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The starting point of this article is the question “How to retrieve fin-
gerprints of rhythm in written texts?” We address this problem in the case
of Brazilian and European Portuguese. These two dialects of Modern Por-
tuguese share the same lexicon and most of the sentences they produce are
superficially identical. Yet they are conjectured, on linguistic grounds, to
implement different rhythms. We show that this linguistic question can be
formulated as a problem of model selection in the class of variable length
Markov chains. To carry on this approach, we compare texts from European
and Brazilian Portuguese. These texts are previously encoded according to
some basic rhythmic features of the sentences which can be automatically
retrieved. This is an entirely new approach from the linguistic point of view.
Our statistical contribution is the introduction of the smallest maximizer crite-
rion which is a constant free procedure for model selection. As a by-product,
this provides a solution for the problem of optimal choice of the penalty con-
stant when using the BIC to select a variable length Markov chain. Besides
proving the consistency of the smallest maximizer criterion when the sam-
ple size diverges, we also make a simulation study comparing our approach
with both the standard BIC selection and the Peres–Shields order estimation.
Applied to the linguistic sample constituted for our case study, the smallest
maximizer criterion assigns different context-tree models to the two dialects
of Portuguese. The features of the selected models are compatible with cur-
rent conjectures discussed in the linguistic literature.

1. Introduction. This paper has three main contributions. First of all, we in-
troduce a new approach to the linguistic question of how to retrieve rhythmic fea-
tures out from written texts. This is done through a case study, comparing two
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samples of encoded written texts from Brazilian Portuguese and European Por-
tuguese. To perform this comparison, we introduce the smallest maximizer crite-
rion which is a consistent and constant free model selection procedure in the class
of variable length Markov chains (VLMC). This is the second contribution of this
paper. Finally, we propose an algorithm to implement the smallest maximizer cri-
terion. Applied to our linguistic data set, the algorithm selects VLMCs that have
meaningful linguistic properties and shed a new light on the issue of the rhythmic
differences between Brazilian and European Portuguese.

Retrieving linguistic rhythm fingerprints in written texts is an important ques-
tion both from the point of view of science, and from the point of view of technol-
ogy. It is important from the point of view of science, as it provides, for instance,
a new tool to approach rhythmic change in historical linguistics. It is important
also from the point of view of technology, as a better understanding of the linguis-
tic rhythm features that are present in written texts would contribute, for instance,
to the improvement of text-to-speech algorithms.

The starting point of this article is a case study. We look for rhythmic finger-
prints in written texts of Brazilian Portuguese and European Portuguese (hence-
forth BP and EP, resp.). BP and EP, are two variants of modern Portuguese spoken,
respectively, in Brazil and in Portugal. The data we analyze is composed by texts
randomly extracted from two electronic collections of Brazilian and Portuguese
newspapers. The texts are encoded according to a few basic rhythmic features
which can be retrieved automatically from written texts. Then, we treat the sym-
bolic chains produced by the encoding procedure of the texts as realizations of
discrete time stochastic processes. More precisely, given each data set, we select
a model in a suitable class of candidate stochastic processes. Then we look for
the differences between the laws governing the stochastic processes selected for
BP and EP, respectively. In other terms we translate the linguistic problem into a
problem of comparison between the results of a double model selection procedure.

Model selection involves the choice of a class of candidate models and the
choice of a procedure to select a member of this class, given the data. Markov
chains with memory of variable length appear as good candidates to model the
symbolic chains obtained by encoding written texts in natural languages. In effect,
it can be argued on linguistic grounds that in a rhythmic chain each new symbol
is a probabilistic function of a suffix (ending string) of the string of past symbols.
Moreover, the length of this suffix depends on the past itself. This corresponds pre-
cisely to the class of stochastic chains with memory of variable length introduced
by Rissanen (1983). This class of models became popular in the statistics literature
under the name of variable length markov chains (VLMC), coined by Bühlmann
and Wyner (1999). In Rissanen’s seminal 1983 paper, the relevant ending string of
the past was called a context. And Rissanen observed that this notion was useful
only when no context was a proper suffix of another context. As a consequence,
the set of all contexts can be represented by the set of leaves of a rooted tree. This
leads Rissanen to call the new models tree sources or context tree models.
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Besides the choice of a class of candidate models, model selection also requires
the choice of a procedure to select a member of the class of candidate models.
For the class of context tree models this issue has been addressed by an increasing
number of papers, starting with Rissanen (1983) who introduced the so-called al-
gorithm context to perform this task. An incomplete list includes Ron, Singer and
Tishby (1996), Bühlmann and Wyner (1999) and Galves and Leonardi (2008) [see
also Galves and Löcherbach (2008) for a survey].

