
The Annals of Applied Statistics
2015, Vol. 9, No. 1, 166–199
DOI: 10.1214/14-AOAS800
© Institute of Mathematical Statistics, 2015

ESTIMATING NETWORK DEGREE DISTRIBUTIONS UNDER
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Networks are a popular tool for representing elements in a system and
their interconnectedness. Many observed networks can be viewed as only
samples of some true underlying network. Such is frequently the case, for
example, in the monitoring and study of massive, online social networks.
We study the problem of how to estimate the degree distribution—an object
of fundamental interest—of a true underlying network from its sampled net-
work. In particular, we show that this problem can be formulated as an inverse
problem. Playing a key role in this formulation is a matrix relating the expec-
tation of our sampled degree distribution to the true underlying degree distri-
bution. Under many network sampling designs, this matrix can be defined en-
tirely in terms of the design and is found to be ill-conditioned. As a result, our
inverse problem frequently is ill-posed. Accordingly, we offer a constrained,
penalized weighted least-squares approach to solving this problem. A Monte
Carlo variant of Stein’s unbiased risk estimation (SURE) is used to select the
penalization parameter. We explore the behavior of our resulting estimator of
network degree distribution in simulation, using a variety of combinations of
network models and sampling regimes. In addition, we demonstrate the abil-
ity of our method to accurately reconstruct the degree distributions of various
sub-communities within online social networks corresponding to Friendster,
Orkut and LiveJournal. Overall, our results show that the true degree distri-
butions from both homogeneous and inhomogeneous networks can be recov-
ered with substantially greater accuracy than reflected in the empirical degree
distribution resulting from the original sampling.

1. Introduction. Many networks observed or investigated today are samples
of much larger networks [Kolaczyk (2009), Chapter 5]. Let G = (V ,E) be a graph
representing a network, with vertex set V and edge set E. Similarly, let G∗ =
(V ∗,E∗) denote a subgraph of G, representing a part of the network obtained
through some sort of network sampling. Although practitioners typically speak
of the network when presenting empirical results, frequently it is only a sampled
version G∗ (or some function thereof, such as when sampling yields estimates of
vertex degrees directly) of some true underlying network G that is available to
them, either by default or design. A central statistical question in such studies,
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therefore, is how much the properties of the sampled network reflect those of the
true network.

Sampling is of particular interest in the context of online social networks. One
reason for such interest is that these networks are usually very large. For exam-
ple, social networks from Friendster, LiveJournal, Orkut and Amazon have been
studied in Yang and Leskovec (2012) having, respectively, 117.7M,4.0M,3.0M

and 0.33M vertices and 2586.1M , 34.9M , 117.2M and 0.92M edges. Similarly in
Ribeiro and Towsley (2010), networks from Flickr and Youtube were studied hav-
ing millions of vertices and edges as well. The large size of these social networks
makes it costly querying the entire network, particularly if the goal is to monitor
these networks regularly over time. In addition, the decentralized nature of many
such networks frequently means that few—if any—people or organizations have
complete access to the data.

The topic of network sampling goes back at least to the seminal work of Ove
Frank and his colleagues, starting in the late 1960s and extending into the mid-
1980s. See Frank (2005), for example, for a relatively recent survey of that lit-
erature. With the modern explosion of interest in complex networks, there was a
resurgence of interest in sampling. Initially, the focus was on the simple awareness,
and then understanding of whether and how sampling affects the extent to which
the shape of the degree distribution of the observed network G∗ reflects that of the
true network G. Seminal work during this period includes an important empirical
study by Lakhina et al. (2003), in the context of traceroute sampling in the Internet,
with follow-up theoretical work by Achlioptas et al. (2005), and work by Stumpf
and colleagues [e.g., Stumpf and Wiuf (2005), Stumpf, Wiuf and May (2005)],
motivated, among other things, by networks arising in computational biology.

The focus on sampling of online social networks, as described above, is ar-
guably the most recent direction in this literature, with a flurry of papers appearing
in just the past five years. One of the first papers to look closely at the implications
of sampling in very large social media networks (among others) was by Leskovec
and Faloutsos (2006), where attention was primarily on more classical network
sampling designs (e.g., so-called induced and incident subgraph sampling). This
was followed by papers like those by Hubler et al. (2008) and Ribeiro and Towsley
(2010), wherein samplers based on principles of the Monte Carlo Markov chain
were introduced and explored. Other examples in this highly active area include
Ahn et al. (2007), Ahmed et al. (2010), Ahmed, Neville and Kompella (2011),
Ahmed, Neville and Kompella (2012), Maiya and Berger-Wolf (2010a), Maiya
and Berger-Wolf (2010b), Li and Yeh (2011), Yoon et al. (2011), Shi et al. (2008),
Mislove et al. (2007), Lu and Bressan (2012), Lim et al. (2011), Gjoka et al.
(2010), Gjoka et al. (2011), Wang et al. (2011), Zhou et al. (2011), Kurant et al.
(2011), Kurant, Markopoulou and Thiran (2011), Salehi et al. (2011), Mohaisen
et al. (2012), and Jin et al. (2011).

In all of these papers, there is a keen interest in understanding the extent to
which characteristics of the network G∗ are reflective of those of G. Typical char-
acteristics of interest include degree distribution, density, diameter, the distribution
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of the clustering coefficient, the distribution of sizes of weakly (strongly) con-
nected components, Hop-plot, distribution of singular values (vectors) of the net-
work adjacency matrix, the graphlet distribution, the vertex (edge) label density
and the assortative mixing coefficient.

Here, in this paper, the network property we focus on is degree distribution. The
degree distribution of a network G, denoted by {fd}, specifies the proportion fd

of vertices to have exactly d incident edges, for d = 0,1, . . . . It is arguably the
most fundamental quantity associated with a network and, importantly, one that
may be adversely affected by sampling, sometimes dramatically so [e.g., Lakhina
et al. (2003), Stumpf, Wiuf and May (2005)], hence, the following basic question:
how do we recover the degree distribution of some true underlying network G,
given only the information provided by the sampled network G∗? For simplicity of
exposition, hereafter we use the term true degree distribution and observed degree
distribution to represent the degree distribution of G and G∗, respectively.

Frank (1980, 1981) shows that, under certain network sampling designs, the
expectation of the observed degree relative frequencies is a linear combination of
the true degree relative frequencies. Let f = (fk) and f∗ = (f ∗

k ) be the vectors of
true and observed degree frequencies in G and G∗, respectively. Then

E
[
f∗

] = P̃ f,(1.1)

where P̃ depends fully on the sampling scheme and not on the network itself. Thus,
a natural unbiased estimator of f would seem to be simply P̃ −1f∗. However, this
estimator suffers from two issues—P̃ typically is not invertible in practice and,
even when it is, P̃ −1f∗ may not be nonnegative.

From the perspective of nonparametric function and density estimation, what we
face is a linear inverse problem. One which, as we show, may potentially be quite
ill-posed, in the sense that the matrix P̃ can be quite ill-conditioned. As a result, the
estimation of f must be handled with care, since naive inversion of ill-conditioned
operators in inverse problems typically will inflate the “noise” accompanying the
process of obtaining measurements, often with devastating effects on our ability
to recover the underlying object (e.g., function or density). Here we offer, to the
best of our knowledge, the first principled estimator of a true degree distribution f
from a sampled degree distribution f∗. In particular, we propose a constrained, pe-
nalized weighted least squares estimator, which, in particular, produces estimates
that are nonnegative (by constraint) and invert the matrix P̃ in a stable fashion (by
construction), in a manner that encourages smooth solutions (through a penalty).

The rest of the paper is organized as follows. In Section 2 we provide a detailed
characterization of our inverse problem, discussing the nature of the operator and
the distribution of noise. In Section 3 we describe our proposed approach to solving
this inverse problem, including a method for the automatic selection of the penal-
ization parameter. In Section 4 we provide results of a simulation study, in which
we study the impact on the performance of our estimator of various parameters,
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including the total number of vertices, the density of the network, sampling rates
and network types. In Section 5 we return to the primary application of interest
here, that of monitoring online social networks. There we demonstrate the ability
of our method to simultaneously reconstruct accurately the degree distributions of
various sub-communities within online social networks corresponding to Friend-
ster, Orkut and LiveJournal. Finally, some additional discussion and conclusions
may be found in Section 6.

