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We predict the popularity of short messages called tweets created in the
micro-blogging site known as Twitter. We measure the popularity of a tweet
by the time-series path of its retweets, which is when people forward the tweet
to others. We develop a probabilistic model for the evolution of the retweets
using a Bayesian approach, and form predictions using only observations on
the retweet times and the local network or “graph” structure of the retweeters.
We obtain good step ahead forecasts and predictions of the final total number
of retweets even when only a small fraction (i.e., less than one tenth) of the
retweet path is observed. This translates to good predictions within a few min-
utes of a tweet being posted, and has potential implications for understanding
the spread of broader ideas, memes or trends in social networks.

1. Introduction. The rapid rise in the popularity of online social networks
has resulted in an explosion of user-generated content. There is a wide variety in
the type of content—it can be a user comment, a photograph, a movie or a link to
a news article. Typically, in these online social networks, users form connections
with other users, producing a social graph. For example, in the micro-blogging site
Twitter, these connections are known as followers and the resulting social graph is
known as the follower graph. When a user generates a piece of content, it be-
comes visible to all of his or her followers in the social graph. The content spreads
through the social graph if these followers subsequently repost the content so their
followers can see it and potentially repost it further.

In this work we focus on the micro-blogging site Twitter which has over 230
million active users as of November 2013 [US Securities and Exchange Commis-
sion (2013)]. The user-generated content in Twitter is composed of short messages
known as tweets containing up to 140 characters, which can also contain images
or links to news articles or videos. Tweets are spread through the Twitter follower
graph by the act of retweeting, which is when a user forwards a tweet to his or her
followers.

Our goal in this work is to predict the popularity of a tweet by predicting the
time path of retweets it receives. We aim to make these predictions very early on
in the lifetime of the tweet, sometimes within minutes of it being posted. We use
a Bayesian model to describe the evolution of the retweets of a tweet. With this
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model we make predictions for the total number of retweets a tweet will receive
using information from early retweet times, the retweets of other tweets and sum-
maries of the follower graphs.

The remainder of the paper is organized as follows. In Section 1.1 we describe
related work. In Section 2 we provide a description of the data utilized and an
exploratory set of analyses of it that guide the proposed probabilistic model of
Section 3. We present our posterior computations via Markov chain Monte Carlo
(MCMC) in Section 3.5. In Section 4 we present an analysis of our model’s pre-
dictive performance on our Twitter data, including a comparison to benchmark
models from the extant literature and nested versions of our model. We discuss
extensions to this research in Section 5.

1.1. Previous work. There has been much recent interest in the retweet pre-
diction problem, albeit in terms of a slightly different type of prediction task. In
particular, recent extant research [Bakshy et al. (2010), Zaman et al. (2010)] tried
to predict the existence of a retweet between a particular pair of users. While this
is an important problem in graph formation or viral spreading across vertices, it is
a notably different problem than addressed here due to the precision and pairwise
specificity required.

Suh et al. (2010) used a generalized linear model to understand what features
influenced the chance of a tweet being retweeted by anyone. Other work [Bandari,
Asur and Huberman (2012), Hong, Dan and Davison (2011)] built upon this and
used a variety of algorithms to try to predict not the exact number of retweets, but
rather a coarse interval for the number of retweets of a tweet. Similar techniques
were used by Naveed et al. (2011) and Petrovic, Osborne and Lavrenko (2011) to
predict the probability that a tweet receives any retweets, which by definition is
nested within the problem we consider.

In contrast to these previous works, we aim to predict the entire time path, and
hence the eventual number of retweets of a tweet. This is similar to Szabo and
Huberman (2010) who use a linear model to predict the popularity of stories on
Digg.com and videos on YouTube after 30 days by observing their popularity af-
ter one hour and one week, respectively. Other related work is Agarwal, Chen
and Elango (2009) who attempt to make one-step ahead predictions of the click-
through rates of online news stories with a spatial–temporal model that utilizes
the time-varying click-through rate of an article along with its spatial position on
a webpage. The problem of predicting the structure of time evolving citation net-
works is studied in Vu et al. (2011). Our prediction goal is similar to these works,
but as we demonstrate in Section 4, our approach produces accurate predictions for
the final number of retweets using only minutes of observations, rather than hours
or days. Given the Bayesian approach utilized here, accurate predictions are pos-
sible for a given tweet’s retweet path even when there are no available data other
than that of other retweet paths observed so far, especially if one utilizes covariates
describing the tweets, retweets and their authors (an area for future research).

http://www.Digg.com
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2. Data overview. In this section we describe the retweet data we obtained
and present exploratory data analysis of some basic features. This analysis is useful
in providing an understanding of the scales associated with the data (number of
retweets of a typical tweet, time-scale over which a typical tweet is retweeted) and
in guiding our more formal modeling choices.

2.1. Data description. We collected retweet data that cover a fairly wide array
of topics and also have a wide range of retweet graph sizes. The topics include
music, politics and miscellaneous everyday events. Our data set consists of 52
different tweets which were selected through manual exploration of Twitter and
are available in the supplemental materials [Zaman, Fox and Bradlow (2014)].
We refer to these original tweets as root tweets. For each root tweet, we used the
Twitter Search API [Twitter (2012)] to find all retweets. We used root tweets which
were at least a week old to make sure that there were likely to be no more retweets
occurring. The search API provided us with the retweet times and identity of the
users who retweeted. Also, since the Search API could only return a maximum of
1800 results, we did not look at root tweets with more than this many retweets.
Based on previous empirical studies [Cha et al. (2010), Zhou et al. (2010)], this
maximum number of retweets covers a large fraction of tweets in Twitter and does
not represent a significant limitation. However, it is an open research question as
to what degree the empirical patterns we observe will hold for tweets with a large
number of retweets.

From the text of the retweet, we are able to identify the person that the user
retweeted (the username following the text “RT@”). For example, if user Alice
posted the tweet “Hello” and user Bob retweeted this root tweet, it would appear as
“RT@ Alice: Hello.” We then used the Twitter API to find the number of followers
of the root user and each user who retweeted it. The number of followers will act
as a covariate in our predictive model. In particular, the number of followers for a
given user represents both the potential retweet base for a given tweet and also a
significant moderator of the speed and timing of retweets.

We associate with each root tweet a directed retweet graph. We will utilize the
following notation for the different data associated with the retweet graph. We
denote the root tweet as x which is tweeted by root user vx

0 . The retweet graph
associated with x which we observe at time t is denoted Gx(t) = (V x(t),Ex(t)).
The vertex set V x(t) includes the root user (who tweets at t = 0) and all users
who retweet the root tweet before time t . A directed edge (u, v) ∈ Ex(t) points
from user u to user v if v retweets u before t . We will denote the total number of
retweets in Gx(t) by mx(t) = |V x(t)| − 1. We define the final number of retweets
of x as limt→∞ mx(t) = Mx and it is the arrival of retweets and attained Mx that
we wish to predict.