A different approach was proposed by Csiszár and Talata (2006) who showed
that context trees can be consistently estimated in linear time using the Bayesian
information criterion (BIC). We refer the reader to this paper for a nice description
of other approaches and results in this field, including the context tree weighting
(CTW) algorithm introduced by Willems, Shtarkov and Tjalkens (1995) which will
be used in the present paper. We also refer the reader to Garivier (2006) for recent
and elegant results on the BIC and the context tree weighting method.

Both the algorithm context and the BIC procedure requires the specification of
some constants. For the algorithm context, the constant appears in the threshold
used in the pruning decision. For the BIC, the constant appears in the penaliza-
tion term. In both cases, the consistency of the algorithm does not depend on the
specific choice of the constant. However, for finite samples—even with very large
size—the choice of the constant does matter. Different constants will give differ-
ent answers, ranging from the maximum tree (constant close to zero) to the root
tree (constant very large). Statisticians very often rely on previous knowledge of
experts of the field as an external criterion to choose between possible candidate
models. In our case, such an external help was not available: never before was
the problem of linguistic rhythm addressed through the choice of a probabilistic
model.

The smallest maximizer criterion (henceforth SMC) is a constant free procedure
that selects a context tree model, given a finite data sample. Informally speaking,
this criterion can be described as follows. First of all, using the context tree weight-
ing algorithm, we identify the set of “champion trees,” which are the context tree
models maximizing the penalized likelihood for each possible constant in the pe-
nalization term. It turns out that the set of context trees identified in this way is
totally ordered with respect to the natural ordering among rooted trees. The sample
likelihood increases when we go through the ordered sequence of champion trees:
the bigger the tree, the bigger the likelihood of the sample. The noticeable fact is
that there is a change of regime in the way the sample likelihood increases from
a champion tree to the next one. The function mapping the successive champion
trees to their corresponding log-likelihood values starts with a very steep slope
which becomes almost flat when it crosses a certain tree.

This change of regime can be empirically observed in a real data set. Its occur-
rence can be also proved in a rigorous way in the following sense. Suppose that
a sample was generated by a fixed context tree model. Then for sufficiently big
sample sizes, the tree producing the sample appears in the sequence of champion
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trees. Moreover, the change of regime described above takes place precisely at the
tree generating the sample. The SMC proposed in this article selects the champion
tree in which this change of regime occurs. Introducing the SMC and proving its
consistency is the main theoretical statistical contribution of this article.

From an applied point of view a last obstacle appears at this point. In fact,
detecting the precise point at which the change of regime occurs is a tricky task, at
least if we try to proceed by simple visual inspection. The difficulty clearly appears
when we perform a simulation study. In this case the model used to simulate the
data is known. It turns out that this correct model appears as one among three of
four candidates in the change of regime zone. This difficulty can be overcome by
comparing average bootstrap likelihoods, using a one-sided t-test. Applied to the
simulated data, this procedure correctly identifies the context tree model used to
generate the data. Applied to the linguistic data in our case study, this procedure
selects different champion trees for BP and for EP. The selected trees have features
which can be linguistically interpreted and are compatible with former conjectures
formulated in the linguistic literature.

This article is organized as follows. The linguistic background including the
formulation of the rhythmic class conjecture and some basic facts about BP and
EP are presented in Section 2. Section 3 presents the class of VLMCs, the SMC,
and states the main theoretical results supporting the proposed method. The im-
plementation of the SMC is given in Section 4. In Section 5 a simulation study
compares the performance of the SMC with the performance of the classical BIC
procedure and also with the performance of the Peres–Shield order estimator. Sec-
tion 6 is devoted to the linguistic case study which is the original motivation for
this article. A final discussion is presented in Section 7. The mathematical proof of
the theorems is given in Appendix A. Appendix B discusses the preprocessing of
the linguistic data and the computation of the degrees of freedom of the models.

This article is dedicated to the memory of Partha Niyogi and Jean-Roger
Vergnaud. We will miss the illuminating discussions we had about language ac-
quisition, prosody and mathematical modeling.

