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Abstract. Two applications of nets are given. The first is an extension of the
Bochner integral to arbitrary locally convex spaces, leading to an integration
theory of more general vector valued functions then in the classical approach
by Gelfand and Pettis. The second application starts with the observation that
an operator on a Hilbert space is trace class if and only if the net of “principal
trace minors” converges. The notion of a “determinant class operator” then is
defined as one for which the net of determinantal principal minors converges.
It is shown that for a normal operator A this condition coincides with 1 − A
being trace class.

Introduction

In this paper we give two application of nets. The first gives a characterization
of Bochner integrable functions on arbitrary locally compact spaces. In this we
extend the original approach of Bochner to vector valued integrals to the case
of nets, i.e., we approximate a given function by a net of simple functions. It is
slightly astonishing that this actually works, as one is trained to think that nets
and integration don’t go well together, as for instance the theorems of monotone
and dominated convergence fail for general nets. This is probably the reason why
this path hasn’t been taken earlier, i.e., why the Bochner integral has not been
generalized to arbitrary locally convex spaces.

For Banach spaces, vector-valued integrals have been constructed indepen-
dently by Bochner [1] and Gelfand–Pettis [6, 8].
The latter construction uses a convexity and compactness argument, therefore is
a non-constructive existence assertion. It has been generalized to locally convex
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spaces in [3], see also [5]. The original approach of Bochner, however, has not
been generalized to arbitrary locally convex spaces. This is done in the present
paper. This approach actually allows the integration of more functions on more
general spaces than the Gelfand–Pettis method.

The second example starts with the curious observation that trace class oper-
ators are exactly those for which the net of “principal trace minors” converges,
and that the limit is the trace of the operator. This serves as a starting point to
define the counterpart of trace class operators, the determinant class operators.
We find that in the case of a normal operator A we have

A is determinant class ⇔ 1− A is trace class,

and that the determinant then equals the Fredholm determinant. For non-normal
operators we still have the “⇐” direction of this statement. Whether the other
direction holds, is an open question.

1. Bochner Integral

A vector valued integral is a vector attached to a function f : X → V from a
measure space X to a topological complex vector space V , written

∫
X
f dµ ∈ V

with the property that

α

(∫
X

f dµ

)
=

∫
X

α(f) dµ,

for every continuous linear functional α : V → C. This property determines
the vector

∫
X
f dµ uniquely if the space V is locally convex, as follows from the

Hahn-Banach Theorem. For non-locally convex spaces, the notion rarely makes
sense, consider for example the case of the space V = Lp(0, 1) with 0 < p < 1,
[9]. In this case there are non non-zero continuous linear functionals, therefore
every vector is an integral for every function.

So from now on we assume the space V to be locally convex. In that case the
topology of V is generated by all continuous seminorms. In this note we show
the existence and continuity of a vector valued integral in many important cases.
This includes the case of a continuous function f : X → V of compact support,
where X is a locally compact space equipped with a Radon measure. This case
was considered in [3], Chap III §4.

For Banach spaces, these integrals have been constructed independently by
Bochner [1] and Gelfand–Pettis [6, 8]. The latter construction uses a convexity
and compactness argument, therefore is a non-constructive existence assertion. It
has been generalized to locally convex spaces before [3, 5, 7]. The construction of
Bochner works by approximating a given function by simple ones as in the very
definition of Lebesgue integration. It therefore seems more natural and properties
of this integral are, as a rule, much simpler to prove as in the Gelfand–Pettis case.
As an example of this rule, consider the strong continuity as in Definition 1.1 (b).
To the surprise of the authors, the believe was widespread, that the Gelfand–
Pettis construction extends to more general settings that the one of Bochner. In
this note we show the contrary. We extend the approach of Bochner to locally
convex spaces which satisfy a mild completeness condition.
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1.1. Integrable functions. By a topological vector space over C we mean a
complex vector space with a topology such that addition and scalar multiplication
are continuous maps from V×V respectively C×V to V . We follow the convention
that insists that the set {0} be closed. This implies that V is a Hausdorff space
as can be seen in [9], 1.6 or in greater generality in [4], Proposition 1.1.6.