We will index the users in the retweet graph with the variable j . The root user
is indexed by j = 0, and all other users have j > 0. User j who retweets x is
denoted by vx

j for j = 1,2,3, . . . . The time of this user’s retweet is denoted T x
j ,



1586 T. ZAMAN, E. B. FOX AND E. T. BRADLOW

FIG. 1. Data for the root tweet “Cory Booker has never worked a day in his life. Not. #corybook-
erstories” by root user pbsgwen. The table shows the relevant data for the retweet graph for several
users. The plot shows the number of retweets of the root tweet versus time. Images of the retweet
graph at different times are also shown.

with T x
0 = 0 (the root tweet occurs at time 0). User vx

j has f x
j Twitter followers

and is dx
j “hops” from the root user vx

0 in the retweet graph. The parent of vx
j in the

retweet graph is denoted P x
j . To illustrate these definitions, we show in Figure 1

an example of the retweet graph for a root tweet. Included are pictures of the
evolution of the retweet graph, a plot of the number of retweets versus time and
a table showing the aforementioned summary data for several users in the retweet
graph. As we can see, this particular root tweet has almost all of its retweets at
depth one (one hop from the source), which is a common pattern for our data set
as discussed below.

2.2. Size, lifetime and depth of retweet graphs. We first look at the size and
lifetime of the 52 retweet graphs. The root tweets we collected had between 21 and
1260 retweets. The time for the final retweet to occur ranged from a few hours to a
few days as some of the final retweets had very large retweet times. A more stable
measure of the lifetime of a root tweet is the time to reach 50% (the median) of its
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FIG. 2. (Left) total number of retweets versus median retweet time for different root tweets.
(Right) rank of total number of retweets versus rank of median retweet time for different root tweets.

total retweet count. The median retweet times ranged from four minutes to three
hours, with most being less than one hour.

We plot the total number of retweets versus the median retweet times for the
52 root tweets in Figure 2. We also plot the rank of each tweet’s median retweet
time versus the rank of its total number of retweets among our 52 source tweets.
The Pearson correlation coefficient for the median retweet times and the eventual
number of retweets is −0.12 (p-value = 0.49) and the Kendall tau rank correlation
coefficient is 0.03 (p-value = 0.84). Therefore, we do not have evidence to reject
the null hypothesis that the eventual number of retweets is uncorrelated with the
median retweet time. Instead, this suggests the potential value of our model over
purely exploratory approaches. In particular, it is important to model the retweet
interarrivals for our prediction task. Thus, simply predicting the total number of
retweets from the median (or simple central summary) is unlikely to yield accurate
predictions.

We next explore the structure of the retweet graphs. In particular, we look at
the number of vertices one hop and more than one hop from the root user. For the
52 root tweets, there are 11,882 retweeters who are one hop from the root user
and only 314 retweeters more than one hop from the root user. Figure 3 shows
the histogram of vertices at different depths in all of the retweet graphs, along
with a plot of the fraction of vertices more than one hop from the root user for
each retweet graph. As can be seen, retweet graphs typically have most vertices
at depth one, but occasionally they have some vertices at depth greater than one,
suggesting that root tweets get retweeted much more often than the retweets get
retweeted. This fact agrees with previous studies done on retweet graph structures
[Goel, Watts and Goldstein (2012), Kwak et al. (2010)] and is key to our ability to
predict Mx early, even before potential retweets from those two hops or more are
taken into account. We have found that the follower count of the root user has little
correlation with the retweet graph depth (Pearson correlation coefficient = 0.13,
p-value = 0.28). However, when a retweet graph has depth greater than one, it is
typically due to a user with a large number of followers. The median follower count
of users in the retweet graph who are not the source but get retweeted is 1,142,923.
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FIG. 3. Histogram of (left) the fraction of users at different depths in all 52 retweet graphs and
(right) the fraction of vertices of depth greater than one in the retweet graph for each root tweet.

2.3. Reaction times. Given, as before, that user vx
j retweets the root tweet at

time T x
j , we define the reaction time Sx

j = T x
j − T x

P x
j

as the elapsed time between

when the parent of vx
j (re)tweets and vx

j retweets. That is, Sx
j is the time that it takes

vx
j to react and retweet after the root tweet becomes visible to vx

j via its parent’s
(re)tweet. We define π as the permutation that orders the Mx retweet times T x

j

from minimum to maximum. That is, T x
π(0) ≤ T x

π(1) ≤ · · · ≤ T x
π(Mx). It is important

to note that π corresponds to the sequence in which we observe the retweet times
for a root tweet. Figure 4 provides a graphical explanation of the reaction times in
terms of retweet times.

FIG. 4. Description of reaction times for a retweet graph. The vertical position of vertices indicate
when they retweeted, with time increasing as one goes down. The reaction time on each edge is
expressed in terms of the retweet times of the vertices.
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To begin a more formal exploration of our data, we first consider a simple and
non-Bayesian model in which each Sx

j is assumed to be an i.i.d. log-normal ran-
dom variable with parameters τx and αx : log(Sx

j ) ∼ N (αx, (τ x)2). We take the
parameters of the log-normal to be different for each root tweet x, but the same for
each user within a given retweet graph. This assumption takes into account the fact
that there can be heterogeneity of these parameters which depends on the content
of the root tweet.

To assess the log-normal assumption, we calculate the maximum likeli-
hood (ML) estimate of αx and τx for each root tweet. Given a set of reaction
times Sx

j for j = 1,2, . . . ,Mx , the ML estimates are straightforwardly given by

αx
ML = 1

Mx

Mx∑
j=1

log
(
Sx

j

)
, τ x

ML =
√√√√√ 1

Mx

Mx∑
j=1

(
log

(
Sx

j

) − αx
ML

)2
.

In Figure 5 (top left) we show a scatter-plot of αx
ML and τx

ML for different root
tweets x. All parameter values are evaluated with reaction times measured in sec-
onds. The mean and standard deviation of αx

ML is 7.31 and 0.73, respectively. The
mean and standard deviation of τx

ML is 2.31 and 0.31, respectively, and we clearly
see some heterogeneity over x. To assess fit, we show in Figure 5 the empiri-
cal complimentary cumulative distribution function (CCDF) of the reaction times

FIG. 5. (Top left) scatter-plot of ML estimates of αx and τx for different root tweets. The remain-
ing figures are plots of the empirical reaction time complimentary cumulative distribution function
(CCDF) (black circles) and the CCDF of log-normal distributions using the ML parameter estimates
(solid line) for three different root tweets representing the 2.5 (top right), 50 (bottom left) and 95
(bottom right) percentiles of retweet graph size in our data set. For each root tweet, we show the root
user for the tweet and the number of retweets in total it received.
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along with the CCDF of a log-normal distribution using the ML estimates for the
parameters for three root tweets representing the 2.5 (small size, top right), 50
(medium size, lower left) and 95 (large size, lower right) percentiles of retweet
graph size in our data set. Qualitatively, the log-normal curves provide a reason-
able fit for the reaction times.

