Open Access
2014 On reversing of the modified Young inequality
A. Salemi, A. Sheikh Hosseini
Ann. Funct. Anal. 5(1): 70-76 (2014). DOI: 10.15352/afa/1391614571


In the present paper, by Haagerup theorem, we show that if $A \in \mathbb{M}_{n}$ is a non scalar strictly positive matrix and $\nu \in (0,1)$ be a real number such that $ \nu \neq \frac{1}{2},$ then there exists $X \in \mathbb{M}_{n}$ such that $$\|A^{\nu}XA^{1-\nu}\| > \| \nu AX + (1- \nu)XA\|.$$


Download Citation

A. Salemi. A. Sheikh Hosseini. "On reversing of the modified Young inequality." Ann. Funct. Anal. 5 (1) 70 - 76, 2014.


Published: 2014
First available in Project Euclid: 5 February 2014

zbMATH: 1280.15013
MathSciNet: MR3119114
Digital Object Identifier: 10.15352/afa/1391614571

Primary: 15A60
Secondary: 15A42 , 47A30

Keywords: numerical radius , spectral norm , strictly positive matrix , Young inequality

Rights: Copyright © 2014 Tusi Mathematical Research Group

Vol.5 • No. 1 • 2014
Back to Top