The space is called locally convex, if every point has a neighborhood base con-
sisting of convex open sets. Let V be a locally convex topological vector space
over C or locally convex space for short. Let (X,µ) be a measure space and
f : X → V a measurable function. We write V ′ for the continuous dual space of
V , i.e., the space of all continuous linear functionals α : V → C.

Definition 1.1. We say that f is integrable, if there exists a vector
∫
X
f dµ ∈ V

such that

(1) For every α ∈ V ′ one has

α

(∫
X

f dµ

)
=

∫
X

α(f) dµ.

(2) For every continuous seminorm p on V one has

p

(∫
X

f dµ

)
≤
∫
X

p(f) dµ < ∞.

Lemma 1.2. If f : X → V is integrable, then so is T (f) = T ◦ f for every
continuous linear map T : V → W , where W is another locally convex space.

Proof. Let g = T (f). Define
∫
X
g dµ = T

(∫
X
f dµ

)
∈ W . For α ∈ W ′ one has

α ◦ T ∈ V ′. Therefore ,

α

(∫
X

g dµ

)
= α ◦ T

(∫
X

f dµ

)
=

∫
X

α ◦ T (f) dµ =

∫
X

α(g) dµ.

For (b) let p be a continuous seminorm on W . Then p◦T is a continuous seminorm
on V . Therefore,

p

(∫
X

g dµ

)
= p ◦ T

(∫
X

f dµ

)
≤
∫
X

p ◦ T (f) dµ =

∫
X

p(g) dµ.

�

Definition 1.3. A measurable function f : X → V is called integrally bounded,
if one has ∫

X

p(f) dµ < ∞

for every continuous seminorm p.

Definition 1.4. The function f is called essentially separable, if for each contin-
uous seminorm p there exists a set Np ⊂ X of measure zero and a countable set

Cp ⊂ V such that f(X rNp) ⊂ Cp
(p)

, where the closure is the p-closure.
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Example 1.5. Suppose that the image f(X) is relatively compact. Then f is
essentially separable, since for given n ∈ N there are x1(n), . . . xkn(n) ∈ f(X)
such that

f(X) ⊂
kn⋃
j=1

xj(n) +
1

n
Up,

where
Up = {v ∈ V : p(v) < 1}

is the convex balanced open zero neighborhood attached to the semi-norm p. Let

Cp be the set of all xj(n), where n and j vary. Then f(X) ⊂ Cp
(p)

, so f is
essentially separable.

Definition 1.6. The function f is called essentially bounded, if there exists a set
N ⊂ X of measure zero, such that f |XrN is bounded, which means it is bounded
in every continuous seminorm.

Definition 1.7. The space V is called complete if every Cauchy-net converges.
It is called quasi-complete, if every bounded Cauchy-net converges.

Example 1.8. The space D(M) = C∞c (M) of smooth functions with compact
supports on a smooth manifold M is quasi-complete, as well as its dual space
D′(M) of distributions on M . For this and more examples, see [2, 7, 10].

Theorem 1.9. Let V be a locally convex space and f : X → V a measurable
function from a measure space (X,µ). Suppose that f is essentially separable and
integrally bounded.

(1) If V is complete, then f is integrable.
(2) If V is quasi-complete and f is essentially bounded, then f is integrable.
(3) If µ(X) <∞ and the closure of the convex hull of f(X) is complete, then

f is integrable.

Note that in the Gelfand–Pettis approach of the theorem not only fewer func-
tions are allowed (see below), but under point (c) of the theorem one has to
require compactness instead of completeness.

Example 1.10. As an example, consider the case when X is a locally compact
Hausdorff space and µ a Radon measure. The space V is assumed to be quasi-
complete, or even weaker, have the property that the closure of the convex hull
of a compact set is complete. Then any compactly supported continuous map
f : X → V is Bochner-integrable. We thus get a map∫

X

: Cc(X, V )→ V.

This map is continuous when Cc(X, V ) is equipped with the usual inductive limit
topology.