The observation of log-normally distributed reaction times has occurred in other
application areas. For instance, Stouffer, Malmgren and Amaral (2006) observed
that the time for people to respond to emails follows a log-normal distribution.
Brown et al. (2005) observed that call durations in call centers follow a log-
normal distribution. In the psychology literature there have been different models
proposed to explain the origin of log-normal reaction times in different contexts
[Ulrich and Miller (1993), van Breukelen (1995)]. However, these models do not
apply directly to Twitter and it is interesting to see the same general empirical
pattern replicated here.

2.4. Retweet graph structure. In this section we provide an initial exploration
of the effects of the number of followers, f x

j , and distance from the root, dx
j , on

the probability of a user’s tweet being retweeted. Once a user vx
j (re)tweets in the

retweet graph for a root tweet x, the (re)tweet appears in the Twitter feed (time-
line) of all of vx

j ’s followers. Some number of these followers will subsequently
retweet vx

j . We denote this number by Mx
j , which is equal to the out-degree of vx

j in
the completed retweet graph once the root tweet has stopped spreading. We assume
that each of the f x

j followers of vx
j will independently retweet vx

j with probability
0 ≤ bx

j ≤ 1. This gives Mx
j a binomial distribution Bi(f x

j , bx
j ). We note that this

assumption of conditional independence across followers is reasonable because
retweeters are unlikely to be connected to other retweeters and, hence, there is no
“visibility” between the f x

j followers. In our data set, the average of ratio of cy-
cle forming follower edges to all possible follower edges is 0.01. This means that
follower edges which connect users in addition to those connected via retweets
represent less than 1% of all possible follower edges. For other networks there
may be generalizations needed.

We assume the retweet probability bx
j depends upon two pieces of information:

the number of followers f x
j of vx

j and the distance dx
j of vx

j from vx
0 in the retweet

graph. This makes conceptual sense as these two variables represent the potential
retweet base and the “degree of closeness” of each vertex, respectively. We model
logit(bx

j ) as

logit
(
bx
j

) = β0 + βf log
(
f x

j + 1
) + βd log

(
dx
j + 1

) + εx
j ,(1)

where εx
j ∼ N (0, σ 2

b ). For this exploratory analysis (formal model in Section 3),

for each user vx
j we estimate bx

j as b̂x
j = Mx

j /f x
j . We then perform a linear regres-

sion of logit(b̂x
j ) on log(f x

j + 1) and log(dx
j + 1) for all users in all root tweets.

Here, we only include users for which Mx
j ≥ 1 so that logit(b̂x

j ) will be finite.
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FIG. 6. Plots for all 52 root tweets of (left) logit(b̂x
j ) − β̂0 − β̂d log(dx

j + 1) versus f x
j and (right)

logit(b̂x
j ) − β̂0 − β̂f log(f x

j + 1) versus dx
j . The values of dx

j are slightly perturbed in order to
improve visibility of the data.

The ML estimates of the regression coefficients are β̂0 = 1.99, β̂f = −0.79 and
β̂d = −4.31 and the p-values of the corresponding t-statistic are all significantly
less than 0.001, indicating a high significance for each coefficient. In Figure 6 we
plot logit(b̂x

j )− β̂0 − β̂d log(dx
j +1) versus f x

j and logit(b̂x
j )− β̂0 − β̂f log(f x

j +1)

versus dx
j in order to show the isolated effect of each covariate.

The value for β̂f is negative, which is expected given the way b̂x
j is defined,

but the value is greater than −1. This result says that after controlling for dx
j , the

average value of Mx
j scales as bx

j f x
j ∼ (f x

j )c for some 0 < c < 1. Therefore, the
number of retweets should grow with the number of followers a user has, but at a
decreasing rate. The value for β̂d is also negative, indicating that after controlling
for f x

j , a retweet is less likely the farther we get from the root user. Both of these
findings are in accordance with previous research on retweet graph structure [Goel,
Watts and Goldstein (2012), Kwak et al. (2010)] and provide face validity to our
results.

3. Retweet model. Our data analysis in Section 2 provides us with insights on
the important properties of the dynamics of retweeting and the structure of retweet
graphs. Based on these insights, we propose a Bayesian model for the evolution of
the retweet graph of a root tweet.

3.1. Generative model for retweet graph evolution. Our generative model for
the evolution of a retweet graph can be described as follows. We start with a single
user vx

0 who posts the root tweet x. This user has a reaction time Sx
0 = 0 and Mx

0
children who will eventually retweet x. Each child vx

j of Mx
0 generates a random

reaction time Sx
j and an independent random number of children Mx

j . This process
repeats recursively with every child generating a reaction time and an independent
random number of its own children.
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FIG. 7. Graphical model of the Bayesian log-normal-binomial model for the evolution of retweet
graphs. The plates denote replication over tweets x and users vx

j . Nested plates denote retweets
occurring at larger depths from the root user. The process terminates when all children which are
leaves in the retweet graph have Mx

j = 0. Hyperpriors are omitted for simplicity.

The process terminates when all children which are leaves in the retweet graph
have Mx

j = 0. As we show in our model specification of Section 3.3, the distribu-
tion of Mx

j depends on the depth of the node and in Section 4 we show that we
typically learn that Mx

j is likely to be smaller for higher depth nodes. The graphical
model of this generative model is shown in Figure 7. In what follows, we specify
the components of our generative process by defining the conditional distributions
of Sx

j and Mx
j .

3.2. Log-normal model for reaction times. From our exploratory analysis, we
saw that a log-normal distribution provided a reasonable fit for the reaction times.
There was some variation in the ML estimates of the log-normal parameters, αx

and τx , across tweets. Therefore, we choose the following model for the reaction
times. For each root tweet x we model log(Sx

j ) as normal with a tweet specific
mean αx and standard deviation τx . We place a normal prior on αx and an inverse-
gamma prior on (τ x)2, in accordance with standard hieararchical Bayesian models
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[cf. Gelman and Hill (2007)]. In particular,

log
(
Sx

j

)|αx, τ x,Mx ∼ N
(
αx,

(
τx)2)

, j = 1, . . . ,Mx,(2)

αx |α,σ� ∼ N
(
α,σ 2

�

)
,(3) (

τx)2 ∼ IG(aτ , bτ ).(4)

To complete our hierarchical Bayesian specification and ameliorate issues with
hyperparameter sensitivity, we use the following hyperpriors:

α ∼ N
(
μα,σ 2

α

)
,(5)

σ 2
� ∼ IG(a�, b�),(6)

log(aτ ) ∼ N
(
μa,σ

2
a

)
,(7)

bτ ∼ Gamma(kb, θb),(8)

and note that exact hyperparameter values, selected to be uninformative, are pro-
vided in Appendix A. The graphical model for the reaction time component of
the model is shown in Figure 7 (see node Sx

j and all associated connections) and
demonstrates the cross-tweet shrinkage that is allowed by our model.

