(t)

ψ(t)
(=M2),

then C ′
NJ(Yψ) = CNJ(Yψ) =M2

2 .

Proof. Let s = t0, and let t = 1− t0. Then (s, t) /∈ {(1, 0), (0, 1)}, s+ t = 1, and

r =
ψ(1− t0)t0 − ψ(t0)t0

(1− 2t0)ψ(t0) + ψ(1− t0)
= 0.

Thus we have ψ2(s)/ψ(s) = ψ2(t)/ψ(t) =M2 and ψ(r) = 1 = ψ2(r); that is, r, s, t
satisfy the condition (b) set out in Theorem 3.1. Hence one has that C ′

NJ(Yψ) =
CNJ(Yψ) =M2

2 . �

Corollary 3.3. Suppose that ψ 6= ψ2 and that ψ ≤ ψ2. If

ψ2(1/2)

ψ(1/2)
= max

0≤t≤1

ψ2(t)

ψ(t)
(=M2),

then C ′
NJ(Yψ) = CNJ(Yψ) =M2

2 .

The case of ψ ≥ ψ2 is as follows.

Theorem 3.4. Suppose that ψ 6= ψ2 and that ψ ≥ ψ2. Then

C ′
NJ(Yψ) ≤ CNJ(Yψ) ≤ max

0≤t≤1

ψ(t)2

ψ2(t)2
(=M2

1 ).

In particular, C ′
NJ(Yψ) = M2

1 if and only if there exist r, s, t ∈ [0, 1] such that
ψ(s)/ψ2(s) = ψ(t)/ψ2(t) = 1 and ψ(r) =M1ψ2(r), where r, s, t satisfy one of the
following conditions:



222 Y. TOMIZAWA ET AL.

(a) s 6= t and

r =
ψ(t)s+ ψ(s)t

ψ(s) + ψ(t)
.

(b) (s, t) /∈ {(1, 0), (0, 1)}, s+ t ≥ 1, and

r =
ψ(t)s− ψ(s)(1− t)

(2t− 1)ψ(s) + ψ(t)
.

(c) (s, t) /∈ {(1, 0), (0, 1)}, s+ t < 1, and

r =
ψ(t)(1− s) + ψ(s)t

ψ(s) + (1− 2s)ψ(t)
.

Proof. For each x, y ∈ Yψ with (x, y) 6= (0, 0), we have

‖x+ y‖2 + ‖x− y‖2 ≤M2
1

(
‖x+ y‖22 + ‖x− y‖22

)
= 2M2

1

(
‖x‖22 + ‖y‖22

)
≤ 2M2

1

(
‖x‖2 + ‖y‖2

)
by Lemma 2.1. This shows that C ′

NJ(Yψ) ≤ CNJ(Yψ) ≤M2
1 .

Now, an argument similar to that in the proof of Theorem 3.1 shows that
C ′
NJ(Yψ) =M2

1 if and only if there exists a pair (x, y) ∈ SYψ ×SYψ with x± y 6= 0
satisfying ‖x±y‖ =M1‖x±y‖2 and ‖x‖2 = ‖y‖2 = 1. Thus Theorem 2.3 (applied
for c = 1 and d =M1) completes the proof. �

Corollary 3.5. Suppose that ψ 6= ψ2 and that ψ ≥ ψ2. If there exists a t0 ∈ [0, 1]
with t0 6= 1/2 satisfying ψ(t0) = ψ(1− t0) = ψ2(t0) and

ψ(1/2)

ψ2(1/2)
= max

0≤t≤1

ψ(t)

ψ2(t)
(=M1),

then C ′
NJ(Yψ) = CNJ(Yψ) =M2

1 .

Proof. Let s = t0, and let t = 1− t0. Then s 6= t (since t0 6= 1/2) and

r =
ψ(1− t0)t0 + ψ(t0)(1− t0)

ψ(t0) + ψ(1− t0)
=

1

2
.

It follows from ψ(s)/ψ2(s) = ψ(t)/ψ2(t) = 1 and ψ(r) = M1ψ2(r) that r, s, t
satisfy the condition (a) set out in Theorem 3.4. Therefore, C ′

NJ(Yψ) = CNJ(Yψ) =
M2

1 . �

We next provide similar results on the Zbăganu constant CZ(Yψ). For this
purpose, it is convenient to transform the Zbăganu constant into the following
form:

CZ(X) = sup
{ 4‖x‖‖y‖
‖x+ y‖2 + ‖x− y‖2

: x ∈ SX , y ∈ BX

}
,

where X is a Banach space. To see this, it suffices to consider the transforms
x → x + y and y → x − y, and then divide the numerator and denominator by
max{‖x‖, ‖y‖}2.
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As in the case of the modified von Neumann–Jordan constant, we consider the
two cases of ψ ≤ ψ2 and ψ ≥ ψ2. Then Theorem 2.3 still works. We first consider
the case ψ ≤ ψ2.