Note that the account of [3] is explicitly bound to the case of this example,
whereas the Bochner construction given here allows the integration of more gen-
eral functions. Also in [5] one is restricted to Radon measures and can only inte-
grate functions which are continuous of compact support (up to null-functions).

The proof of the theorem will occupy the rest of the section.
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1.2. Bochner-approximable functions.

Definition 1.11. Let V be a locally convex topological vector space over the
complex field. Let (X,µ) be a measure space. A simple function is a function
s : X → V of the form

s =
n∑
j=1

1Aj
vj

for some measurable sets Aj ⊂ X of finite measure and some vj ∈ V . The integral
of the simple function s equals∫

X

s dµ =
n∑
j=1

µ(Aj)vj ∈ V.

A measurable function f : X → V is called Bochner-approximable, if there exists
a net (sj)j∈J of simple functions such that for every continuous seminorm p on V
one has ∫

X

p(f − sj) dµ → 0.

In that case the net (sj)j is called an approximating net.

Lemma 1.12 (net-free formulation). A measurable function f : X → V is
Bochner-approximable if and only if for every continuous seminorm p there exists
a simple function sp such that∫

X

p(f − sp) dµ < 1.

Proof. If an approximating net exists, the condition in the lemma is obvious. Now
suppose that the condition of the lemma is satisfied. The set of all continuous
seminorms has a natural partial order. Note that p ≤ q is equivalent to Up ⊃ Uq.
As every zero neighborhood contains a convex balanced zero neighborhood, the
set of continuous seminorms is directed. So the simple functions (sp)p form a net,
and this net will do the job. This follows from the fact that for every continuous
seminorm p and any ε > 0 the function 1

ε
p is again a continuous seminorm and

one has ∫
X

p(f − s 1
ε
p) dµ < ε. �

Theorem 1.13. Let f : X → V be Bochner-approximable. Then for each ap-
proximating net (sj)j∈J , the net of integrals

(∫
X
sj dµ

)
j

is a Cauchy net. If this

net converges for one approximating net, then it converges for every approxi-
mating net and the limit is uniquely a determined vector

∫
X
f dµ in V . In that

case we say that f is Bochner-integrable. If f is Bochner-intgeralbe, then so is
T (f) = T ◦ f for every continuous linear map T : V → W into another locally
convex space W . One then has

T

(∫
X

f dµ

)
=

∫
X

T (f) dµ.
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For every continuous seminorm p on V one has

p

(∫
X

f dµ

)
≤
∫
X

p(f) dµ.

In the case V = C, a function is Bochner integrable if and only if it is Lebesgue
integrable, in which case the two integrals coincide.

Proof. For a continuous seminorm p we have

p

(∫
X

si dµ−
∫
X

sj dµ

)
≤

∫
X

p(si − sj) dµ

≤
∫
X

p(si − f) dµ+

∫
X

p(f − sj) dµ.

This implies that the net of integrals is a Cauchy net. By the usual argument,
the limit does not depend on the choice of the net. Let T and (sj) be as in the
theorem. We claim that T ◦ sj = T (sj) is a net of simple functions in W which
approximates T (f). For this let q be a continuous seminorm on W . As T is
continuous, there exists a continuous seminorm p on V such that q(T (v)) ≤ p(v)
for every v ∈ V . We conclude∫

X

q(T (f)− T (sj)) dµ ≤
∫
X

p(f − sj) dµ.

So T (sj) indeed approximates T (f) and so

T

(∫
X

f dµ

)
= T

(
lim
j

∫
X

sj dµ

)
= lim

j

∫
X

T (sj) dµ =

∫
X

T (f) dµ.

The assertion about the case V = C is easy. For a continuous seminorm p we
have

p

(∫
X

f dµ

)
= p

(
lim
j

∫
X

sj dµ

)
= lim

j
p

(∫
X

sj dµ

)
≤ lim inf

j

∫
X

p(sj) dµ.

Let ε > 0. There exists j0 such that for every j ≥ j0 one has
∫
X
p(sj − f) dµ < ε.

As |p(sj)−p(f)| ≤ p(sj−f) we conclude p
(∫

X
f dµ

)
<
∫
X
p(f) dµ+ε. For ε→ 0

the claim follows. �

1.3. Integrable functions.

Lemma 1.14. If f is essentially separable, then for each continuous seminorm
p, the set Cp can be chosen inside the image f(X).

