Open Access
2013 On the Suzuki nonexpansive-type mappings
Anna Betiuk-Pilarska, Andrzej Wiśnicki
Ann. Funct. Anal. 4(2): 72-86 (2013). DOI: 10.15352/afa/1399899526

Abstract

‎It is shown that if $C$ is a nonempty convex and weakly compact subset of a‎ ‎Banach space $X$ with $M(X)>1$ and $T:C\rightarrow C$ satisfies condition $%‎ ‎(C)$ or is continuous and satisfies condition $(C_{\lambda })$ for some $%‎ ‎\lambda \in (0,1),$ then $T$ has a fixed point‎. ‎In particular‎, ‎our theorem‎ ‎holds for uniformly nonsquare Banach spaces‎. ‎A similar statement is proved‎ ‎for nearly uniformly noncreasy spaces‎.

Citation

Download Citation

Anna Betiuk-Pilarska. Andrzej Wiśnicki. "On the Suzuki nonexpansive-type mappings." Ann. Funct. Anal. 4 (2) 72 - 86, 2013. https://doi.org/10.15352/afa/1399899526

Information

Published: 2013
First available in Project Euclid: 12 May 2014

zbMATH: 1276.47069
MathSciNet: MR3034931
Digital Object Identifier: 10.15352/afa/1399899526

Subjects:
Primary: 47H10
Secondary: 46B20 , 47H09

Keywords: fixed point , Nonexpansive mapping , ‎Uniformly noncreasy space , ‎Uniformly nonsquare‎ ‎Banach space

Rights: Copyright © 2013 Tusi Mathematical Research Group

Vol.4 • No. 2 • 2013
Back to Top