Theorem 3.6. Suppose that ψ 6= ψ2 and that ψ ≤ ψ2. Then

CZ(Yψ) ≤ CNJ(Yψ) ≤ max
0≤t≤1

ψ2(t)
2

ψ(t)2
(=M2

2 ).

In particular, CZ(Yψ) = M2
2 if and only if there exist r, s, t ∈ [0, 1] such that

ψ2(s)/ψ(s) = ψ2(t)/ψ(t) = 1 and ψ(r) = M−1
2 ψ2(r), where r, s, t satisfy one of

the following conditions:

(a) s 6= t and

r =
ψ(t)s+ ψ(s)t

ψ(s) + ψ(t)
.

(b) (s, t) /∈ {(1, 0), (0, 1)}, s+ t ≥ 1, and

r =
ψ(t)s− ψ(s)(1− t)

(2t− 1)ψ(s) + ψ(t)
.

(c) (s, t) /∈ {(1, 0), (0, 1)}, s+ t < 1, and

r =
ψ(t)(1− s) + ψ(s)t

ψ(s) + (1− 2s)ψ(t)
.

Proof. The first statement is the consequence of CZ(Yψ) ≤ CNJ(Yψ) and Theo-
rem 3.1. Now suppose that CZ(Yψ) = M2

2 . Since Yψ has the finite dimension 2,
there exists a pair (x, y) ∈ SYψ ×BYψ satisfying

4‖x‖‖y‖
‖x+ y‖2 + ‖x− y‖2

=M2
2 . (3.2)

Then we note by Lemma 2.1 that

4‖x‖‖y‖ ≤ 2
(
‖x‖2 + ‖y‖2

)
≤ 2

(
‖x‖22 + ‖y‖22

)
= ‖x+ y‖22 + ‖x− y‖22
≤M2

2

(
‖x+ y‖2 + ‖x− y‖2

)
which with (3.2) implies that ‖x‖ = ‖y‖ = 1 (that is, x, y ∈ SYψ), ‖x‖2 = ‖y‖2 =
1, and ‖x ± y‖ = M2‖x ± y‖2. In particular, ψ 6= ψ2 ensures that x ± y 6= 0.
Conversely, if x, y ∈ SYψ with x ± y 6= 0 satisfy ‖x‖2 = ‖y‖2 = 1 and ‖x ± y‖ =

M−1
2 ‖x± y‖2, then we have (3.2). Hence CZ(Yψ) =M2

2 holds if and only if there
exists a pair (x, y) ∈ SYψ × SYψ with x ± y 6= 0 satisfying ‖x‖2 = ‖y‖2 = 1 and

‖x ± y‖ = M−1
2 ‖x ± y‖2. Now, applying Theorem 2.3 for c = 1 and d = M−1

2

yields the theorem. �
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Corollary 3.7. Suppose that ψ 6= ψ2 and that ψ ≤ ψ2. If there exists a t0 ∈ [0, 1]
with t0 6= 1/2 satisfying ψ(t0) = ψ(1− t0) = ψ2(t0) and

ψ2(1/2)

ψ(1/2)
= max

0≤t≤1

ψ2(t)

ψ(t)
(=M2),

then CZ(Yψ) = CNJ(Yψ) =M2
2 .

Proof. Putting s = t0 and t = 1− t0 yields s 6= t (since t0 6= 1/2) and

r =
ψ(1− t0)t0 + ψ(t0)(1− t0)

ψ(t0) + ψ(1− t0)
=

1

2
.

From these, one has that ψ2(s)/ψ(s) = ψ2(t)/ψ(t) = 1 and that ψ(r) =M−1
2 ψ2(r),

which shows that r, s, t satisfy the condition (a) set out in Theorem 3.6. Hence it
follows that CZ(Yψ) = CNJ(Yψ) =M2

2 . �

We next consider the case ψ ≥ ψ2.