Proof. Let c ∈ Cp and let n ∈ N. If (c+ 1
n
Up) ∩ f(X) 6= ∅, we choose an element

y(c, n) in that set. Let Dp be the union of all these elements y(c, n). We claim

that f(X) ⊂ DP
(p)

. To prove this, let x ∈ X and n ∈ N. There exists c ∈ Cp



182 R. BECKMANN, A. DEITMAR

with p(f(x)−c) < 1
2n

. So (c+ 1
2n
Up)∩f(X) 6= ∅, i.e., the element y(c, 2n) ∈ f(X)

with p(y(c, 2n)− c) < 1
2n

exists. It follows that p(y(c, n)− f(x)) < 1
n
. �

The next theorem generalizes Theorems 3 and 6 of [12].

Theorem 1.15. A measurable function f : X → V is Bochner-approximable if
and only if

(1) f is essentially separable and
(2) f is integrally bounded.

If f(X) is relatively compact and µ(X) <∞, then f is Bochner-approximable.

Proof. Let f be Bochner-approximable. We show that f is essentially separable.
So let p be a continuous seminorm. For each given n ∈ N, there exists a simple
function sn : X → V with

∫
X
p(f − sn) dµ < 1

n
. Let Ep be the p-closure of the

vector space spanned by the union of the images of all sn, n ∈ N. Then Ep is
the p-closure of some countable set Cp, for instance, one can take the Q(i)-vector
space spanned by the images of all sn. For each n ∈ N the set

Nn =

{
x ∈ X : p(f(x), Ep) >

1

n

}
is a set of measure zero, where

p(v, Ep) = inf{p(v − e) : e ∈ Ep}.
The complement in X of the set f−1(Ep) is the union of all Nn, therefore a set
of measure zero, so f is essentially separable. As

∫
X
p(f − sj) dµ <∞ it follows

that
∫
X
p(f) dµ ≤

∫
X
p(f − sj) + p(sj) dµ <∞, so p(f) is integrable.

Now for the converse direction. Let p be a continuous seminorm. We will
attach to p a simple function sp with

∫
X
p(f − sp) dµ < 1. Then f is Bochner-

approximable by Lemma 1.12. In order to construct sp, let Cp = {c1, c2, . . . } be
the countable set and letNp ⊂ X be the nullset attached to p. WriteXp = XrNp.
For n ∈ N and δ > 0 let Aδn be the set of all x ∈ Xp such that p(f(x)) > δ and
p(f(x)− cn) < δ. To have a sequence of pairwise disjoint sets, define

Dδ
n = Aδm r

⋃
k<n

Aδk.

The set
⋃
nA

δ
n = ·⋃

nD
δ
n equals f−1(f(Xp) r δUp). Since p(f) is integrable, the

set ·
⋃
Dδ
n is of finite measure. Let sp,n =

∑n
j=1 1

D
1/n
j
cj. This is a simple function.

It is easy to see that the sequence p(sp,n − f) converges to 0 pointwise on the
set Xp. On that set we also have p(sp,n) ≤ 2p(f) by construction. So we get
p(f − sp,n) ≤ p(f) + p(sp,n) ≤ 3p(f), and by dominated convergence,∫

X

p(f − sp,n) dµ → 0.

In particular, there exists n0 ∈ N, such that for sp = sp,n0 one has
∫
X
p(f −

sp) dµ < 1.
Finally, assume that f(X) is relatively compact and µ(X) < ∞. Then for

any given continuous seminorm p, the set p(f(X)) is relatively compact, hence
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bounded, so p(f) is integrable since µ(X) <∞. Further, f is essentially separable
by Example 2.1. �

Theorem 1.16. (i) If V is complete, then every Bochner-approximable func-
tion in V is Bochner-integrable.

(ii) If V is quasi-complete, then every bounded Bochner-approximable function
in V is Bochner-integrable.

(iii) Let f : X → V be Bochner-approximable. If µ(X) < ∞ and the closure
of the convex hull of f(X) is complete, then f is Bochner-integrable.