2. Characterizing the inverse problem. In solving inverse problems gener-
ally, it is important to understand the nature of both the operator and the noise.
Here the operator, in the form of the matrix P̃ , will derive entirely from the net-
work sampling design. At the same time, the “noise” (or, more formally, the ran-
domness in our measurements) also derives from the sampling design. This linking
of both operator and noise to our sampling lends a certain element of uniqueness
to our particular inverse problem, the nature of which we aim to characterize in
this section.

2.1. Nature of the problem. To begin with, assume we know the total num-
ber of vertices nv in the underlying network. This is a reasonable assumption in
the cases of, for example, sampling a phone call network or surveying among a
class of students for their interactions. It is also not unreasonable in the context
of many online social networks where, for example, this may either be readily
available to those who own the network or reported to the community as a basic
summary statistic (e.g., the number of members with active pages on Facebook).
Thus, we know the degree distribution f if and only if we know the degree counts
N = (N0,N1, . . . ,NM), where Nk is the number of vertices of degree k, and M is
the maximum degree in the true network G. In principle, the largest possible value
for M is nv − 1 in a simple network where no multiple edges or self-loops exist,
although in practice we may have knowledge that it is smaller.

Under a given network sampling design, let P(i, j) be the probability that a
vertex of degree j in G is selected and observed to have degree i in G∗. Following
Frank (1980, 1981), we will assume that the matrix P = [P(i, j)] of such proba-
bilities depends only on the sampling design and not, in particular, on the network
G itself. Then the equation

E
[
N∗] = P N(2.1)

holds, in analogy to (1.1), where N∗ = (N∗
0 ,N∗

1 , . . . ,N∗
M) is the vector of observed

degree counts in G∗ and P = n∗
v

nv
P̃ replaces P̃ . Without loss of generality, we will

restrict our attention to this formulation of our problem for the remainder of the
paper.

It is useful to proceed with our characterization within the context of the naive
estimator of N obtained simply by inverting P , that is,

N̂naive = P −1N∗,(2.2)
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where, again, we note that a formal inverse may or may not be well-defined. The
singular value decomposition (SVD) is a canonical tool for studying the behavior
of this estimator. Let P = UDV T , where D = diag(d0, d1, . . . , dM) is a diagonal
matrix of singular values, and U = (u0,u1, . . . ,uM), V = (v0,v1, . . . ,vM) are
orthogonal matrices of the left- and right-singular vectors, respectively. Then

N̂naive =
M∑
i=0

[
1

di

uT
i N∗

]
vi(2.3)

decomposes the naive estimator (2.2) into a linear combination of the right singular
vectors of P .

The quality of this estimator is determined, in part, by the extent to which the
vector N may be approximated well by such linear combinations. In general, the
right singular vectors vi vary in smoothness, from smoother behavior (i.e., low-
frequency) at small values of i to less smooth behavior (i.e., high-frequency) at
larger values of i. Since most degree distributions encountered in practice, as well
those induced through common choices of random graph models (some examples
of which we use in Section 4), are relatively smooth, typically with either expo-
nential or power-law behavior in the tails, intuitively it is the first handful of right
singular vectors upon which a sensible estimator should be based. The stability of
this estimator can be summarized through the condition number of P , that is, the
ratio of the largest to smallest singular values. Larger condition numbers suggest
greater instability in the estimator. Intuitively, for unstable matrices P , the singu-
lar values di at higher indices i are, comparatively, quite small. As a result, the
estimator in (2.3) will put disproportionately large weight on contributions from
the latter (i.e., high-frequency) singular vectors. The end result is an estimator that
can oscillate in a decidedly unappealing manner, as illustrated in Figure 1.

FIG. 1. Left: ER graph with 100 vertices and 500 edges. Right: Naive estimate of degree distribu-
tion, according to equation (2.2). Data drawn according to induced subgraph sampling with sam-
pling rate p = 60%.
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Since the operator P plays such an important role in both the shape and the
stability of the estimator (and, by extension, more sensible modifications of the
estimator, such as we offer below), and P in turns is determined by the sampling
design, we examine a handful of canonical examples of sampling designs and their
operators in the following subsection.

2.2. Common network sampling designs and the operator P . Here we look
at a few common network sampling designs and their corresponding P matrix.
We consider them ordered from simpler to more complex. We refer readers to
Kolaczyk (2009, Chapter 5) for additional background on network sampling and a
more comprehensive list of sampling designs.

2.2.1. Ego-centric and one-wave snowball sampling. Ego-centric sampling
(also called unlabeled star sampling) is a simple, nonadaptive (conventional) sam-
pling design. As Handcock and Gile (2010) write that “[a] sampling design is
conventional if it does not use information collected during the survey to direct
subsequent sampling of individuals. . . [and] a sampling design [is] adaptive if it
uses information collected during the survey to direct subsequent sampling, but the
sampling design depends only on the observed data.” Under ego-centric sampling,
first a set of vertices is selected according to independent Bernoulli(p) trials at
each vertex. Then all edges incident to the selected vertices are observed. In this
case, the operator P is a diagonal matrix with the sampling rate p at each diagonal
position, that is,

Pego(i, j) =
{

p, for i = j = 0,1, . . . ,M ,

0, for i, j = 0, . . . ,M; i �= j .
(2.4)

A natural extension of this concept is one-wave snowball sampling. Here, af-
ter an initial selection of vertices, there is a subsequent selection of additional
vertices, using the information obtained from the initial selection. Therefore, one-
wave snowball sampling is an adaptive sampling design. The initial selection is
again done according to independent Bernoulli(p) trials. The subsequent selection
contains all vertices that have at least one connection with a vertex in the initial set.
Similar to ego-centric sampling, all edges incident to vertices selected in either of
the two sets are then observed, so the operator P is again a diagonal matrix, with
entries

Psnow(i, j) =
{

1 − (1 − p)i+1, for i = j = 0,1, . . . ,M ,

0, for i, j = 0, . . . ,M; i �= j .
(2.5)

These two sampling designs (as well as multi-wave snowball sampling and other
variations) are common in social network studies, where, for example, a selection
of individuals are interviewed and asked to nominate their connections or partners.
Readers can refer to Rolls et al. (2012) for more details, in the context of networks
of injecting drug users. We note that the adaptive designs we consider here are the
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textbook versions and not complicated adaptations that might sometimes be used
in practice due to resource limitations for following links. Even so, the standard
and simple designs we consider with known and constant matrix P would be the
logical point of departure for research on correcting the sampling bias of the degree
distribution in more complex adaptive designs.

For a diagonal P matrix, the singular values are equal to the diagonal ele-
ments. Both the left and right singular vectors are the canonical set of basis vectors
{ei}M+1

i=1 , where ei contains a 1 at the ith entry and 0 at all the other entries. Since
Pego = I × p, where I is the identity matrix, Pego is not ill-conditioned at all. To
estimate the degree count vector N, we need only scale the observed degree count
vector N∗ by 1/p. That is, the naive estimator is N̂naive = N∗/p.

In one-wave snowball sampling, the observed degree counts are biased, because
in the second round of vertex selection, there is more chance to select the vertices
that have more connections. The observed degree count vector therefore can be
thought of as moving to the right of the true degree count vector. Hence, at a mini-
mum, a good estimator should correct the observations by moving the distribution
back to the left. How difficult this task may be is summarized by the condition
number of Psnow, which is equal to

Psnow(M,M)

Psnow(0,0)
= 1 − (1 − p)M+1

1 − (1 − p)
= 1 − (1 − p)M+1

p
,(2.6)

and therefore depends on the relationship between the expected proportion p of
vertices sampled initially and the maximum degree M . In the case where p is
fixed, as M increases, the condition number is upper bounded by 1

p
. On the other

hand, if Mp = o(1), using the approximation (1 − p)M+1 ≈ 1 − (M + 1)p, we
find that the condition number behaves as (M + 1).