3.3. Binomial model for retweet graph structure. As in our exploratory analy-
sis, we assume independence of retweets between the pool of potential retweeters,
specifically assuming that each follower of user vx

j retweets with probability bx
j .

We saw initial evidence that the retweet probabilities bx
j showed dependence on

the number of followers and depth of the user, f x
j and dx

j . Using this insight, we
propose the following model for the retweet graph structure:

Mx
j |f x

j , bx
j ∼ Bi

(
f x

j , bx
j

)
,(9)

logit
(
bx
j

)|μx
j , σb ∼ N

(
μx

j , σ
2
b

)
,(10)

where we define

μx
j = β0 + βf log

(
f x

j + 1
) + βd log

(
dx
j + 1

)
.(11)

This model allows for the possibility of the number of followers, f x
j , and the depth

of the retweet from the root, dx
j , to influence the number of eventual retweeters.

The influence of the covariates, as determined by βf and βd , is shared across root
tweets x. As with the reaction time model, we put hyperpriors on these global
model parameters:

β0 ∼ N
(
μβ0, σ

2
β0

)
,(12)

βf ∼ N
(
μβf

, σ 2
βf

)
,(13)

βd ∼ N
(
μβd

, σ 2
βd

)
,(14)

σ 2
b ∼ IG(aσb

, bσb
),(15)
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where we specify the specific (uninformative) hyperparameter values in Ap-
pendix A. The combined model for reaction times and the graph structure is shown
in Figure 7.

3.4. Likelihood function. We now derive the likelihood function for our
retweet model. We partition our data set into two types of tweets, training tweets
and prediction tweets. The training tweets are fully observed retweet graphs. That
is, we observe all reaction times (Sx

j ) along with the final degree (Mx
j ) of each ver-

tex in the retweet graph. For the prediction tweets, we observe the retweet graph
up to a time tx and therefore only observe a fraction of the reaction times and the
current degree of each vertex which we denote by mx

j (t
x). We do not observe the

Mx
j ’s in a prediction tweet1 and, therefore, we treat these as missing data.
First, we derive the likelihood of the observations for a training tweet. We define

the number of observed retweets for a training tweet x as mx . The observed data for
a training tweet are Sx = ⋃mx

j=1 Sx
j and Mx = ⋃mx

j=0 Mx
j . Recall that in our model

log(Sx
j ) ∼ N (αx, (τ x)2) for j = 1, . . . ,mx . Therefore, if we define bx = ⋃mx

j=0 bx
j ,

the likelihood of the observations is given by

P
(
Sx,Mx |αx, τ x,bx,mx)

= P
(
Mx

0 |bx
0 ,F x

0
)

(16)

×
mx∏
j=1

1√
2πτx

exp
(
−(log(Sx

j ) − αx)2

2(τ x)2

)
P

(
Mx

j |bx
j , f x

j

)
,

where P(Mx
j |bx

j , f x
j ) is given by the binomial of equation (9). We note that Sx

j

is not conditionally independent of Mx
j because the total number of Sx

j that exist
depend upon Mx

j (which is an element in defining the observed mx ).
For the prediction tweets, we do not observe the Mx

j ’s and so will need to
marginalize over them. Also, we observe only a subset of the reaction times which
comes from retweets that occur before time tx . Using the previous definitions of π

and mx(tx), the observed data for a prediction tweet are Sx
tx = ⋃mx(tx)

j=1 Sx
π(j) and

mx
tx = ⋃mx(tx)

j=0 mx
π(j)(t

x). First, we derive the conditional distribution of the ob-

servations Sx
tx and mx

tx conditional on Mx
tx = ⋃mx(tx)

j=0 Mx
π(j), αx and τx . With this

conditioning, the contribution to the probability from each vertex vx
π(j) observed

by time tx has three components:

(1) The log-normal likelihood of its observed reaction time [equation (2)].
(2) The unobserved retweets of its children in the retweet graph. That is, for

each vertex vx
π(j) that retweets at time T x

π(j) ≤ tx , we have mx
π(j)(t

x) observed

1Except in the degenerate case where mx
j = f x

j , in which case Mx
j = mx

j .
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retweets by time t and Mx
π(j) − mx

π(j)(t
x) unobserved retweets. Because we are

making the observations at time tx , these Mx
π(j)−mx

π(j)(t
x) reaction times must be

greater than tx −T x
π(j). Therefore, if we define the cumulative distribution function

of N (αx, (τ x)2) as F(·|αx, τ x), the contribution to the conditional distribution is

(1−F(log(tx −T x
π(j))|αx, τ x))

Mx
π(j)−mx

π(j)(t
x). That is, Mx

π(j)−mx
π(j)(t

x) potential
retweeters of vx

π(j) have not done so yet (or we would have observed them by
time tx ).

(3) A combinatorial term
( Mx

π(j)

mx
π(j)(t

x)

)
which must be included because the unob-

served retweets from the children of vx
π(j) could be any Mx

π(j) − mx
π(j)(t

x) of its
Mx

π(j) children.

Putting these components together, the likelihood of the prediction tweet observa-
tions, conditional on the missing Mx

π(j), is given by

P
(
Sx

tx ,mx
tx |αx, τ x,Mx

tx ,m
x(

tx
))

=
(

Mx
0

mx
0

(
tx

)) (
1 − F

(
log

(
tx − T x

0
)|αx, τ x))Mx

0 −mx
0(tx)

(17)

×
mx(tx)∏
j=1

1√
2πτx

exp
(
−(log(Sx

π(j)) − αx)2

2(τ x)2

)(
Mx

π(j)

mx
π(j)

(
tx

))

× (
1 − F

(
log

(
tx − T x

π(j)

)|αx, τ x))Mx
π(j)−mx

π(j)(t
x)

.

As can be seen from equaton (17), for prediction tweets Sx
j and Mx

j are not con-
ditionally independent. Because of this dependency we can use temporal obser-
vations (retweet times) to predict the final retweet graph structure (and hence the
final retweet count of the tweet).

To obtain the complete data likelihood, we simply multiply equation (17) by
P(Mx

π(j)|bx
π(j),F

x
π(j)) and sum over all possible values of Mx

π(j). If we define

bx
tx = ⋃mx(tx)

j=0 bx
π(j), then the marginal likelihood is

P
(
Sx

tx ,mx
tx |αx, τ x,bx

tx
)

= ∑
Mx

0

(
Mx

0
mx

0

(
tx

)) (
1 − F

(
log

(
tx − T x

0
)|αx, τ x))Mx

0 −mx
0(tx)

×
mx(tx)∏
j=1

1√
2πτx

exp
(
−(log(Sx

π(j)) − αx)2

2(τ x)2

)

× ∑
Mx

π(j)

P
(
Mx

π(j)|bx
π(j),F

x
π(j)

)(
Mx

π(j)

mx
π(j)

(
tx

))

× (
1 − F

(
log

(
tx − T x

π(j)

)|αx, τ x))Mx
π(j)−mx

π(j)(t
x)

.
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Since this equation does not yield a closed form, we rely on imputing the missing
Mx

j as described next in Section 3.5.