2. Rhythm in natural languages. It has been conjectured in the linguistic
literature that languages are divided into different rhythmic classes [Lloyd (1940),
Pike (1945), Abercrombie (1967), among others]. However, during half a century,
neither a precise definition of each conjectured rhythmic class nor any reliable
phonetic evidence of the existence of these classes was presented in the linguistic
literature [cf. Dauer (1983)].

The situation started changing at the end of the century. First of all, Mehler
et al. (1996) gave empirical evidence that newborn babies are able to discriminate
rhythmic classes. Then Ramus, Nespor and Mehler (1999) gave, for the first time,
evidence that simple statistics of the speech signal could discriminate between
different rhythmic classes. A sound statistical basis to this descriptive analysis
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was given in Cuesta-Albertos et al. (2007) who used the projected Kolmogorov–
Smirnov test to classify the sonority paths of the sentences in the sample analyzed
in Ramus, Nespor and Mehler (1999). We refer the reader to Ramus (2002) for an
illuminating discussion of the rhythmic class conjecture.

The Brazilian and the European dialects of Contemporary Portuguese provide
an interesting case to be analyzed from this point of view. In effect, BP and EP
share the same lexicon. Moreover, from a descriptive point of view, most of the
sentences they produced are superficially identical. However, it has been argued
that they belong to different rhythmic classes [cf., e.g., de Carvalho (1988), Frota
and Vigário (2001) and Sândalo et al. (2006)].

All the analyses mentioned in the above paragraphs have been carried out on
speech signal samples. The question we address here is whether it is possible to
detect rhythmic differences in written texts. More specifically, we raise the ques-
tion of whether it is possible to identify in written texts rhythmic features charac-
terizing and distinguishing BP and EP. In the absence of phonetic implementation,
what kind of rhythmic evidence can be retrieved from the texts?

First, since the pioneer work by Lloyd (1940) and Abercrombie (1967), it has
been conjectured that linguistic rhythm is characterized by the way stressed syl-
lables interact in the sentence. Here, by stressed syllables, we mean syllables car-
rying the main stress of the word. For instance, in the English word linguistics,
which has three syllables lin-guis-tics, the main stress is on the second syllable
guis.

Second, it has also been conjectured that linguistic rhythm depends on the role
played by the boundaries of phonological words [cf. Kleinhenz (1997)]. Here,
by phonological word we mean a lexical word together with the functional non-
stressed words which precede it [cf., e.g., Vigário (2003)]. For instance, in the
sentence, The boy ate the candy, there are three phonological words: “the boy,”
“ate” and “the candy.”

Finally, sentences themselves can be arguably considered as relevant units from
the point of view of rhythm, since they correspond in written language to what has
been called intonational phrase in the linguistic literature [cf., e.g., Nespor and
Vogel (1986)].

This suggests to encode the texts by, first of all, assigning two symbols to each
syllable of the text according to whether:

• the syllable is stressed or not;
• the syllable is the beginning of a phonological word or not.

This amounts to use {0,1}2 as the set of symbols where the first symbol in-
dicates if the syllable is the beginning or not of a prosodic word and the second
symbol indicates if the syllable is stressed or not. To simplify the notation, we will
use the binary expansion to represent the pairs as integers as follows: (0,0) = 0,
(0,1) = 1, (1,0) = 2 and (1,1) = 3.
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Additionally, we add the extra symbol “4” to encode the periods marking the
limits of each sentence. Let us call A = {0,1,2,3,4} the alphabet obtained in this
way.

Two examples will help understanding the codification. First of all, let us con-
sider the encoding of the English sentence: The boy ate the candy.

This sentence is encoded as follows:

Sentence The boy ate the can dy .
Beginning of a phonological word yes no yes yes no no
Stressed syllable no yes yes no yes no
Encoded sequence 2 1 3 2 1 0 4

Let us now look at an example in Portuguese: O menino já comeu o doce. (The
boy already ate the candy.)

Sentence O me ni no já co meu o do ce .
Beginning yes no no no yes yes no yes no no

of a phonological word
Stressed syllable no no yes no yes no yes no yes no
Encoded sequence 2 0 1 0 3 2 1 2 1 0 4

It is worth observing that BP and EP use the same spelling rules. These rules
identify without ambiguity the syllables carrying the main stress in the words.
Moreover, the set of nonstressed functional words is well defined. These two facts
make it possible to encode both BP and EP texts in an automatic way. The Perl
script “silaba2008.pl” was developed for this purpose. This script was included
in the directory “SCRIPTS,” which is part of the supplementary material [Galves
et al. (2011)] attached to this paper in the AOAS web site.