These observations suggest that, for instance, under low sampling rates the in-
verse problem is increasingly ill-posed for estimating degree distributions of heav-
ier tails. Also, the bounds on the condition numbers suggest that, in contrast to
estimation of the mean from a sample from a finite population, where the accu-
racy depends on the sample size rather than the fraction of the population that is
sampled, for estimation of complex properties of networks the accuracy depends
strongly on the fraction of the population that is sampled.

2.2.2. Induced and incident subgraph sampling. These two sampling designs
are both nonadaptive and analogous in spirit, differing only in the order of selection
of vertices and edges. In induced subgraph sampling, a set of vertices is selected as
independent Bernoulli(p) trials (other variations are possible—see below). Then,
all edges between selected vertices are observed, that is, we observe the subgraph
induced by this vertex subset. This sampling scheme has been used in the analysis
of technological and biological networks [Stumpf and Wiuf (2005)]. Conversely,
under incident subgraph sampling we select edges as independent Bernoulli(p)

trials and we then observe all vertices incident to at least one selected edge.
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The P matrix for induced subgraph sampling is

Pind(i, j) =
⎧⎨
⎩

(
j

i

)
pi+1(1 − p)j−i , for 0 ≤ i ≤ j ≤ M ,

0, for 0 ≤ j < i ≤ M ,
(2.7)

while that for incident subgraph sampling is

Pinc(i, j) =
⎧⎨
⎩

(
j

i

)
pi(1 − p)j−i , for 1 ≤ i ≤ j ≤ M ,

0, for 0 ≤ j < i ≤ M .
(2.8)

Notice that for incident subgraph sampling the index i starts from 1, because
there are no isolated vertices in the sample.

These two sampling designs are widely studied in literature, for example, in
Stumpf and Wiuf (2005), Leskovec and Faloutsos (2006), Ahmed, Neville and
Kompella (2011), and Kurant et al. (2012), to name a few. In some cases, simple
random sampling (SRS) is used instead of Bernoulli sampling to select the initial
vertices or edges. However, under appropriate calibration of p, the former can be
well approximated by the latter for large networks and small to moderate p. So,
without loss of generality, we ignore this variant for the purposes of exposition.

Unlike ego-centric and one-wave snowball sampling, the structure of the opera-
tor under induced/incident subgraph sampling can cause severe problems if we try
to invert it naively. Because the structure of Pinc is very similar to Pind, we only
analyze Pind here. The condition number in this case is equal to p−M and so, as
the sampling rate p goes down or the maximum degree M increases, the operator
P becomes more ill-conditioned. In real-world situations, such as the monitoring
of online social networks, sampling rates are typically low (e.g., 10–20%) and M

is typically large (e.g., on the order of 100’s or 1000’s), and thus P is decidedly
ill-conditioned and effectively not invertible. The overall pattern of decay of the
singular values under induced subgraph sampling is illustrated in Figure 2.

FIG. 2. Singular values decay under induced subgraph sampling. M = 20.
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FIG. 3. The first 12 right singular vectors under induced subgraph sampling, ordered by singular
values from big to small: maximum degree M = 20, sampling rate p = 20%.

Recall that the decomposition in (2.3) shows the naive estimator to be a linear
combination of the right singular vectors vi , with weights determined in part by
the inner product of the observations N∗ with the left singular vectors ui . Exami-
nation of these vectors can provide additional insight into the expected behavior of
this estimator. As can be seen from the illustration in Figure 3, the right singular
vectors behave like a Fourier basis, in that they are supported over the full range
of degrees k and oscillate increasingly with higher indices i. On the other hand,
the left singular vectors, shown in Figure 4, behave in a more stable fashion with
increasing index i, with only the support changing noticeably at the higher indices,
moving like a window from low degrees k to high. Combined with our previous
observation of the drastic decay in singular values di , this explains the behavior of
the estimate in Figure 1.

While it would be desirable to have an analytical expression for the singular
vectors under induced subgraph sampling, we are unable to produce one; how-
ever, it is possible to produce expressions for the eigenfunctions of Pind, as so-
lutions to the nonsymmetric eigen-decomposition Pind = Ũ�Ũ−1. These do not
appear to be helpful in yielding similarly interpretable expressions for the SVD
but, nonetheless, may be of some independent interest. We therefore include this
result in Appendix A.

2.2.3. Random walk and other exploration-based methods. Another class of
sampling plans that has arisen recently, and has been of particular interest to the
community working with online social networks, is that based on notions of visit-
ing vertices and edges in a network in the course of a random walk on the graph G.
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FIG. 4. The first 12 left singular vectors under induced subgraph sampling, ordered by singular
values from big to small: maximum degree M = 20, sampling rate p = 20%.

Specifically, in the basic version of random walk sampling, we first select a ver-
tex u uniformly at random from V . Then one of u’s neighbor vertices, say v, is
chosen uniformly at random from the set of u’s neighbors. In turn, one of v’s
neighbor vertices, say w, is chosen uniformly at random from the set of v’s neigh-
bors. The process is repeated, and the selected vertices {u, v,w, . . .} along with
the edges {(u, v), (v,w), . . .} constitute the sample. For examples of other mem-
bers of this family, we refer readers to Leskovec and Faloutsos (2006) and Ribeiro
and Towsley (2010).

If we consider a random walk sampling over a nonbipartite, connected, undi-
rected graph, once the steady state is reached, it shares an important property with
incident subgraph sampling with SRS of edges, in that both sample edges uni-
formly at random [Ribeiro and Towsley (2010)]. Thus,

PRW(i, j) =
⎧⎪⎨
⎪⎩

(
j

i

)(
ne − j

n∗
e − i

)(
ne

n∗
e

)−1
, for 1 ≤ i ≤ j ≤ M ,

0, for 0 ≤ j < i ≤ M ,
(2.9)

where ne is the total number of edges in the true network and n∗
e is the number of

edges selected in the sample. Therefore, with respect to the nature of the inverse
problem that we study here, we may categorize this sampling plan with the induced
and incident subgraph sampling plans described above.

2.3. Distribution of the noise. The observation N∗ can be viewed as a “noisy”
version of N . However, as remarked earlier, since it is assumed here that there is no
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measurement error (e.g., if a query of Facebook indicates person A has “friended”
person B , then we accept that they have), the “noise” is rather a reflection of the
randomness due to sampling. Because we intend to pursue a regression-based ap-
proach to solving our linear inverse problem, the question of what noise model
to use as an approximation to sampling variability is important. We discuss this
question now.

For ego-centric sampling, a vertex is observed to have degree k if and only if
the vertex is selected through Bernoulli sampling and also has degree k in the true
graph. Therefore,

N∗
k = ∑

{u : du=k}
I
{
u ∈ V ∗}

,(2.10)

where du represents the degree of a vertex u ∈ V in G, and d∗
u represents the degree

of a vertex u ∈ V ∗ in G∗. For each k, there are Nk such independent indicator
functions, and each indicator function has the same probability to be one. Thus,
the distribution of the N∗

k is that of M + 1 independent binomials, that is, N∗
k ∼

Bin(p,Nk). For small p and large Nk , we can expect that these binomials may be
well-approximated as Poisson random variables, with means Nkp.

The case of one-wave snowball sampling and induced subgraph sampling (as
well as the related cases of incident subgraph sampling and random walk sam-
pling) is decidedly less straightforward to analyze. The expectation of N∗ is, of
course, provided by equation (2.1). The variance (covariance) formula is more
complicated.

