Open Access
December 2014 A fast algorithm for detecting gene–gene interactions in genome-wide association studies
Jiahan Li, Wei Zhong, Runze Li, Rongling Wu
Ann. Appl. Stat. 8(4): 2292-2318 (December 2014). DOI: 10.1214/14-AOAS771

Abstract

With the recent advent of high-throughput genotyping techniques, genetic data for genome-wide association studies (GWAS) have become increasingly available, which entails the development of efficient and effective statistical approaches. Although many such approaches have been developed and used to identify single-nucleotide polymorphisms (SNPs) that are associated with complex traits or diseases, few are able to detect gene–gene interactions among different SNPs. Genetic interactions, also known as epistasis, have been recognized to play a pivotal role in contributing to the genetic variation of phenotypic traits. However, because of an extremely large number of SNP–SNP combinations in GWAS, the model dimensionality can quickly become so overwhelming that no prevailing variable selection methods are capable of handling this problem. In this paper, we present a statistical framework for characterizing main genetic effects and epistatic interactions in a GWAS study. Specifically, we first propose a two-stage sure independence screening (TS-SIS) procedure and generate a pool of candidate SNPs and interactions, which serve as predictors to explain and predict the phenotypes of a complex trait. We also propose a rates adjusted thresholding estimation (RATE) approach to determine the size of the reduced model selected by an independence screening. Regularization regression methods, such as LASSO or SCAD, are then applied to further identify important genetic effects. Simulation studies show that the TS-SIS procedure is computationally efficient and has an outstanding finite sample performance in selecting potential SNPs as well as gene–gene interactions. We apply the proposed framework to analyze an ultrahigh-dimensional GWAS data set from the Framingham Heart Study, and select 23 active SNPs and 24 active epistatic interactions for the body mass index variation. It shows the capability of our procedure to resolve the complexity of genetic control.

Citation

Download Citation

Jiahan Li. Wei Zhong. Runze Li. Rongling Wu. "A fast algorithm for detecting gene–gene interactions in genome-wide association studies." Ann. Appl. Stat. 8 (4) 2292 - 2318, December 2014. https://doi.org/10.1214/14-AOAS771

Information

Published: December 2014
First available in Project Euclid: 19 December 2014

zbMATH: 06408779
MathSciNet: MR3292498
Digital Object Identifier: 10.1214/14-AOAS771

Keywords: Gene–gene interaction , GWAS , High-dimensional data , sure independence screening , Variable selection

Rights: Copyright © 2014 Institute of Mathematical Statistics

Vol.8 • No. 4 • December 2014
Back to Top