Having encoded samples from BP and EP according to the mentioned rhythmic
features, we can now start the model selection step of the statistical analysis.

The class of models we will consider is the class of variable length Markov
chains. As already explained in the Introduction, this is a particularly suitable class
to model our linguistic data. In effect, the linguistic conjectures reported above
concerning the rhythmic role played by boundaries of sentences, boundaries of
phonological words and stressed syllables can be translated using the notion of
context which characterizes variable length Markov chains.

More precisely, the question at stake is whether the three rhythmic features we
are considering play a role in the definition of the contexts identified through a
statistical analysis of the BP and EP encoded data. If the linguistic conjecture con-
cerning the rhythmic difference between BP and EP holds, then we expect to iden-
tify different context trees for the two languages. Moreover, this difference should
reflect in some way the different role played in BP and EP by at least one of the
three rhythmic features we are considering.
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In the next section, we briefly recall the definition of variable length Markov
chains (VLMC) and introduce the smallest maximizer criterion (SMC).

3. VLMC selection using the smallest maximizer criterion. Let A be a
finite alphabet. We will use the shorthand notation wn

m to denote the string
(wm, . . . ,wn) of symbols in the alphabet A. The length of this string will be de-
noted by �(wn

m) = n − m + 1. We say that a sequence s−1
−j is a suffix of a se-

quence w−1
−k if j ≤ k and s−i = w−i for all i = 1, . . . , j . This will be denoted as

s−1
−j � w−1

−k . If j < k, then we say that s is a proper suffix of w and denote this rela-

tion by s ≺ w. The same definition applies when w−1−∞ is a semi-infinite sequence.

DEFINITION 1. A finite subset τ of
⋃∞

k=1 A{−k,...,−1} is an irreducible tree if
it satisfies the following conditions:

(1) Suffix property. For no w−1
−k ∈ τ we have w−1

−k+j ∈ τ for j = 1, . . . , k − 1.
(2) Irreducibility. No string belonging to τ can be replaced by a proper suffix

without violating the suffix property.

It is easy to see that the set τ can be identified with the set of leaves of a rooted
tree with a finite set of labeled branches. Elements of τ will be denoted either as
w or as w−1

−k if we want to stress the number of elements of the string.
In the set of all irreducible trees over the alphabet A we define the following

partial ordering.

DEFINITION 2. We will say that τ � τ ′ if for every v ∈ τ ′ there exists w ∈ τ

such that w � v. As usual, whenever τ � τ ′ with τ �= τ ′ we will write τ ≺ τ ′.

Let p = {p(·|w) :w ∈ τ } be a family of probability measures on A indexed by
the elements of τ . The elements of τ will be called contexts and the pair (τ,p) will
be called a probabilistic context tree. The number of contexts in τ will be denoted
by |τ |. The height �(τ ) of the tree τ is the maximal length of a context in τ , that
is,

�(τ ) = max{�(w) :w ∈ τ }.
We recall that we are assuming that τ is a finite set and therefore � is finite.

DEFINITION 3. The stationary ergodic stochastic process (Xt) on A is a vari-
able length Markov chain compatible with the probabilistic context tree (τ,p) if

1. For any n ≥ �(τ ) and any sequence x−1−n such that P(X−1−n = x−1−n) > 0 it holds
that

P(X0 = a|X−1−n = x−1−n) = p(a|x−1
−j ) for all a ∈ A,(1)

where x−1
−j is the only suffix of x−1−n belonging to τ .
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2. No proper suffix of x−1
−j satisfies (1).

In the sequel we will assume we have a finite sample X1, . . . ,Xn of elements
in A generated by a VLMC compatible with a probabilistic context tree (τ ∗,p∗).
The problem of model selection is to find a procedure based on Xn

1 to select the
probabilistic context tree (τ ∗,p∗).

Let d be an integer such that d < n. For any finite string w0−j with j ≤ d , we

denote by Nn(w
0−j ) the number of occurrences of the string w0−j in the sample,

that is,

Nn(w
0−j ) =

n∑
t=d+1

1{Xt
t−j = w0−j }.(2)

For any finite string w−1
−k such that

∑
b∈A Nn(w

−1
−kb) > 0, the maximum likeli-

hood estimator of the transition probability P(X0 = a|X−1
−k = w−1

−k) is given by

p̂n(a|w−1
−k) = Nn(w

−1
−ka)∑

b∈A Nn(w
−1
−kb)

,(3)

where w−1
−ka denotes the string (w−k, . . . ,w−1, a), obtained by concatenating w−1

−k

and the symbol a.