For one-wave snowball sampling, the representation (2.10) still applies. How-
ever, the indicator functions are not independent. Straightforward arguments yield
that the covariance and variance of N∗

k for k = 0,1, . . . ,M are

Cov
(
N∗

k ,N∗
l

) = ∑
t

N1klt

[
1 − (1 − p)l+1 − (1 − p)k+1 + (1 − p)k+l−t ]

+ ∑
t

N0klt

[
1 − (1 − p)l+1 − (1 − p)k+1 + (1 − p)k+l−t+2]

(2.11)

− NkNlPsnow(k, k)Psnow(l, l)

and

Var
(
N∗

k

) = NkPsnow(k, k)

+ ∑
t

N1kkt

[
1 − 2(1 − p)k+1 + (1 − p)2k−t ]

(2.12)
+ ∑

t

N0kkt

[
1 − 2(1 − p)k+1 + (1 − p)2k−t+2]

− (
NkPsnow(k, k)

)2
,

where N0klt (N1klt ) is determined by the underlying network G, defined as the
number of ordered pairs of nonadjacent (adjacent) distinct vertices of degrees k
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and l, respectively, which have t common adjacent vertices.
For induced-subgraph sampling, we can write

N∗
k =

M∑
r=k

nv∑
u=1

I
{
u ∈ V ∗, d∗

u = k, du = r
}
.(2.13)

Using arguments analogous to those in Frank (1980), it is possible to show that,
for k = 0,1, . . . ,M , the variance takes the form

Var
(
N∗

k

) = ∑
i

NiPind(k, i)

+ ∑
r

∑
s

∑
t

N0rst

∑
m

(
t

m

)(
r − t

k − m

)(
s − t

k − m

)

× p2k−m+2q(r+s−t)−(2k−m)

(2.14)

+ ∑
r

∑
s

∑
t

N1rst

∑
m

(
t

m

)(
r − t − 1
k − m − 1

)(
s − t − 1
k − m − 1

)

× p2k−mq(r+s−t)−(2k−m)

− (
∑
i

NiPind(k, i))2.

Using similar techniques, it is also possible to write out a similar formula for
Cov(N∗

j ,N∗
k ), which we find is, in general, nonzero for j �= k, as would be ex-

pected.
Now consider the marginal distributions of the N∗

k under snowball sampling and
induced subgraph sampling. Note that the first term in (2.12) and (2.14) is the kth
entry of the expectation P N. This observation suggests that, if the remaining terms
in the variance (as well as the off-diagonal terms corresponding to covariances) are
sufficiently small, a Poisson model might again be acceptable.

More precisely, if the sampling rate p is small, then each of the indicators
in (2.10) and (2.13) likely has only very small probability of being equal to one.
On the other hand, if the graph is large (i.e., nv is large) and k is not too far out
in the tail of the distribution (i.e., k is not too close to M), then there should be
many such indicators. So a Poisson approximation would make sense here. Given,
however, that these indicator variables are dependent, the necessary argument is
somewhat more involved. We present a formal justification, using the Chen–Stein
method, in Appendix B.

Simulation can be used to assess this approximation. Some representative re-
sults, shown in Figure 5, confirm the reasonableness of a Poisson approximation
for the marginal distribution of the N∗

k , under induced subgraph sampling, for k

within a reasonable distance from the mean.
In summary, for all of the sampling plans considered in this paper, an ap-

proximate Poisson marginal distribution is arguably reasonable for the observed



178 Y. ZHANG, E. D. KOLACZYK AND B. D. SPENCER

FIG. 5. QQ plot: distribution of N∗
i compared to Poisson distribution with mean (PN)i . The un-

derlying network is ER with nv = |V | = 1000 and ne = |E| = 50,000. Sampling rate p = 5%. The
average degree of the sample is equal to 5.

counts N∗
k . Thus, a Poisson regression model is suggested for solving our inverse

problem. However, for reasons of numerical efficiency and stability, we prefer to
approximate this model in turn by a Gaussian model, with nonconstant variance
that varies in proportion to the mean, leading to a weighted least squares regres-
sion. Simulation results (shown in Figure 6) suggest that this, too, is a reasonable
choice. Accordingly, our model development, as described starting in the next sec-
tion, will implicitly assume a Gaussian noise model.

2.4. Discussion of assumptions. In some sampling designs, nodes’ inclusion
probabilities can depend on unobserved properties of the node, such as its true
degree, or on other unobserved properties of the network. In this paper we re-
strict attention to sampling designs (ego-centric, one-wave snowball sampling, in-
duced/incident subgraph sampling, random walk) where inclusion probabilities are
known. This restriction underlies (1.1) and (2.1) to be established without the need
for assumptions about the structure of the network itself. The approach we take is
called “design-based” in the sampling literature, as compared to “model-based.”
Handcock and Gile (2010) observe the following:

In the design-based framework [G] represents the fixed population and interest focuses
on characterizing based on partial observation. The random variation considered is due
to the sampling design alone. A key advantage of this approach is that it does not require
a model for the data themselves. . . Under the model-based framework, [G] is stochas-
tic and is a realization from a stochastic process depending on a parameter η. Here
interest focuses on η which characterizes the mechanism that produced the complete
network [G].
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FIG. 6. QQ plot: distribution of N∗
i compared to Gaussian distribution with mean (PN)i and

sample variance. The underlying network is ER with nv = |V | = 1000 and ne = |E| = 50,000.
Sampling rate p = 5%. The average degree of the sample is equal to 5.

Design-based inferences are generally not feasible (i) for adaptive sampling de-
signs other than a network census and ego-centric sampling designs [Handcock and
Gile (2010), 11ff] or (ii) for any designs for which the inclusion probabilities of
sampled nodes (and dyads, triads, etc., depending on the application) are unknown
at least up to a scaling factor. Design-based inference is the standard mode for
analysis of samples obtained by government statistical agencies or for large-scale
random samples funded by government agencies. That is not to say that assump-
tions are not brought in for taking into account nonresponse or response error, but
the latter two sources of error depend on the properties of the sampled units rather
than the sampling design itself. Although design-based inference is applicable only
to a restricted set of sample designs, it has the advantage of not requiring specific
knowledge about the graph or network being sampled.

We are assuming that the number of nodes is known, consistent with the only
other research on design-based inferences for the degree distribution. The assump-
tion is not strictly necessary, as the number of nodes is estimable by a Horvitz–
Thompson estimator for the designs under consideration [Handcock and Gile
(2010), pages 12–13], but the assumption simplifies the exposition. We also as-
sume that the sampling probabilities of nodes (or edges) are known, which is a
standard assumption for conventional sampling designs [e.g., Cochran (1977)] and
not unrealistic for the designs we are considering.

We assume as well that the nodes and edges in the sample are observed without
error. In the network literature, the question of effect of such observational error
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and how to quantify and adjust for it is still largely unexplored, and hence is beyond
the scope of this paper.

3. Estimating the degree distribution. Bearing in mind the SVD-based rep-
resentation of the naive estimator P −1N∗ of N, as shown in (2.3), the analyses of
Section 2 together suggest that a better solution to our inverse problem would be
an estimator developed in a manner analogous to ridge regression and other similar
penalized regression strategies. In this section, we offer such an approach.

We adopt a penalized least squares perspective in defining our estimator. In-
formed by our analysis of the “noise” in our inverse problem, we specify a gener-
alized least squares criterion. Furthermore, since the vector of degree counts should
be everywhere nonnegative and, additionally, the total degree counts should equal
the total number of vertices, nv , we include these two properties as constraints.
Our estimator N̂ for N is then the solution to the following optimization problem:

minimize
N

(
P N − N∗)T

C−1(
P N − N∗) + λ · pen(N)

subject to Ni ≥ 0, i = 0,1, . . .M,(3.1)

M∑
i=0

Ni = nv,

where C denotes the covariance matrix of N∗, that is, C = Cov(N∗), pen(N) is a
penalty on the complexity of N, and λ is a smoothing parameter.

Under a convex penalty, (3.1) has the canonical form of a convex optimiza-
tion [Boyd and Vandenberghe (2004)] and, in principle, standard software can be
used. For example, CVX, a package for specifying and solving convex programs
[CVX Research (2012)], can be used to solve (3.1). In our case, because we use a
penalty based on an �2 norm, as discussed below, (3.1) can be written as a quadratic
programming problem. Accordingly, we use quadprog, the quadratic programming
function in the MATLAB optimization toolbox, to solve (3.1).

Note that the solution spaces of the original problem (2.1) and (3.1) are not
the same. The solution (2.2) of the original problem (2.1) is a point in a space
generated by the right singular vectors {vi}. The constraint and penalized solution

of (3.1) is a point in a space generated by {B−1vi}, where B = [P T C−1P + λ� 1
2 1

1T 0

]
,

ignoring the nonnegativity constraint as is shown in (C.6). Through this we obtain
smoothing.