Proof. (i) and (ii) are clear. For (iii) we may assume µ(X) = 1. By Lemma 1.14
the set Cp can be chosen inside f(X). According to the proof of Theorem 1.15
there exists an approximating net (sj)j∈J such that each sj takes values in the
sets Cp for varying p, hence sj(X) ⊂ f(X). Now write

sj =
n∑
k=1

1Ak
vk,

then each vk lies in f(X) and X = ·
⋃
kAk. Therefore,∫

X

sj dµ =
n∑
k=1

µ(Ak)vk

is a convex-combination of elements of f(X), so lies in the convex hull of f(X).
The closure of this convex hull being complete, the Cauchy-net sj converges. �

2. Traces and Determinants

An operator T on a Hilbert space H is called a trace class operator if its singular
values are summable [11, 4]. In this section we find that this is equivalent with the
net of “principal trace minors” being convergent. We take that as a motivation
to then define the notion of a determinant class operator to be one for which
the determinantal principal minors converge. It turns out that in the normal
case these are exactly those opertors A, for which 1− A is of trace class. In the
non-normal case the correspoinding assertion remains an open question.

2.1. Trace class. Let T : H → H be a bounded operator on a Hilbert space H.
For a finite-dimensional subspace F ⊂ H let TF : F → F be given by

TF : F ↪→ H
T−→ H � F,

where the first arrow is the inclusion of F in H and the last one is orthogonal
projection PrF onto F .

Theorem 2.1. Let T : H → H be a bounded operator on a Hilbert space H.
Then T is trace class if and only if the limit of “principal trace minors”:

lim
F

tr(TF )

exists. In this case the limit equals the trace of T .
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Proof. Let T : H → H be a bounded operator and write τ(T ) for the limit in the
theorem. Setting A = 1

2
(T +T ∗) and B = 1

2i
(T −T∗), the operators A and B are

bounded self-adjoint and T = A + iB. Now T is trace class if and only if A and
B are. We first show that τ(T ) exists if and only if τ(A) and τ(B) exists. Let
F ⊂ H be a finite-dimensional subspace. Let e1, . . . , en be an orthonormal basis
of F , then

tr(TF ) =
n∑
j=1

〈Tej, ej〉 ,

from which we deduce

tr ((T ∗)F ) = tr(TF ).

It follows that if τ(T ) exists, then τ(T ∗) exists and equals τ(T ). Further it follows
that if τ(T ) exists, then so do τ(A) and τ(B) and vice versa. So, in order to prove
the theorem, it suffices to assume that T is self-adjoint. Then, by the spectral
theorem, there exists positive operators T+ and T−, commuting with T and each
other such that T = T+ − T−, which means that it suffices to prove the theorem
in the case that T is positive.

Assume first that T is trace class and let λ1 ≥ λ2 ≥ · · · ≥ 0 be its eigenvalues
counted with multiplicities. For given ε > 0 there exists N ∈ N such that∑∞

j=N+1 λj < ε. Let F0 be the span of v1, . . . , vN where the vj are linearly
independent and satisfy Tvj = λjvj. Let F ⊃ F0 be a finite-dimensional subspace
of H, then

0 ≤ tr(T )− tr(TF ) ≤ tr(T )− tr(TF0) =
∞∑

j=N+1

λj < ε.

This means that tr(TF ) converges to tr(T ).
Now for the other direction assume that T ≥ 0 and the limit of tr(TF ) exists.

Let α > 0 and let W be the image of the spectral projection µT (α,∞), where
µT is the spectral measure of T . This means that W and W⊥ are stable under
T , that T has norm ≤ α on W⊥ and 〈Tw,w〉 ≥ α 〈w,w〉 holds for every w ∈ W .
The existence of limF tr(TF ) implies that W must be finite-dimensional, hence T
diagonalizes on W and by letting α tend to zero we find that T is compact and
as the limit of the traces exists, T must be trace class. �

2.2. Determinant class. Let A : H → H be a bounded operator on a Hilbert
space H. We say that A is of determinant class, if the limit of principal minors

det(A) = lim
F

det(AF )

exists in C and is 6= 0, where the limit is extended over the net det(AF ) of complex
numbers indexed by the directed set of all finite-dimensional subspaces F of H.