3.5. Posterior computations. To summarize, our goal is to calculate a predic-
tive distribution for reaction times, and hence the number of eventual retweets
of a prediction tweet x, given a set of observed (training) retweet paths and
the partial history of x observed up to time tx . Recall that our model con-
sists of three types of parameters. First, there are the global parameters 
 =
{α,σ�,aτ , bτ , β0, βf ,βd, σb} which are shared between tweets. Second, there are
tweet specific parameters α = ⋃

x αx and τ = ⋃
x τ x . Third, there is a tweet and

user specific parameter: the retweet probability bx
j . We define the set of all retweet

probabilities as b = ⋃
x,j bx

j .
The final vertex degrees (Mx

j ) are missing data for the prediction tweets. We
define P as the set of prediction tweets and T as the set of training tweets. We
define the set of unobserved Mx

j for a tweet x as Mx = ⋃
j Mx

j . For the prediction
tweets we define MP = ⋃

x∈P Mx and for the training tweets we define MT =⋃
x∈T Mx . We define the set of observed reaction times for a tweet x as Sx =⋃
j Sx

j and the set of all reaction times for both the training and prediction tweets
as S = ⋃

x Sx . Using the conditional dependencies in our model as laid out in
Figure 7, the posterior distribution of the model parameters and MP given S and
MT can be written as

P(
,α,τ ,b,MP |S,MT ) ∝ P(
)
∏
x

P
(
αx |α,σ�

)
P

(
τx |aτ , bτ

)
× ∏

x,j

P
(
Mx

j |bx
j , f x

j

)
P

(
bx
j |μx

j , σb

)
(18)

× ∏
x∈T

P
(
Sx |αx, τ x,Mx)

× ∏
x∈P

P
(
Sx,mx

tx |αx, τ x,Mx)
.

To examine our desired predictive distribution of MP , we sample from equa-
tion (18) using an MCMC sampler which involves sampling the model parameters
in addition to MP . The predictive distribution is approximated by utilizing sam-
ples of MP . Also, despite being potentially very high dimensional, the structure
of the posterior distribution lends itself to an efficient parallelized implementation
which can result in significant speedup. The details of the stages of our sampler
along with the parallelized implementation are provided in the Appendix.

4. Results. We partition our data set into a set of 26 training tweets T and a
set of 26 prediction tweets P . We randomly divide the tweets such that the train-
ing and prediction sets have similar retweet count distributions. The specific par-
tition used can be found in the supplemental materials [Zaman, Fox and Bradlow
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(2014)]. We aim to calculate the predictive distribution for MP using a fixed ob-
servation fraction of retweets for each prediction. For instance, for an observation
fraction of 10%, we used as observations all data from the 26 training tweets and
the first 10% of the total number of reaction times for each of the 26 prediction
tweets. Note that by fixing the observation fraction, we are observing each predic-
tion tweet up to a different time. We use observation fractions ranging from 10%
to 100%. 100 represents a fully in-sample analysis, and lower fractions are used to
understand how early on in a tweet’s life predictions can be made.

For each observation fraction, we generated posterior samples using three inde-
pendent MCMC chains with dispersed starting points run for 3000 iterations and
discarding a burn-in period of 1000 iterations. Convergence of the MCMC sam-
pler was assessed using the Gelman–Rubin statistic [Gelman and Rubin (1992)].
A histogram of the posterior samples of the global parameters for an observation
fraction of 100% is shown in Figure 8 and the corresponding posterior means are
shown in Table 1.

We find that the posterior mean of α is 7.42, which is comparable to the mean of
the ML estimates of αx from Section 2.3 (7.31). Also, the 90% posterior credible
interval of the β parameters do not contain 0, indicating that these parameters are
important to the predictive power of our model and agree with our earlier analyses
from Section 2.4.

In Section 4.1 we describe our prediction results for the number of eventual
retweets, followed by an analysis in Section 4.3 that looks at the impact of the
number of followers (f x

j ) and the depth of the retweeters (dx
j ) on our predictions.

FIG. 8. Histograms of posterior samples of global parameters with an observation fraction
of 100%.
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TABLE 1
Posterior means and standard deviations (s.d.) for
the global model parameters with an observation

fraction of 100% (a fully in-sample analysis)

Parameter Posterior mean (s.d.)

α 7.42 (0.10)

σ� 0.65 (0.07)

aτ 0.45 (0.07)

bτ 2.11 (0.55)

σb 1.69 (0.18)

β0 −4.61 (0.85)

βf −0.28 (0.06)

βd −8.22 (0.59)

4.1. Retweet prediction results. The predictions of our model for the to-
tal number of retweets come from Mx

j , the eventual number of retweets from
retweeter vx

j . For instance, if at time tx we observe mx(tx) retweets, our pre-
diction of the total number of retweets is given by the predictive distribution of∑mx(tx)

j=0 Mx
π(j). This serves as a step-ahead forecast of Mx . We discuss possibili-

ties to go beyond this step-ahead prediction in Section 5.1.
Our predictions are for observation fractions ranging from 10% to 100%. The

prediction results for four different root tweets are shown in Figure 9. We plot the
median and 90% posterior credible intervals for the total number of retweets for
different observation fractions. The predictions are plotted along with the number
of observed retweets versus time. From these plots, it can be seen qualitatively that
the predictions made within a few minutes for the eventual number of retweets are
relatively close to the true value. We have found for all the prediction tweets that
the median time for the total number of retweets to enter the 90% posterior credible
interval of the prediction is 3 minutes.

To better understand the model predictions at the individual tweet level, we
show boxplots of the posterior distribution of the absolute percent error (APE)
for each prediction tweet (using the posterior median as the prediction value) for
different observation fractions in Figure 10. The whiskers on the boxplots are the
90% posterior credible intervals. As can be seen, as we increase the observation
fraction, the prediction error tends to decrease. There are a few tweets which have
exceptionally large errors at a 40% observation fraction. We discuss these tweets
in Section 5.2.

We can aggregate these results across all prediction tweets by looking at the
APE of predictions made using the posterior median as our prediction value. We
have found no significant relationship between the APE of a prediction and the
final number of retweets. For instance, at 25%, 50% and 75% observation fractions
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FIG. 9. Prediction of the total number of retweets for four different root tweets. The solid line
represents the number of observed retweets versus time. The solid square is the posterior median of
the predictive distribution for the total number of retweets based on observations only up to that time
point. The error bars correspond to the 90% credible intervals. The horizontal dashed line is the
final number of observed retweets Mx . The root user and total number of retweets of each tweet are
shown in the plots.

the correlation between the APE and final number of retweets is 0.14 (p-value
0.49), 0.14 (p-value 0.49) and 0.14 (p-value 0.49), respectively. In Figure 11 we
show a boxplot of the APE for all 26 prediction tweets versus observation fraction.