In the following subsections we discuss choice of the penalty, selection of the
smoothing parameter and various practical considerations.

3.1. Penalty. There are a variety of penalties common in the literature on non-
parametric function estimation, usually consisting of a norm (e.g., �1, �2, total-
variation, etc.) applied to some functional of the proposed estimator. The choice
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of penalty should reflect the assumption of smoothness, that is, fk ≈ fl if k and l

are close. Examples of networks with smooth degree distributions include Erdös-
Rényi (ER), mixture of ER, power-law networks, networks having exponential or
power-law tails, as well as those having the body of the exponential or power-law
networks. We want to force our estimates toward distributions with such smooth-
ness, where the naive estimates have obvious flaws (e.g., Figure 1).

In our framework, the assumption of a smooth true degree distribution is ac-
counted for by choosing a penalization of the form ‖DN‖2

2, where the matrix D

represents a second-order differencing operator. Specifically, the formula for D is

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 · · · 0 0 0 0
0 0 1 −2 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · −2 1 0 0
0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(3.2)

This choice, in the discrete setting, is analogous to the use of a Sobolev norm
with nonparametric function estimation in the continuous setting. It assumes mean-
square curvature of the degree distribution is small. This is one commonly used
smoothing regularization, and we have found it to work well with the types of
degree distributions explored here. Other penalties may work less well. For ex-
ample, the L1 norm can be used as a heuristic for finding a sparse solution, thus
the solutions N̂ can be truncated. We refer readers to Chapter 6.6.6 of Boyd and
Vandenberghe (2004) for how different penalty functions perform generally on
denoising problems.

3.2. Selection of the penalization parameter λ. Denote the solution to the op-
timization problem in (3.1) as N̂ = fλ(N∗), a function of N∗, indexed by λ. For a
given observation vector N∗, a bigger λ produces a smoother estimator. The prob-
lem of selecting an optimal λ falls into the category of model selection. However,
commonly used cross-validation methods which assume independent and identi-
cally distributed observations do not apply to our network sampling situation be-
cause, as already discussed, the N∗

i for i = 0, . . . ,M are not identically distributed
and there are nonzero correlations between N∗

i and N∗
j for i �= j . Instead, we of-

fer a strategy based on the method of generalized Stein’s unbiased risk estimation
(SURE), proposed in Eldar (2009).

We define a weighted mean square error (WMSE) in the observation space as

WMSE(N̂,N) = E
[
(P N − P N̂)T C−1(P N − P N̂)

]
.(3.3)

Under the conditions that fλ(N∗) is weakly differentiable and that E|fλ(N∗)| is
bounded (which we verify following the arguments in Appendix C), a generalized
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SURE estimate for the WMSE can be obtained as

̂WMSE(N̂,N) = (P N)T C−1P N + (P N̂)T C−1P N̂

+ 2
{

Trace
(
P

∂N̂
∂N∗

)}
(3.4)

− 2(P N̂)T C−1N∗.
The first term in (3.4) involves the unknown N. However, we may drop this

term because it does not involve λ. The last three terms have N̂ in them, which
is a function of λ. Given P,N∗ and C as well, the second and fourth terms are
straightforward to compute. The third term, called the divergence term in Eldar
(2009), can be simulated using the Monte Carlo technique proposed in Ramani,
Blu and Unser (2008). Specifically, let b be a vector with zero mean, covariance
matrix I (i.e., independent of N∗) and bounded higher order moments. Then

div ≡ Trace
(
P

∂N̂
∂N∗

)
= lim

ε→0
Eb

{
bT P

(
fλ(N∗ + εb) − fλ(N∗)

ε

)}
.(3.5)

Let bi be the realization of b at each simulation. The algorithm for estimating

div = Trace(P ∂N̂
∂N∗ ) and computing of ̂WMSE for a given λ = λ0 and fixed ε is as

follows:

1. y = N∗;
2. For λ = λ0, evaluate fλ(y); i = 1; div = 0;
3. Build z = y + bi; evaluate fλ(z) for λ = λ0;
4. div = div+1

ε
bi

T P (fλ(z) − fλ(y)); i = i + 1;
5. If (i ≤ K) go to Step 3; otherwise evaluate sample mean: div = div/K and

compute ̂WMSE(λ0) using (3.4).

We offer recommendations for the practical selection of ε and K , as well as the
distribution of b, in Section 4.

For a fixed N∗, by minimizing ̂WMSE with respect to λ, we find the optimal λ

that minimizes ̂WMSE.

3.3. Approximation of the covariance matrix C. For the ego-centric sampling
design, recall that the N∗

k are independent random variables, distributed according
to a binomial with parameters p and Nk . As a result, the covariance matrix C is
simply p(1 − p) × diag(N). In contrast, for the one-wave snowball sampling and
the induced subgraph sampling (as well as the related incident subgraph and ran-
dom walk sampling), C will have nonzero off-diagonal elements. Recall, however,
that these off-diagonal elements involved higher-order properties of the graph, in
the sense of summarizing even more structure than the degree distribution we seek
to estimate. Accordingly, it is unrealistic to think to incorporate this information
into our estimation strategy. We instead focus on the diagonal elements of C.
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We approximate the covariance matrix C with a diagonal matrix of the form

Ĉ = diag
(
N∗

smooth
) + δI.(3.6)

The first term is a diagonal matrix with the diagonal entries equal to a smoothed
version of the observed degree vector. The arguments in Section 2.3 suggest the
merit of an approximate Poisson variance for the diagonal elements of C, which
in principle means using E[N∗] = P N. Necessarily lacking this, it is tempting
to plug in the observed degree counts N∗, but we have found smoothing to offer
noticeable improvement, as the noise in the observations can be substantial. The
discrete nature of N∗ requires our using a smoothing method different from the
nonparametric methods used with continuous data. Here we employ the kernel-
smoothing method of Dong and Simonoff (1994), which extends the ideas in Hall
and Titterington (1987), using an Epanechnikov kernel with boundary correction,
and least square cross-validation for choosing an effective integer bandwidth.

To perform the weighted optimization in (3.1), our proxy for the covariance
matrix C must be positive definite. However, some of the diagonal entries in the
matrix diag(Nsmooth) typically are zero or close to zero. We adopt a standard strat-
egy to remedy this, by adding a small value δ to the diagonal elements. We offer
guidance on the choice of δ in the context simulation and application in Sections 4
and 5.

4. Simulation study. In this section we present a simulation study conducted
to assess the performance of the method we proposed in Section 3, on networks
simulated from various random graph models. We also will look at the effect of
several factors (i.e., total number of vertices, density and sampling rate) on the
accuracy of the estimators.

4.1. Design. There are several parameters that need to be chosen with some
care. Here we list them and discuss the conventions we applied:

• b: The random vector b must have zero mean, covariance matrix I and bounded
higher order moments; here we use a multivariate normal, that is, b ∼ N(0, I ).

• ε: In principle, the value ε should be small enough to approximate the notion of
tending to zero, but not so small as to induce floating point errors of an undesir-
able magnitude in computing fλ(y + εb). In practice, similar to the experience
of Ramani, Blu and Unser (2008), we have witnessed the method to be robust to
choice of this parameter, even over several orders of magnitude. In the following
simulations, we use ε = 0.1.

• K : Small K gives a noisy WMSE curve. As K increases, we get a clearer
shape for the WMSE curve and the resulting estimate is more accurate. How-
ever, a larger K has bigger computation cost. We have had good results using
K = 100.
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• M : The maximum degree M is set to be 1.1 times the true maximum degree of
the true graph in our simulations, to relax the restriction of a known maximum
degree.

• δ: The parameter δ must be big enough to make the optimization stable, but
not so big as to swamp the contribution of diag(Nsmooth) in (3.6). In these sim-
ulations, in order to make the results comparable across different settings, we
choose δ to make the condition number of the approximate covariance matrix Ĉ

the same, equal to 20.
• λ: The range of λ being considered in finding the optimal λ includes the true

optimal λ and values of three magnitudes above and below the true λ.