Let T be a trace class operator and recall the Fredholm determinant

det(1− T ) =
∞∑
k=0

(−1)ktr

(
k∧
T

)
,
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where the sum converges absolutely, moreover, one has

∞∑
k=0

‖
k∧
T ‖tr <∞,

where ‖ . ‖tr is the trace norm, see [11]. One always has |tr(T )| ≤‖ T ‖tr= tr(|T |)
and ‖ ST ‖tr≤‖ S ‖‖ T ‖tr, where S is any bounded operator. If T is normal and
λ1, . . . are the eigenvalues counted with multiplicity, then one has

det(1− T ) =
∞∏
j=1

(1− λj)

and the product converges absolutely. If S, T are trace class, then the Fredholm
determinant of (1− S)(1− T ) exists and

det(1− S)(1− T ) = det(1− S) det(1− T ).

Proposition 2.2. Let T be a trace class operator, then A = 1− T is of determi-
nant class and the determinant equals the Fredholm determinant.

Proof. Let F ⊂ H be finite-dimensional and let Pk,F be the orthogonal projection

from
∧kH →

∧k F . Then

|tr

(
k∧
TF

)
| ≤‖

k∧
TF ‖tr =‖ Pk,F ∧k T ‖tr ≤‖

k∧
T ‖tr.

As the directed set of all spaces of the form
∧k F is strongly cofinal in the set

of all finite dimensional subspaces of
∧
H, it follows by Theorem 2.1, that the

trace tr
(∧k TF

)
converges to tr

(∧k T
)

as F → H. We now argue that the

determinant

det(1− TF ) =
∞∑
k=0

(−1)ktr

(
k∧
TF

)
converges to det(1−T ) by dominated convergence. Of course there is no theorem
of dominated convergence for nets in general, however, if the measure space is
countable, there is. We have formulated it in the next lemma. The proof of the
proposition is finished. �

Lemma 2.3 (Dominated convergence for nets on countable spaces). Let I 3
α → aα be a net of sequences (aα,k)k∈N of complex numbers. Assume that the
net converges pointwise, i.e., aα,k → ak as α → ∞ for some ak ∈ C. Assume
further that there exists a sequence gk ≥ 0 with |aα,k| ≤ gk for all α ∈ I and∑∞

k=1 gk <∞. Then the sum
∑∞

k=1 aα,k converges to
∑∞

k=1 ak as α→∞.

Proof. For given ε > 0 there is k0 such that
∑∞

k=k0+1 gk < ε/4. Next there exists
α0 ∈ I such that for all α ≥ α0 one has

|aα,k − ak| <
ε

2k+1
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holds for every 1 ≤ k ≤ k0. For every α ≥ α0 it follows that∣∣∣∣∣
∞∑
k=1

aα,k −
∞∑
k=1

ak

∣∣∣∣∣ ≤
k0∑
k=1

|aα,k − ak|+
∞∑

k=k0+1

|aα,k|+ |ak|

≤
k0∑
k=1

ε

2k+1
+ 2

∞∑
k=k0+1

gk

<
ε

2
+
ε

2
= ε. �

Lemma 2.4. Let A : H → H be of determinant class and assume that A respects
an orthogonal decomposition H = U ⊕U⊥ for some closed subspace U . Then AU
and AU⊥ are of determinant class and one has

det(A) = det(AU) det(AU⊥).

As a side result we note that if ε > 0 and F ⊂ H is s finite-dimensional subspace
such that | det(AF ′)−det(A)| < ε| det(A)|/2 for every finite dimensional F ′ ⊃ F ,
then we have

| det(AFU
)− det(AU)| ≤ ε| det(AU)|.