As can be seen, for our model the median APE (MAPE) is below 40% for ob-
servation fractions ranging from 10% to 100%. The average retweet time of the
prediction tweets at a 10% observation fraction is 4.4 minutes. Therefore, we see
that using only a few minutes of observations, we can predict with reasonable
accuracy the total number of retweets given a small fraction of observations. To
check robustness, we have repeated the predictions on 10 different random parti-
tions of the tweets. We have found for 10% observation fraction the MAPE of each
partition was between 20% and 36%, with an average value of 28%.

To get a sense of how good the predictions are, consider the MAPE at 10% and
100%. At 10%, if one thought that there were no more retweets, the error would
be 90%. Our model’s median error is less than 40%, which means that the model
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FIG. 10. Boxplots of prediction absolute percent error (APE) for 26 prediction tweets. Each plot
corresponds to a different observation fraction of retweets.

predicts that the tweet will receive many more retweets. At 90%, if one thought the
there were no more retweets, the error would be 10%. Our model’s median error is
less than 10%, which means that the model predicts that the tweet is almost done
spreading. Therefore, we see that our model can predict if a tweet has a significant
amount of (retweet) life left or if it is near its end.

4.2. Comparison with benchmark models. We next compare our model with
three different benchmark models. First, we consider a linear regression model
that uses no temporal information and only the follower count of the root user

FIG. 11. Boxplots of the APE of the retweet model and strawman model at different observation
fractions.
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(source tweeter). Second, we consider the regression model of Szabo and Hu-
berman (2010) which uses only the current retweet count. Finally, we consider
a dynamic Poisson model with exponentially decaying rate based on the work of
Agarwal, Chen and Elango (2009). We will see that our model outperforms each
of these approaches.

The linear regression model is as follows:

log
(
Mx) = β0 + β1 log

(
f x

0
) + εx,(19)

where εx is a zero mean, normally distributed error term. This model only uses
the root users’ follower count to predict the final retweet count, but no information
about the retweet times or followers and depth of retweeters.

The regression model of Szabo and Huberman (2010) for the final retweet count
is

log
(
Mx) = β(t) + log

(
mx(t)

) + εx,(20)

where εx is a zero mean, normally distributed error term. Here the final retweet
count is modeled as a log-linear function of the current retweet log count at time t ,
where the intercept β(t) is time varying. Since mx(t) approaches Mx(t) as t goes
to infinity, we also expect β(t) to approach zero in this model.

For the dynamic Poisson model with exponentially decaying rate, we bin time
into 5 minute intervals indexed by k = 0,1,2, . . . . The number of retweets in the
kth bin is a Poisson random variable with rate λδk . Here λ is the initial retweet
rate, and δ describes the exponential decay of the rate.

We perform ML estimation of these models on the training tweets, and then
predict on the prediction tweets. For the linear regression model which only uses
the follower count, the MAPE is 65%. This is much higher than our model that is
able to use observations of retweet times. For the other two models which utilize
retweet times, we plot their MAPE in Figure 12. We plot the MAPE of both the
final retweet count and also the remaining retweet count (so that the maximum
possible MAPE = 100%). For each type of MAPE, we can see that our retweet
model outperforms the other models.

4.3. Comparison with nested models: Impact of f x
j and dx

j . To show the im-
portance of f x

j and dx
j to our retweet model, we compare to a strawman model

which ignores these covariates. The strawman model assumes that Mx
j comes from

a Poisson distribution (not binomial as before since f x
j is unknown) with global

rate λ. We keep the reaction time component of the retweet model the same. We
put an uninformative gamma prior on λ with shape and scale parameters 1 and 500,
respectively. We use the median of the predictive distribution as a point estimate
of the number of retweets in comparing our model’s performance to that of the
strawman. In Figure 11 we show boxplots for the absolute percent error (APE) of
the two models’ predictions for all of the prediction tweets versus the observation
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FIG. 12. Plots of the median absolute percentage error (MAPE) for the total retweet count (left)
and remaining retweet count (right) versus observation fraction of retweets for 26 root tweets. The
three curves are the MAPE for the retweet model, the linear regression model of Szabo and Huberman
(2010) and the dynamic Poisson model with exponentially decaying rate.

fraction. For an observation fraction of 10% (where predictions are most useful)
the error of the strawman model is very high (MAPE = 80%) compared to our
model (MAPE = 29%). Also, while our model’s error tends to decrease as more
retweets are observed, the strawman model’s error decreases to a point and then
increases again. The strawman model’s prediction for the total number of retweets
is essentially a constant multiplied by the number of observed retweets. To make
this more evident, in Figure 13 we plot the MAPE versus observation fraction for
both models and a naive model which predicts 1.4mx(tx) for the eventual number
of retweets. The factor of 1.4 was chosen to make the minimum MAPE of the

FIG. 13. Plot of the median absolute percentage error (MAPE) versus observation fraction of
retweets for 26 root tweets. The three curves are the MAPE for the retweet model, a strawman model
which ignores f x

j and dx
j , and a naive model which always predicts 1.4mx(tx).
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TABLE 2
Average log-likelihood (LL) and deviance information

criterion (DIC) for a 100% observation fraction for the
full retweet model and a nested strawman model

Retweet model Strawman model

LL −38,860 −103,907
DIC 83,848 208,026

naive model occur at the same observation fraction as the strawman model. As can
be seen, the error of the strawman is very similar to the naive model.

To assess the overall fit of the two models, we compare their average log-
likelihood (LL) and deviance information criterion (DIC) [Spiegelhalter et al.
(2002)] for an observation fraction of 100% in Table 2. Models which fit better
have larger values for the LL and smaller values for the DIC. As can be seen from
Table 2, our model has a significantly better fit than the strawman model. This
analysis demonstrates that f x

j (user information) and dx
j (retweet graph structure)

are important elements for predicting retweets accurately.

5. Model extension opportunities. We next discuss various extensions to our
retweet model. We first discuss improving our predictions using future potential
retweeters. Then we discuss evidence in our data which suggests possible exten-
sions to our reaction time model. Finally, we discuss the incorporation of side
information for the tweets.