To compare the estimated with the true degree distribution, we use the
Kolmogorov–Smirnov D-statistic, which has been used widely in the literature
on sampling of social media networks to illustrate the accuracy of various sam-
pling methods [e.g., Leskovec and Faloutsos (2006), Hubler et al. (2008), Ahmed,
Neville and Kompella (2011)]. The statistic corresponds to the maximum dif-
ference between the two cumulative distribution functions F1 and F2, that is,
D = maxx{|F1(x) − F2(x)|}, and ranges from zero to one.

4.2. Results. Results of our simulation study are shown in Figures 7–9, for
ego-centric, induced subgraph and one-wave snowball sampling, respectively.
Each box plot represents the D-statistics computed from 100 trials, that is, based
on 100 samples drawn from the underlying networks. Two types of networks are
studied: those from the Erdös–Rényi model and those from a block model with
two blocks. These are two basic models commonly used in network studies [e.g.,
Kolaczyk (2009), Chapter 6]. In the Erdös–Rényi model, edges are randomly as-
signed to each pair of vertices with a given probability, that is, the expected density
of the network. For the block model, each of the two blocks itself is an Erdös–
Rényi model. In addition, vertices from different blocks are connected with some
probability too. In the simulation, edge probabilities for within the two blocks
and between blocks satisfy a ratio of 6 : 2 : 1. For each of the two models, we let
the density and nv change but fix the average degree to be approximately equal.
In ego-centric and induced subgraph sampling, nv × density = 100. In one-wave
snowball sampling, we make nv × density = 10. We have to use a lower average
degree in one-wave snowball sampling to avoid including all vertices of the true
network into the sample. In addition, the sampling rates of 10%, 20% and 30%
for one-wave snowball sampling indicate the percentage of the total vertices of the
two sequential selections.

Notice that the scale of Figure 7 is from 0 to 0.2, much smaller than that of
Figure 8 which is from 0 to 0.6, and Figure 9 which is from 0 to 1. The scales of
the K–S D-statistics match the difficulty of the inverse problems they come from,
with ego-centric sampling yielding an easier problem than one-wave snowball and
induced subgraph sampling, as was discussed in Section 2. We compare the esti-
mated degree distributions from our method with the sample degree distributions
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FIG. 7. Simulation results for ego-centric sampling. Error measured by K–S D-statistic. For each
sampling rate, the three boxes from left to right represent K–S D-statistic comparing the true degree
distribution with (left) sample degree distribution, (middle) estimated degree distribution using the
nonparametric method and (right) estimated degree distribution using the proposed method. (Online
versions of the figure are in color.)

and the estimates from a standard kernel-smoothing method [Dong and Simonoff
(1994)] described in Section 3.3. Only in the case of ego-centric sampling, the
sample degree distribution and the kernel-smoothing method are competitive with
our method. For one-wave snowball and induced subgraph sampling, our method
yields much better results than the sample and kernel-smoothing method. This is
to be expected, of course, since the kernel-smoothing method does not account for
the underlying inverse problem.

In Figures 7–9, the performance in the second row is better than the performance
in the first row in general. That is, performance improves with larger networks of
lower density, given fixed average degree. There are three reasons for this phe-
nomenon. First, in the standard Erdös–Rényi model, as nv grows to infinity and
the density shrinks to zero, while the average degree is fixed, the degree distri-
bution becomes smoother and reaches a Poisson distribution in the limit. Second,
as density shrinks and nv grows, the normal/Poisson approximation of N∗

k , for
k = 0,1, . . . ,M , is better. And, in turn, the approximation of covariance matrix C

is more accurate.
Comparing Erdös–Rényi and the block model under the induced subgraph sam-

pling (Figure 9), the block model has a broader range of degrees than the Erdös–
Rényi model at any given choice of our other simulation parameters. In (2.13), for
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FIG. 8. Simulation results for one-wave snowball sampling. Error measured by K–S D-statistic.
For each sampling rate, the three boxes from left to right represent K–S D-statistic comparing the
true degree distribution with (left) sample degree distribution, (middle) estimated degree distribu-
tion using the nonparametric method and (right) estimated degree distribution using the proposed
method. (Online versions of the figure are in color.)

each k, the indicator function involving u ∈ V with higher du has lower probability
of being equal to 1. Thus, a better Poisson approximation of N∗

k and a more accu-
rate approximation of C occur under the block model. A power-law network has
an even broader degree distribution. For the same reasons, therefore, we expect the
estimators for the power-law like networks in the applications of Section 5 to per-
form similarly well. However, the results for Erdös–Rényi and the block model are
quite close in Figures 7 and 8. This is because only the vertex with degree k in the
true network can possibly contribute to degree k under ego-centric and one-wave
snowball sampling.

Three sampling rates are studied: 10%, 20%, and 30%. Our results show that
there is less accuracy for smaller sampling rate, as is to be expected. In the lit-
erature on Internet community monitoring, 30% sampling rates have been sug-
gested as reasonable for preserving network properties to a reasonable accuracy
[Leskovec and Faloutsos (2006)]. In our results, we see that our estimators of de-
gree distribution perform fairly well based on as low as a 10% sampling rate.

5. Applications. The cost of any sampling strategy varies with the structure
of the network and the protocol. As we have remarked, sampling is of particular
interest in the context of online social networks. In online social networks where
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FIG. 9. Simulation results for induced subgraph sampling. Error measured by K–S D-statistic. For
each sampling rate, the three boxes from left to right represent K–S D-statistic comparing the true
degree distribution with (left) sample degree distribution, (middle) estimated degree distribution us-
ing the nonparametric method and (right) estimated degree distribution using the proposed method.
(Online versions of the figure are in color.) (Note: Only the performance of the proposed estimator
N̂ avoids the extremes of 1.0 in most cases.)

each user is assigned a unique user id, it is a common practice to select a set
of users by querying a set of randomly generated user id’s [Ribeiro and Towsley
(2010)]. Thus, our induced subgraph sampling can be applied there. In this sec-
tion, we use our degree distribution estimation method on data from three online
social networks: Friendster, Orkut and LiveJournal. These data are available on the
SNAP (Stanford Network Analysis Project) website. In the following we present
our estimates of various degree distributions from these online social networks. In
addition, we show how these degree distributions help us to gain insight about the
epidemic thresholds of these networks, which is relevant to the concept of social
influence, spread of rumors and viral marketing.

5.1. Estimating degree distributions from online social networks. It is now
well understood that large-scale, real-world networks frequently have heavy-tailed
degree distributions. Stumpf and Wiuf (2005) proved analytically that for a net-
work with an exact power-law degree distribution, although its sampled network
under our sampling method [induced Subgraph sampling with Bernoulli(p) for
selecting vertices] is not an exact power-law network, the degree distribution for
large enough degrees is power law and has the same exponent with the true net-
work. In reality, however, most networks with heavy-tailed degree distribution will
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not have an exact power law. Many, for example, exhibit exponential-like devia-
tion from a power law after some cutoff. As a result, the result of Stumpf and
Wiuf (2005) does not hold in such situations and estimation is therefore still of
fundamental interest.

In addition, the full Friendster, Orkut and LiveJournal networks arguably are
of less interest here, being a rather coarse-grained aggregation of much finer-scale
social interactions. Accordingly, we focus instead on the estimation of degree dis-
tributions for subnetworks corresponding to certain communities within these net-
works. In these online social networks, users create functional groups that others
can join, based on, for example, topics, shared interests and hobbies, or geograph-
ical regions. In our application, we use ground-truth communities established by
Yang and Leskovec (2012). For example, these authors found that LiveJournal cat-
egorizes social groups into the categories of “culture, entertainment, expression,
fandom, gaming, life/style, life/support, sports, student life and technology” [Yang
and Leskovec (2012)]. It is the degree distributions for subnetworks corresponding
to collections of ground-truth communities such as these that we estimate here.