Theorem 3.8. Suppose that ψ 6= ψ2 and that ψ ≥ ψ2. Then

CZ(Yψ) ≤ CNJ(Yψ) ≤ max
0≤t≤1

ψ(t)2

ψ2(t)2
(=M2

1 ).

In particular, CZ(Yψ) = M2
1 if and only if there exist r, s, t ∈ [0, 1] such that

ψ(s)/ψ2(s) = ψ(t)/ψ2(t) = M1 and ψ(r) = ψ2(r), where r, s, t satisfy one of the
following conditions:

(a) s 6= t and

r =
ψ(t)s+ ψ(s)t

ψ(s) + ψ(t)
.

(b) (s, t) /∈ {(1, 0), (0, 1)}, s+ t ≥ 1, and

r =
ψ(t)s− ψ(s)(1− t)

(2t− 1)ψ(s) + ψ(t)
.

(c) (s, t) /∈ {(1, 0), (0, 1)}, s+ t < 1, and

r =
ψ(t)(1− s) + ψ(s)t

ψ(s) + (1− 2s)ψ(t)
.

Proof. The proof is almost the same as that of Theorem 3.6, but, in this case, the
key is the following inequalities:

4‖x‖‖y‖ ≤ 2
(
‖x‖2 + ‖y‖2

)
≤ 2M2

1

(
‖x‖22 + ‖y‖22

)
=M2

1

(
‖x+ y‖22 + ‖x− y‖22

)
≤M2

1

(
‖x+ y‖2 + ‖x− y‖2

)
.

As in the proof of Theorem 3.6, we have that CZ(Yψ) = M2
1 if and only if there

exists a pair (x, y) ∈ SYψ × SYψ with x ± y 6= 0 satisfying ‖x‖2 = ‖y‖2 = M−1
1

and ‖x± y‖ = ‖x± y‖2. Thus, for c = M1 and d = 1, Theorem 2.3 applies, and
we have the theorem. �
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Corollary 3.9. Suppose that ψ 6= ψ2 and that ψ ≥ ψ2. If there exists a t0 ∈ (0, 1)
satisfying ψ(t0) = ψ(1− t0) and

ψ(t0)

ψ2(t0)
= max

0≤t≤1

ψ(t)

ψ2(t)
(=M1),

then CZ(Yψ) = CNJ(Yψ) =M2
1 .

Proof. Suppose that s = t0 and t = 1− t0. Since (s, t) /∈ {(1, 0), (0, 1)}, s+ t = 1,
and

r =
ψ(1− t0)t0 − ψ(t0)t0

(1− 2t0)ψ(t0) + ψ(1− t0)
= 0,

we obtain ψ(s)/ψ2(s) = ψ(t)/ψ2(t) =M1 and ψ(r) = 1 = ψ2(r). This proves that
r, s, t satisfy the condition (b) set out in Theorem 3.8, and CZ(Yψ) = CNJ(Yψ) =
M2

1 . �

Corollary 3.10. Suppose that ψ 6= ψ2 and that ψ ≥ ψ2. If

ψ(1/2)

ψ2(1/2)
= max

0≤t≤1

ψ(t)

ψ2(t)
(=M1),

then CZ(Yψ) = CNJ(Yψ) =M2
1 .

4. Examples

As an application of the results in the preceding section, we will construct
examples of π/2-rotation invariant norms on R2 with the following properties:

(i) C ′
NJ(Yψ) =M2

2 can be deduced by Corollary 3.3 (a part of Corollary 3.2),
(ii) C ′

NJ(Yψ) = M2
2 can be deduced by Theorem 3.1, but Corollary 3.2 does

not apply,
(iii) C ′

NJ(Yψ) < M2
2 .

While all of these examples are concerned with the case C ′
NJ(Yψ) = M2

2 under
the hypothesis ψ ≤ ψ2, appropriate examples for other cases can be constructed
in the same spirit.

Example 4.1. To construct an example satisfying (i), we put

ϕ1(t) =


1− t (t ∈ [0, 1/3]),

2
√
5ψ2(t)/5 (t ∈ [1/3, 1/2]),

(20−6
√
10)t+4

√
10−10

5
(t ∈ [1/2, 2/3]),

t (t ∈ [2/3, 1]).