5.1. Distribution over future potential retweeters. Our current predictions are
based on eventual retweets from existing users in the observed retweet graphs and
do not take into account retweets of future retweeters who have not yet been ob-
served. We can think of this prediction as a step-ahead forecast of the total eventual
number of retweeters. In practice, it quickly provides a good estimate since most
retweet graphs have low depth and retweets occur quickly. However, one could
extend our prediction to account for the eventual retweets from users who have
not yet been observed, in particular, by integrating over our uncertainty. This type
of prediction would require greater knowledge of the structure of the underlying
follower graph. For instance, if a user has a follower with a large number of fol-
lowers, this user may receive a large number of retweets due to a retweet from
this follower. Therefore, incorporation of unobserved retweeters could potentially
improve our predictions, but would require obtaining more data on the follower
graph. Note, however, that under the (experimentally validated) assumption that
the probability of retweeting decreases with depth, the sensitivity of our predic-
tions to inaccuracies of future retweeter information may be minimal.
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5.2. Reaction time modeling. As seen in Figure 10 (top right), at an observa-
tion fraction of 40% there are four different tweets with very large errors compared
to the other tweets. We looked at these tweets more closely to try to understand
the source of this error. The number of retweets for these tweets ranged from 73
to 608. What these tweets had in common was the fact that the number of retweets
increased very rapidly at first, and then slowed down considerably. This behav-
ior deviated from the log-normal reaction time model. If the reaction times were
log-normal, then their logarithms would be normally distributed and the difference
between the median and mean of their logarithms would be zero. Any deviation
of this difference from zero can be viewed as a deviation from log-normality. We
define �x as this difference normalized by the median of the logarithm of the
reaction times:

�x = mean(log(Sx
j )) − median(log(Sx

j ))

median(log(Sx
j ))

.

To show the similarities of the four high error tweets, in Figure 14 we plot �x

versus the median reaction time for each prediction tweet. The four triangles in
the plot are the tweets with the large errors. As can be seen, these tweets have a
short median reaction time along with a large value for �x . Therefore, it seems
that these tweets have reaction times that are not well modeled by the log-normal
distribution, which leads to the larger prediction errors. It is an interesting area of
future research to try and understand what properties of these tweets and the users
who posted them cause this type of retweeting behavior and why the reaction times
are not well modeled by the log-normal distribution.

5.3. Incorporation of side information. Our model relied primarily on the tim-
ing information of retweets, depth in the retweet graph and number of followers
for predictions. However, there are other types of side information that we could
incorporate which may potentially improve the accuracy of the predictions. One
type of side information is the time of day. It may be that the retweet behavior of

FIG. 14. Plot of median reaction time versus �x for the prediction tweets. The triangle points are
the tweets with large prediction errors at 40% observation from Figure 10.
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a tweet depends upon the time it was posted. Another type of side information is
the content of the tweet. For instance, retweet behavior may depend upon the topic
of the tweet, and whether or not that topic is a currently trending topic in Twit-
ter. These types of side information can be readily incorporated into our modeling
framework as covariates for the parameters such as αx and bx

j .

6. Conclusion. We have presented a model for retweet dynamics in Twitter.
Our Bayesian approach allowed us to provide predictions for the total number of
retweets, along with posterior credible intervals for the predictions. The predic-
tions had a MAPE of less than 40% when at least 10% of the total number of
retweets were observed. For most tweets, this translated to an average error less
than 40% within 5 minutes of the tweet being posted.

We have shown that given the size of the retweeter network and depth from the
source tweet, we are able to predict the number of potential viewers of a tweet.
The level of accuracy in our predictions allows us to consider using this model for
different applications. For example, it can be used to turn tweets into a potential
source of impressions for display ads. Because tweets are typically only actively
retweeted for a few hours, the early predictions our model provides are key to
detecting a popular tweet before it receives a large amount of retweets. Also, the
similarity of the manner by which people spread content in social networks suggest
that this model can be used for other social networks such as Facebook. Therefore,
our model’s early predictions could create a whole new source of impressions for
online advertising on dynamic social network content with a finite “lifetime.”

Finally, because this model is for a single tweet, it can be used as the foundation
for a more general model for the spread of broader ideas which involve multiple
tweets from multiple users. Our model can easily be parallelized to analyze very
large collections of tweets. With a model for the spread of ideas, we could develop
a better understanding of how memes and trends spread and potentially predict the
speed and magnitude of their popularity.

APPENDIX A: DETAILS OF MCMC SAMPLER

We use a Metropolis-within-Gibbs scheme to sample from the posterior dis-
tribution of the model parameters. We define the set of model parameters as
 = {
,b,αx,τ x,MP} and for any parameter γ ∈ , we define the set of pa-
rameters excluding γ as −γ . We also define the set of observed reaction times
as S. For our MCMC sampler, we must sample from the conditional distribution
P(γ |S,MT ,−γ ) for each model parameter. We will now derive these conditional
distributions and show how to sample from them.

A.1. Retweet graph structure parameters.

Hyperparameters β0, βF , βd , σ 2
b . The prior distributions for β0, βF and βd

are normal with mean 0 and standard deviation σβ = 100. It can be shown that
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the joint conditional distribution of (β0, βF ,βd) is multivariate normal with mean
μ and covariance matrix C. Because of this, we can directly sample the β’s in a
Gibbs step. We simply need to determine μ and C. To do this, first we let N be
the total number of observed reaction times for all training and prediction tweets.
To express the mean and covariance of the conditional distribution, it is helpful to
define the following variables:

N1 = N + σ 2
b σ−2

β , E = ∑
x,j

log
(
f x

j + 1
)

log
(
dx
j + 1

)
,

D = ∑
x,j

log
(
dx
j + 1

)
, D2 = ∑

x,j

log2(
dx
j + 1

) + σ 2
b σ−2

β ,

F = ∑
x,j

log
(
f x

j + 1
)
, F2 = ∑

x,j

log2(
f x

j + 1
) + σ 2

b σ−2
β ,

Y0 = ∑
x,j

log
(
bx
j + 1

)
, YF = ∑

x,j

log
(
bx
j + 1

)
log

(
f x

j + 1
)
,

Yd = ∑
x,j

log2(
bx
j + 1

)
log

(
dx
j + 1

) + σ 2
b σ−2

β .

Then the covariance matrix of the conditional distribution is given by

C = σ 2
b

⎡
⎣N1 F D

F F2 E

D E D2

⎤
⎦−1

and its mean is given by

μ =
⎡
⎣N1 F D

F F2 E

D E D2

⎤
⎦−1 ⎡

⎣ Y0
YF

Yd

⎤
⎦ .

The prior distribution of σ 2
b is inverse-gamma with shape and scale parameters

aσb
= 0.5 and bσb

= 0.5, respectively. We can directly sample from the conditional
distribution for σ 2

b because it is inverse-gamma with shape parameter a′
σb

and scale
parameter b′

σb
given by

a′
σb

= aσb
+ N

2
,

b′
σb

= bσb
+ 1

2

∑
x,j

(
logit

(
bx
j

) − μx
j

)2
,

where μx
j = β0 + βF log(f x

j + 1) + βd log(dx
j + 1).
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Parameters bx
j . The conditional distribution of bx

j is given by

P
(
bx
j |S,MT ,−bx

j

) ∝ P
(
Mx

j |bx
j

)
P

(
bx
j |β0, βF ,βd, σb

)

∝ (
bx
j

)Mx
j
(
1 − bx

j

)f x
j −Mx

j exp
(
−(logit(bx

j ) − μx
j )

2

2σ 2
b

)
.