Figure 10 gives an example of the estimators. The first row is for three sub-
networks from Friendster. Communities are ordered according to the number of
users in them. In the top left subplot, vertices from the top 5 communities form
an induced subnetwork for which the degree distribution is to be estimated. Then

FIG. 10. Estimating degree distributions of communities from Friendster, Orkut and LiveJournal.
Squares represent the true degree distributions, stars represent the sample degree distributions, and
triangles represent the estimated degree distributions. Sampling rate = 30%. Points which corre-
spond to a density < 10−4 are eliminated from the plot. (Online versions of the figure are in color.)
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TABLE 1
Network communities summary. Each median and inter-quartile range is computed based on the

application of our estimator to 20 samples

Sample Estimator

Numbers
of vertices

Numbers
of edges

D-statistic D-statistic

Net cmty dmax Median IQR Median IQR

1–5 5748 163,888 494 0.4242 0.0196 0.0221 0.0080
Friendster 6–15 6385 131,875 383 0.4521 0.0164 0.0187 0.0107

16–30 7097 162,616 357 0.4813 0.0211 0.0143 0.0161
1–5 22,059 689,659 895 0.4092 0.0145 0.0134 0.0073

Orkut 6–15 29,681 591,448 578 0.4322 0.0129 0.0099 0.0059
16–30 31,018 619,909 1779 0.4324 0.0068 0.0175 0.0076

1–5 5131 85,419 801 0.3018 0.0285 0.0430 0.0258

LiveJournal 6–15 3757 219,193 547 0.2678 0.0153 0.0558 0.0105
16–30 4591 228,633 512 0.2941 0.0137 0.0643 0.0404

Bernoulli sampling of vertices with 30% sampling rate is performed on this sub-
network, and our estimation method is applied. Similarly, the true network in the
top middle plot is induced by the top 6–15 communities, and in the top right plot
the true network is induced by the top 16–30 communities. The second row and the
third row show estimates of Orkut and LiveJournal, respectively. Examination of
these plots shows that, while the sampled degree distribution can be quite off from
the truth, particularly in the case of the Friendster and Orkut networks, correction
for sampling using our proposed methodology results in estimates that are nearly
indistinguishable by eye from the true degree distributions.

In Table 1 the median and inter-quartile range are computed based on the ap-
plication of our estimator to 20 samples. The estimated degree distribution greatly
improves over the degree distribution of the sample, as measured by the K–S D-
statistic. In fact, the improvement in accuracy is by an order of magnitude, with
the values of the D-statistic produced by our estimator being on the same order of
magnitude as the best results in our simulation study.

In summary, our method of estimating the degree distribution from sampled
networks clearly can offer substantial advantages over raw measured networks in
monitoring the degree distribution of the communities in online social networks.
This provides a powerful additional motivation for using sampling in these con-
texts.

5.2. Characterizing epidemic spread. In this subsection we are going to show
how recovery of the degree distribution—as a fundamental object—helps for mon-
itoring other socially pertinent questions, for example, characterizing epidemic
spread on networks.
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As has been shown by various authors [e.g., Bailey et al. (1975), Daley and
Gani (1999), Kephart and White (1991), Pastor-Satorras and Vespignani (2001)],
an epidemic threshold τc exists in a virus spread in networks. Under a standard
Susceptible–Infected–Susceptible (SIS) model, let the infection rate be β and the
curing rate be δ. If the effective spreading rate τ = (β/δ) > τc, the virus persists
and a nonzero fraction of the nodes are infected, whereas for τ ≤ τc the epidemic
dies out. This threshold is shown to equal the inverse of the largest eigenvalue λ1
of the network’s adjacency matrix in Van Mieghem, Omic and Kooij (2009).

The degree distribution of a network can be used to get bounds for the largest
eigenvalue λ1 of the adjacency matrix, and thus bounds for 1/λ1. Let M1 be the
first raw moment of the degree distribution, that is, the average degree, M2 be the
second raw moment of the degree distribution, ne = |E| be the number of total
edges, and U = (2 ∗ ne(nv − 1)/nv)

1/2. Then we have the following relationship:

M1 ≤ √
M2 ≤ λ1 ≤ U.(5.1)

The proof of the first two inequalities can be found in Van Mieghem (2011), and
the third (upper bound) can be found in Lovász (1993). Thus, we have the bounds
for the epidemic threshold τc,

1/U ≤ τc ≤ 1√
M2

≤ 1

M1
.(5.2)

Figures 11–13 show the bounds obtained from the estimated degree distribution
and those obtained from the original sample degree distribution. The networks
used are the online social networks described in Section 5.1. It can be seen from
Figures 11–13 that our method estimates the bounds with high accuracy, whereas
the bounds using the sampled data are way off.

Since our estimator successfully recovers the degree distribution of the online
social networks, the epidemic threshold (the inverse of the spectral radius) of the
network can be successfully bounded by functions of our estimates. This has im-
portant implications in practical applications. For example, in viral marketing, the
epidemic threshold relates to how hard a company’s marketing force needs to
work, that is, it is necessary for them to make the effective spreading rate τ as
large as 1/U , and sufficient to make τ as large as 1√

M2
, in order to make a prod-

uct’s advertisement remembered by people in the network.

6. Discussion. The problem of estimating the degree distribution of a network
from a sampled subnetwork was first posed by Ove Frank in his 1971 Ph.D. disser-
tation [Frank (1971)]. In the ensuing years, the problem appears to have received
very little attention, likely in no small part to its apparent difficulty. Here we recast
the original problem as a linear inverse problem. We have demonstrated that, in
so doing, it is possible to obtain substantial insight into the inherent difficulty of
the problem—in terms of the operator corresponding to the sampling, the nature
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FIG. 11. Bounds for the epidemic spreads of Friendster networks, each box is estimated based
on 20 samples, four horizontal lines are the true values for 1

M1
, 1√

M2
, 1

λ1
and 1

U
from top to bottom.

For each bound, the two boxes from left to right correspond to the estimated value using (left) the
proposed method and (right) the sample degree distribution. (Online versions of the figure are in
color.)

FIG. 12. Bounds for the epidemic spreads of Orkut networks, each box is estimated based on 20
samples, four horizontal lines are the true values for 1

M1
, 1√

M2
, 1

λ1
and 1

U
from top to bottom.

For each bound, the two boxes from left to right correspond to the estimated value using (left) the
proposed method and (right) the sample degree distribution. (Online versions of the figure are in
color.)



192 Y. ZHANG, E. D. KOLACZYK AND B. D. SPENCER

FIG. 13. Bounds for the epidemic spreads of LiveJournal networks, each box is estimated based
on 20 samples, four horizontal lines are the true values for 1

M1
, 1√

M2
, 1

λ1
and 1

U
from top to bottom.

For each bound, the two boxes from left to right correspond to the estimated value using (left) the
proposed method and (right) the sample degree distribution. (Online versions of the figure are in
color.)

of the “noise” induced by the sampling and the manner in which the two interact.
Leveraging this insight, we have proposed a penalized, generalized least squares
estimator, with positivity constraints, that solves our linear inverse problem. The
choice of smoothing parameter is nontrivial in this context and we offer a Monte
Carlo approach to optimizing a generalized SURE criterion as an effective option.
Finally, our simulations and application to online social media networks show that
the methodology can perform quite well under a variety of choices of network
topology—even under sampling rates as low as 10%.

There are a number of directions upon which to build from the work we present
here. The assumptions discussed in Section 2.4 could be relaxed, for example, to
include observation errors, to incorporate estimates of possible unknown parame-
ters in the matrix P , or to focus on matrices P which depend on the network G

itself. In this case, a model-based framework is likely necessary, and for that it
would be natural to try to integrate our framework with the work of Handcock and
Gile (2010). Finally, another interesting direction would be developing methods
for correcting the sampling bias of the degree distribution under more complex
adaptive designs.