See Figures 1 and 2 for its graph and corresponding unit sphere.
Then it is easy to check that ϕ1 ∈ Ψ2 and that

ϕ1 ≤ max{1− t, t, 2/3} ≤ max{1− t, t, 1/
√
2} ≤ ψ2(t)

for each t ∈ [0, 1]. From this one has that ϕ1 6= ψ2. Since the functions t 7→
ψ2(t)/(1 − t) and t 7→ ψ2(t)/t are strictly increasing and strictly decreasing,
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Figure 1. The graph of ϕ1.

Figure 2. The unit sphere of Yϕ1 .

respectively, it follows that

ψ2(1/2)

ϕ1(1/2)
= max

0≤t≤1

ψ2(t)

ϕ1(t)
(=M2).

Hence, by Corollary 3.3, we have C ′
NJ(Yϕ1) =M2

2 .

Example 4.2. Let ϕ2 be the element of Ψ2 given by

ϕ2(t) =


ψ2(t) (t ∈ [0, 1/2]),

1/
√
2 (t ∈ [1/2, 1/

√
2]),

t (t ∈ [1/
√
2, 1]).

Figures 3 and 4 provide images of the function ϕ2 and unit sphere of Yϕ2 .
Then ϕ2 6= ψ2 and ϕ2 ≤ ψ2. Since the function ψ2(t)/t is strictly decreasing, it

follows that
ψ2(t0)

ϕ2(t0)
= max

0≤t≤1

ψ2(t)

ϕ2(t)
(=M2 > 1)

if and only if t0 = 1/
√
2. This, together with the fact that ϕ2(t) = ϕ2(1 − t)

if and only if t = 0, 1, 1/2, shows that we can not take a t0 ∈ (0, 1) satisfying
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Figure 3. The graph of ϕ2.

Figure 4. The unit sphere of Yϕ2 .

ϕ2(t0) = ϕ2(1− t0) and

ψ2(t0)

ϕ2(t0)
=M2,

and so Corollary 3.2 does not apply. On the other hand, putting s = t = 1/
√
2

yields that s+ t =
√
2 > 1, ψ2(s)/ϕ2(s) = ψ2(t)/ϕ2(t) =M2 and

r =
ϕ2(t)s− ϕ2(s)(1− t)

(2t− 1)ϕ2(s) + ϕ2(t)
=

2s− 1

2s
= 1− 1√

2
∈ [0, 1/2],

which implies that ϕ2(r) = ψ2(r). Thus Theorem 3.1(b) applies, and we have
C ′
NJ(Yϕ2) =M2

2 .

Example 4.3. Define an element ϕ3 of Ψ2 by

ϕ3(t) =


1− t (t ∈ [0, 1/3]),

−t/2 + 5/6 (t ∈ [1/3, 5/9]),

t (t ∈ [5/9, 1]).

For the graph of ϕ3 and image of SYϕ3 , see Figures 5 and 6.
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Figure 5. The graph of ϕ3.

Figure 6. The unit sphere of Yϕ3 .

Then ϕ3(t) ≤ max{1 − t, t, 1/
√
2} ≤ ψ2(t) for each t ∈ [0, 1], and so ϕ3 6= ψ2.

Moreover, the functions t 7→ ψ2(t)/(1− t) and t 7→ ψ2(t)/t are strictly increasing
and strictly decreasing, respectively, while the function

t 7→ ψ2(t)

−t/2 + 5/6

is strictly increasing on [1/3,5/9]. Hence one has that

ψ2(t0)

ϕ3(t0)
= max

0≤t≤1

ψ2(t)

ϕ3(t)
(=M2)

if and only if t0 = 5/9. To see that C ′
NJ(Yϕ3) < M2

2 , by Theorem 3.1, it is enough
to show that there is no r, s, t satisfying one of the conditions (a), (b), (c) set out
in that theorem. However, now, the only candidate for s, t is 5/9 since s, t must
satisfy ψ2(s)/ϕ3(s) = ψ2(t)/ϕ3(t) = M2. This eliminates the possibility of (a).
Since s+t = 10/9 > 1, it suffices to consider (b). Then it follows from s = t = 5/9
that

r =
ϕ3(t)s− ϕ3(s)(1− t)

(2t− 1)ϕ3(s) + ϕ3(t)
=

2s− 1

2s
=

1

10
∈ (0, 1),
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which, together with the fact that ϕ3(u) < ψ2(u) for each u ∈ (0, 1), proves
that ϕ3(r) 6= ψ2(r). Thus r, s, t can not satisfy any of the conditions set out in
Theorem 3.1, from which we obtain C ′

NJ(Yϕ3) < M2
2 .
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