Proof. Let ε > 0 smaller than | det(A)| and choose a finite-dimensional space
F ⊂ H such that | det(AF ′)− det(A)| < ε/2 for every finite-dimensional F ′ ⊃ F .
Replacing F by PrU(F ) ⊕ PrU⊥(F ) we may assume that F = FU ⊕ FU⊥ , where
FU = F ∩U and FU⊥ = F ∩U⊥. Let then F 1

U be any finite dimensional subspace
of U containing FU . Setting F 1 = F 1

U ⊕ FU⊥ we then have

| det(AF 1
U

) det(AF
U⊥

)− det(A)| = | det(AF 1)− det(A)| < ε/2.

Note that this implies that | det(AF 1
U

) det(AF
U⊥

)| > |det(A)|
2

. Since the same holds

with FU instead of F 1
U we get

| det(AF 1
U

) det(AF
U⊥

)− det(AFU
) det(AF

U⊥
)| < ε

or | det(AF 1
U

) − det(AFU
)| < ε/| det(AF

U⊥
)|. So the net F 1

U 7→ det(AF 1
U

) is
bounded, hence has a convergent subnet with a non-zero limit which we call
det(AU). The same holds true for the net F 2

U⊥ 7→ det(A2
F
U⊥

) which has a sub-

net converging to a complex number we call det(AU⊥). Taking the limit, we get
| det(AU) det(AU⊥) − det(A)| ≤ ε/2 and as ε is arbitrary we find that the limits
are unique, giving the claim. �

Theorem 2.5. Let A : H → H be a normal operator of determinant class. Then
T = 1−A is of trace class and the determinant det(A) = det(1−T ) is a Fredholm
determinant.

Proof. Let µA be the spectral measure of A, so µA is a projection valued measure
defined on the Borel σ-algebra of C, supported on the spectrum of A, such that
A =

∫
C t dµA(t). Further one has µA(C) = IdH . We first show that A has discrete

eigenvalue spectrum with only accumulation point 1. For this it suffices to show
that for each z0 ∈ Cr{1} there exists a closed ball B = Br(z0) around z0 of some
radius r > 0 such that µA(B)H is finite-dimensional. Suppose first that |z0| > 1.
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Then B can be chosen in a way that for every z ∈ B one has |z| ≥ θ for some
fixed θ > 1. The orthogonal decomposition

H = µA(B)H ⊕ µA(CrB)H

is stable under A and by Lemma 2.4 we conclude that AW is determinant class,
where W = µA(B)H. The spectrum of the normal operator AW is contained in
the convex compact set B and we claim that for every finite-dimensional subspace
F ⊂ W the eigenvalues of AF lie in the set B. For this let λ be an eigenvalue
and v ∈ F an eigenvector of norm one, then

λ = λ 〈v, v〉 = 〈AFv, v〉 =
〈

Pr
F
Av, v

〉
=
〈
Av,Pr

F
v
〉

= 〈Av, v〉 =

∫
B

t 〈dµA(t)v, v〉 .

As 〈µA(t)v, v〉 ∈ [0, 1] and
∫
B
〈dµA(t)v, v〉 = 1, λ lies in the closed convex hull of

B which is B itself. Therefore, if F ⊂ W is a subspace of dimension N it follows
that AF has eigenvalues λ1, . . . , λN each of which satisfies |λj| ≥ θ. Therefore

| det(AF )| = |λ1 · · ·λN | ≥ θN .

As N increases, this tends to infinity contradicting convergence, so N must be
bounded. The case |z0| < 1 is treated similarly.

The case |z0| = 1 is more subtle. In this case assume that the space W (r) =
µA(Br(z0))H is infinite-dimensional for every r > 0. We start with sufficiently
small ε > 0 and choose a finite-dimensional subspace F ⊂ H such that | det(AF )−
det(A)| < ε| det(A)|/2. Let N = dimF and choose 0 < r < 1 so small that
Br(z0)

N is contained in Br(z
N
0 ) for some small δ > 0 which we determine later.