APPENDIX A: EIGENVALUE DECOMPOSITION

THEOREM A.1. Let P = Pind = Ũ�Ũ−1, where � = diag(λ1, . . . , λM+1) is
a diagonal matrix and Ũ = (ũ1, ũ2, . . . , ũM+1) is a nonsingular matrix. Then the
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kth eigenvalue λk and eigenvector ũk of P are

λk = pk,(A.1)

ũk(j) =
⎧⎨
⎩ (−1)k−j

(
k − 1
j − 1

)
, for 1 ≤ j ≤ k,

0, for k < j ≤ M + 1.
(A.2)

PROOF. We will prove this theorem by induction. In the case that P is a 2 by 2
matrix,

P =
[
p pq

0 p2

]
.(A.3)

It’s easy to show that

Ũ =
[

1 0
−1 0

]
.(A.4)

The theorem is true if P is a 2 by 2 matrix. Suppose it is true when P is a k − 1
by k − 1 matrix, then in the case that P is k by k,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

pk−3
(

k − 3
1

)
pk−3q

(
k − 2

2

)
pk−3q2

(
k − 1

3

)
pk−3q3

0 pk−2
(

k − 2
1

)
pk−2q

(
k − 1

2

)
pk−2q2

0 0 pk−1
(

k − 1
1

)
pk−1q

0 0 0 pk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(A.5)

Because of the upper-triangular nature of the matrix, the first k − 1 entries in
each of the first k − 1 eigenvectors are the same as in the case that P is k − 1 by
k − 1, and the kth entry is filled with zero.

For eigenvalue λk = pk , let x = (x1, x2, . . . , xk)
T and xk = 1 be the solution of

the eigenvalue equation

(P − λkI)x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

pk−3(
1 − p3) (

k − 3
1

)
pk−3q

(
k − 2

2

)
pk−3q2

(
k − 1

3

)
pk−3q3

0 pk−2(
1 − p2) (

k − 2
1

)
pk−2q

(
k − 1

2

)
pk−2q2

0 0 pk−1(1 − p)

(
k − 1

1

)
pk−1q

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(A.6)

= 0.
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The equation at the (k − 1)th row is

pk−1(1 − p)xk +
(

k − 1
1

)
pk−1qxk = 0.(A.7)

We solve for xk−1,

xk−1 =
(k−1

1

)
pk−1q

pk−1(1 − p)
= −

(
k − 1

1

)
.(A.8)

Assuming xk−i = (−1)i
(k−1

i

)
, for i = 0,1, . . . , n − 1, we solve for xk−n from

the equation at the (k − n)th row:

−pk−n(
1 − pn)

xk−n =
(

k − n

1

)
pk−nqxk−(n−1)

+
(

k − (n − 1)

2

)
pk−nq2xk−(n−1) + · · ·(A.9)

+
(

k − 2
n − 1

)
pk−nqn−1xk−1 +

(
k − 1

n

)
pk−nqnxk.

Simplifying the above equation, we have

−(
1 − pn)

xk−n

=
(

k − n

1

)(
k − 1
n − 1

)
(−1)n−1q

+
(

k − (n − 1)

2

)(
k − 1
n − 2

)
(−1)n−2q2 + · · ·

+
(

k − 2
n − 1

)(
k − 1

1

)
(−1)1qn−1 +

(
k − 1

n

)
(−1)0qn

(A.10)

= (−1)n
(

k − 1
n

)

×
[(

n

1

)
(−q) +

(
n

2

)
(−q)2 + · · · +

(
n

1

)
(−q)n−1 +

(
n

0

)
(−q)n

]

= (−1)n
(

k − 1
n

)[
(1 − q)n − 1

]

= (−1)n
(

k − 1
n

)(
pn − 1

)
.

Finally,

xk−n = (−1)n
(

k − 1
n

)
.(A.11)
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Therefore, the entries in the kth eigenvector are

ũk(j) =
⎧⎨
⎩ (−1)k−j

(
k − 1
j − 1

)
, for 1 ≤ j ≤ k,

0, for k < j ≤ M + 1.
(A.12)

The theorem is true for k by k matrix P . �

APPENDIX B: POISSON APPROXIMATION

Here we give a proof of the Poisson approximation of the cumulative degree
vectors, under one-wave snowball sampling and induced subgraph sampling with
Bernoulli(p) for selecting edges. The arguments for both designs are nearly iden-
tical, and so we present them together.

THEOREM B.1. Assume G∗ is produced by induced subgraph sampling with
Bernoulli sampling to select S. Let

Ñ∗
k =

M∑
r=k

N∗
r = ∑

v

I
{
v ∈ S, d∗

v ≥ k
}

(B.1)

be the number of vertices of degree k or larger in G∗. Let

λk = E
(
Ñ∗

k

) = ∑
v:dv≥k

πk,v,(B.2)

where

πk,v = P
(
v ∈ S, d∗

v ≥ k
)
.(B.3)

Then

distTV
(
L

(
Ñ∗

k

)
,Po(λk)

) ≤ 1 − e−λk

λk

[
Var

(
Ñ∗

k

) − λk + 2
∑

v : dv≥k

π2
k,v

]
,(B.4)

where distTV indicates the total-variation distance between its arguments, L means
“law of,” and Po(λk) is a Poisson random variable with intensity λk .

PROOF. We sketch the proof briefly here. Without loss of generality, (par-
tially) order the vertices {v1, . . . , vnv } by (non)decreasing degree. Associate a bi-
nary random vector (X1, . . . ,Xnv ) with the vertices, where the elements are inde-
pendent Bernoulli random variables with parameter p. So X represents the selec-
tion of vertices for inclusion in S in the case of induced subgraph sampling and
the initial selection of vertices in the case of snowball sampling. Now let Iv,k be
an indicator random variable, which is one if v ∈ S and d∗

v ≥ k. Then the variables
Iv,k are so-called “increasing functions” of realizations of X. So Corollary 2.E.1,
page 28, of Poisson Approximation, by Barbour and colleagues, yields our result.
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In more detail, there are two key observations to be made. First, we need the Iv,k

to be increasing functions. This induces positive correlation among these indicator
variables and it makes a general Chen–Stein bound become much cleaner, as in
our theorem, in that it can be expressed explicitly in terms of means and variances.
Partial ordering means that if we let x and y be two possible realizations of X, then
x ≤ y if and only if xi ≤ yi for all i. And a function f is increasing if f (x) ≤ f (y)

whenever x ≤ y. For x to be less than or equal to y, it suffices to think of what
happens simply when a new vertex enters the sample S. One element of x will
change from a zero to a one, so x ≤ y. What happens to Iv,k? If v is a vertex that
was already in S, under x, then adding a vertex to the sample under y can either not
change or increase its degree. So Iv,k(x) ≤ Iv,k(y). On the other hand, if v itself
was the new vertex to enter S under y, the same statement can be made.

Second is the observation that elements of X are independent in our setting,
which is guaranteed by our assumption of Bernoulli sampling. Taken together,
these two things mean that Theorem 2.E holds in Barbour et al., that is, positive
dependence. And so Corollary 2.E.1 holds and we have our result. �

APPENDIX C: CONDITIONS TO USE GENERALIZED SURE

C.1. Weak differentiability of fλ(N∗). Let’s first ignore the nonnegativity
constraints. Then 3.1 becomes

minimize
N

(
P N − N∗)T

C−1(
P N − N∗) + λ · penalty

(
N∗)

(C.1)

subject to
M∑
i=0

Ni = nv.

The Lagrange function is

L = (
N∗ − P N

)T (
N∗ − P N

) + λNT �N + α
(
1T N − nv

)
.(C.2)

KKT conditions:
dL

dN
= −2N∗T C−1P + 2NT P T C−1P + 2λNT � + α1T = 0,(C.3)

1T N = nv.(C.4)

Then N̂ is the solution of the following system:[
P T C−1P + λ� 1

21

1T 0

][
N
α

]
=

[
2P T C−1N∗

nv

]
.(C.5)

Let A = P T C−1P + λ� and B = [ A 1
2 1

1T 0

]
. Since both A and 1T A−11 are

invertible for sufficiently large λ, B is invertible:

N̂ = B−1P T C−1N∗ =
M∑
i=0

di

(
uT

i C−1N∗)
B−1vi .(C.6)
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Thus, N̂ is a linear function of the observed N∗. In this case, fλ(N∗) is differen-
tiable w.r.t. N∗.

Adding nonnegativity constraints only gives nondifferentiable points at the
boundary, so the set of nondifferentiable points has measure zero. fλ(N∗) has a
derivative almost everywhere. fλ(N∗) is weakly differentiable.

C.2. E{|fλ(N∗)|} is bounded. Assuming N∗ is Gaussian, since fλ(N∗) is a
linear function of N∗ within the feasible set of N̂, fλ(N∗) is also Gaussian, thus
E{|fλ(N∗)|} is bounded.
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