To sample from this conditional distribution, we use a Metropolis–Hastings step
with the proposal value for logit(bx

j ) drawn from a normal distribution with mean
μx

j and standard deviation σb.

Missing Mx
j . The conditional distribution for Mx

j is

P
(
Mx

j |S,MT ,−Mx
j

) ∝
(

Mx
j

mx
j

)(
1 − F

(
log

(
t − Sx

j

)|αx, τ
))Mx

j −mx
j

×
(

f x
j

Mx
j

)(
bx
j

)Mx
j
(
1 − bx

j

)f x
j −Mx

j 1
{
Mx

j ≥ mx
j

}
.

We generate samples from this conditional distribution using a Metropolis–
Hastings step with the proposal for Mx

j drawn from a binomial distribution
Bi(f x

j , bx
j ).

A.2. Retweet time parameters.

Hyperparameters α, σ 2
�, aτ , bτ . We utilized an extremely diffuse prior dis-

tribution for α that is normal with mean 0 and standard deviation σα = 100. The
conditional distribution of α is again normal with mean μ′

α and variance σ ′2
α , so it

can be directly sampled. If we define the total number of root tweets (training and
prediction) as Nt , then the mean and variance are

μ′
α = (

Nt + σ 2
�σ−2

α

)−1 ∑
x

αx,

σ ′2
α = (

Nt + σ 2
�σ−2

α

)−1
σ 2

�.

The prior distribution of σ 2
� is inverse-gamma with shape and scale parameters

aσ� = 0.5 and bσ� = 0.5, respectively. We can directly sample from the condi-
tional distribution for σ 2

� because it is again inverse-gamma with shape parameter
a′
σ�

and scale parameter b′
σ�

given by

a′
σ�

= aσ� + Nt

2
,

b′
σ�

= bσ� + 1

2

∑
x

(
αx − α

)2
.
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The prior distribution of log(aτ ) is normal with mean μa = 0 and standard
deviation σa = 10. The conditional distribution of aτ is given by

P(aτ |S,MT ,−αx ) ∝ P(aτ )

Nt∏
x=1

P
(
τx |aτ , bτ

)

= exp
(
− log2(aτ )

2σ 2
a

) Nt∏
x=1

baτ
τ

�(aτ )

(
τx)−aτ .

To sample from this conditional distribution, we use a random walk Metropolis–
Hastings step. That is, if we define the ith sample of aτ as aτ,i , the proposal for the
(i + 1) sample is drawn from a normal distribution with mean aτ,i and standard
deviation 0.2, where 0.2 is chosen to balance the acceptance rate with step size.

The prior distribution of bτ is gamma with shape parameter kb = 1 and scale
parameter θb = 500. We can sample directly from the conditional distribution of
bτ because it is gamma with shape parameter k′

b and scale parameter θ ′
b given by

k′
b = kb + Ntaτ ,

θ ′
b =

(
θ−1
b + ∑

j

(
τx)−1

)−1

.

Parameters αx , τx . The conditional distribution of αx depends upon whether
the root tweet is in the training or prediction set. For training tweets, the conditional
distribution of αx is normal with mean μαx and variance σ 2

αx
with

μαx = (
Mx + τ 2σ−2

�

)−1
Nt∑

j=1

log
(
Sx

j

)
,

σ 2
αx = (

Mx + τ 2σ−2
�

)−1
τ 2.

For a prediction tweet with n observed retweets, the conditional distribution of αx

is given by

P
(
αx |S,MT ,−αx

)
∝ exp

(
(αx − α)2

2σ 2
�

)

×
n−1∏
j=0

exp
(
−(log(T x

j+1) − αx)2

2τ 2

)(
1 − F

(
log

(
t − Sx

j

)|αx, τ
))Mx

j −mx
j .

To sample from this conditional distribution, we use a random walk Metropolis–
Hastings step. We define the ith sample of αx as αx

i , and the proposal for the
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(i + 1) sample is drawn from a normal distribution with mean αx
i and standard

deviation 0.2, where 0.2 is chosen to balance the acceptance rate with step size.
The prior distribution of (τ x)2 is inverse-gamma with shape and scale param-

eters aτ and bτ , respectively. We denote the inverse-gamma density function by
IG(·|aτ , bτ ). The conditional distribution of (τ x)2 can be written as

P
((

τx)2|S,MT ,−τ

) ∝ IG
((

τx)2|a′
τ , b

′
τ

) ∏
x∈P

(
1 − F

(
log

(
t − Sx

j

)|αx, τ
))Mx

j −mx
j ,

where the parameters of the inverse-gamma density function above are

a′
τ = aτ + mx(t)

2
,

b′
τ = bτ + 1

2

mx(t)∑
j=1

(
log

(
Sx

j

) − αx)2
.

For training tweets, Mx
j = mx

j , so the conditional distribution is inverse-gamma
and we can sample τx directly. For prediction tweets, we must use a Metropolis–
Hastings step with the proposal value for (τ x)2 drawn from an inverse-gamma
distribution with shape and scale parameters a′

τ and b′
τ , respectively.

APPENDIX B: DISTRIBUTED IMPLEMENTATION OF MCMC SAMPLER

The MCMC sampler lends itself naturally to distributed computation. The vari-
ables to be sampled are global (shared) and local (tweet/user specific). The main
computational burden comes from the local random variables, of which there can
be thousands or millions, depending on the size of the observations. However, the
steps for sampling many of these local variables can be done simultaneously, which
can result in a considerable speedup.

There are two random variables associated with each tweet/user pair (x, j) :bx
j

and Mx
j . The only local variable the sampling step of bx

j depends on is Mx
j . For

sampling Mx
j , the only local variables needed are bx

j , αx and τx . Therefore, the
sampling steps of bx

j and Mx
j must be done sequentially. However, this sequence

of steps can be done in parallel across all tweet/user pairs (x, j).
There are two random variables associated solely with each tweet x: αx and τx .

The sampling of αx needs the values of τx and all Mx
j associated with tweet x.

Similarly, the sampling of τx depends on the values of αx and all Mx
j associated

with tweet x. Therefore, the sampling steps of αx and τx must be done sequen-
tially, but this can be done in parallel across all tweets x.

Putting all this together, we obtain the following distributed implementation
of the MCMC sampler to generate a sample from the full posterior distribution.
First, sequentially sample the global parameters 
. Second, sequentially sample
the parameters αx and τx for a tweet x, but simultaneously for all tweets. Third,
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sequentially sample the parameters bx
j and Mx

j for all tweet/user pairs (x, j), but
simultaneously for all tweet/user pairs. This results in a classic data parallel setup
that can be efficiently implemented using frameworks such as MapReduce.

SUPPLEMENTARY MATERIAL

Supplement: Retweet time series data (DOI: 10.1214/14-AOAS741SUPP;
.zip). These files contain the data of the retweet time series for the root tweets
studied in this paper. They also include the files which contain the different par-
titions of the tweets into training and prediction sets used for the analysis in this
paper.
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