Let U = W (r) and set F0 = PrU(F ). We then fix a vector v1 ∈ W (r/2) linearly
independent from F0, next a vector v2 ∈ W (r/4) linearly independent from the
span of F0 and v1 and so on. In the n-th step we choose a vector vn ∈ W (r/2n)
linearly independent from F0 and v1, . . . , vn−1. Let Fn denote the span of F0 and
v1, . . . , vn. By Lemma 2.4 we get

| det(AFn)− det(AU)| ≤ ε| det(AU)|

for every n. Using the assumption, we are now going to contradict this estimate.
Let λ1, . . . , λN+n be the eigenvalues of AFn ordered as follows: As the space
W (r/2n) is stable under A, there must be an eigenvalue λN+n lying in Br/2n(z0).
Likewise, λN+n−1 can be assumed in Br/2n−1(z0) and so on. Finally λ1, . . . , λN ∈
Br(z0). As we have |λ1 · · ·λN − zN0 | ≤ δ and |λN+j − z0| ≤ r/2j and |z0| = 1 we
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get

|λ1 · · ·λN+n − zN+n
0 | ≤ |λ1 · · ·λN+n − zN0 λN+1 · · ·λN+n|

+ |λN+1 · · ·λN+n − zn0 |
≤ δ|λN+1 · · ·λN+n|

+ |λN+1 · · ·λN+n − z0λN+2 · · ·λN+n|
+ |λN+2 · · ·λN+n − zn−10 |
≤ δ|λN+1 · · ·λN+n|

+
r

2
|λN+2 · · ·λN+n|

+ |λN+2 · · ·λN+n − zn−10 |

This iterates to

|λ1 · · ·λN+n − zN+n
0 | ≤ δ|λN+1 · · ·λN+n|

+
r

2
|λN+2 · · ·λN+n|

+
r

4
|λN+3 · · ·λN+n|

...

+
r

2n
.

Now |λN+1 · · ·λN+n| ≤ (1 + 1
2
)(1 + 1

4
) · · · . So setting C =

∏∞
j=1(1 + 1

2j
) we have

| det(AFn)− zN+n
0 | = |λ1 · · ·λN+n − zN+n

0 |

≤ δC + C
∞∑
j=1

1

2j

= (δ + r)C.

Putting things together we arrive at

| det(AU)− zN+n
0 | ≤ ε| det(AU)|+ (δ + r)C.

Choosing ε and δ small, we arrive at a contradiction.
Let σ(A) denote the spectrum of the normal operator A. We deduce that

σ(A)r{1} consists of eigenvalues only, which can only accumulate at 1. Let F ⊂
H be a finite-dimensional subspace such that | det(AF ′) − det(A)| < | det(A)|/2
for every finite dimensional subspace F ′ with F ′ ⊃ F . Let v1, v2, . . . be a maximal
family of normalized orthogonal eigenvectors for A such that the span of v1, v2, . . .
has zero intersection with F . As F is finite-dimensional, only finitely many
eigenvalues of A are left out. For each n ∈ N denote by Fn the span of F together
with v1, . . . , vn. Then

|λ1 · · ·λn det(AF )− det(A)| < | det(A)|/2



TWO APPLICATIONS OF NETS 189

for every n, or

|λ1 · · ·λn −
det(A)

det(AF )
| < | det(A)|

2| det(AF )|
.

So the sequence λ1 · · ·λn remains bounded. As the sequence λj tends to 1 and

by increasing F we can assume that det(A)
det(AF )

is as close to 1 as we want, we can

assume that

log(λ1 · · ·λn) =
n∑
j=1

log(λj),

and the latter remains bounded for all n, even if we change the order of the λj.
This, however implies that the real part of the series remains bounded by a bound
independent of reordering, so it must converge absolutely. The same holde for
the imaginary part and so the series

∑∞
n=1 log(λj) converges absolutely, which

implies the theorem. �

Proposition 2.6. Let A,B be normal determinant class operators. Then AB is
of determinant class and

det(AB) = det(A) det(B).

Proof. By the theorem we can write A = 1 − S and B = 1 − T with trace class
operators S, T . Then AB = (1− S)(1− T ) = 1− S − T + ST and S + T − ST
is of trace class again. The equation det(AB) = det(A) det(B) follows form the
properties of the Fredholm determinant [11]. �

Questions.

• Let A be of determinant class. Does it follow that 1−A is of trace class?
• Suppose that A,B are determinant class. Does it follow that AB and
A⊕B are determinant class?
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