DEFINITION 4. We will say the irreducible tree τ is admissible for the
sample X1, . . . ,Xn if �(τ ) ≤ d ,

∑
b∈A Nn(wb) > 0 for any w ∈ τ and for any

j = d, . . . , n − 1 there exists a sequence w ∈ τ such that w � X
j
1 .

If τ is admissible for the sample Xn
1 , the likelihood function is given by

Lτ (X
n
1) = ∏

w∈τ

∏
a∈A

p̂n(a|w)Nn(wa).(4)

Let Tn = T (X1, . . . ,Xn) be the set of all admissible context trees. Let df : Tn →
N be a function that assigns to each tree τ ∈ Tn the number of degrees of freedom
of the model corresponding to the context tree τ . The definition of df(τ ) depends
on the class of models considered. Without any restriction df(τ ) = (|A| − 1)|τ |.
However, in many scientific data sets we know beforehand that some transitions
are not allowed by the nature of the problem. That is the case of the linguistic data
set we are considering in our case study presented in Section 6. In general, we can
define an incidence function χ :

⋃∞
j=1 A{−j,...,−1,0} → {0,1} which indicates in a

consistent way which are the possible transitions. By consistent we mean that if
χ(w−1

−j a) = 0 for some w−1
−j and a ∈ A, then χ(w−1

−ka) = 0 for all k ≥ j . In this
case,

df(τ ;χ) = ∑
w∈τ

∑
a∈A

χ(wa).
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Here we are using the convention that χ(wa) = 0 means that the transition from
w to a is not allowed.

DEFINITION 5. The BIC context tree estimator with penalizing constant c > 0
is defined as

τ̂BIC(Xn
1 ; c) = arg max

τ∈Tn

{logLτ (X
n
1) − c · df(τ ) · logn}.(5)

In order to construct a constant-free selection procedure, we consider the map

c ∈ [0,+∞) �→ τ̂BIC(Xn
1 ; c) ∈ Tn

and denote by Cn its image

Cn = {τ c
n = τ̂BIC(Xn

1 ; c) : c ∈ [0,+∞)}.
The trees belonging to Cn are called champion trees.

Observe that the champion trees are the ones which maximize the likelihood of
the sample for each available number of degrees of freedom.

The set Tn of all admissible context trees is not totally ordered with respect
to the ordering introduced in Definition 2. But its subset Cn containing only the
champion trees is totally ordered. Moreover, if the sample size n is big enough,
then the tree τ ∗, which, by assumption, generated the sample, belongs to Cn. It
turns out that the generating tree τ ∗ has a remarkable property: it is an inflection
point for the likelihood function. This makes it possible to identify τ ∗ in the set Cn.
This is the basis for the selection principle and the content of the next theorems.

THEOREM 6. Assume X1, . . . ,Xn is a sample of an ergodic VLMC compati-
ble with the probabilistic context tree (τ ∗,p∗), with τ ∗ finite and d ≥ �(τ ∗). Then,
Cn is totally ordered with respect to the order ≺ and eventually almost surely
τ ∗ ∈ Cn as n → ∞.

The next theorem is the basis for the smallest maximizer criterion. It shows that
there is a change of regime in the gain of likelihood at τ ∗.

THEOREM 7. Assume X1, . . . ,Xn is a sample of an ergodic VLMC compati-
ble with the probabilistic context tree (τ ∗,p∗) with τ ∗ finite d ≥ �(τ ∗). Then, the
following results hold eventually almost surely as n → ∞:

(1) For any τ ∈ Cn, with τ ≺ τ ∗, there exists a constant c(τ ∗, τ ) > 0 such that

logLτ∗(Xn
1) − logLτ (X

n
1) ≥ c(τ ∗, τ )n.

(2) For any τ ≺ τ ′ ∈ Cn, with τ ∗ � τ , there exists a constant c(τ, τ ′) ≥ 0 such
that

logLτ ′(Xn
1) − logLτ (X

n
1) ≤ c(τ, τ ′) logn.
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Define the class C of all champion trees for the infinite sample as

C = ⋃
n≥1

Cn.

Theorems 6 and 7 lead to the following smallest maximizer criterion.

Smallest maximizer criterion. Select the smallest tree τ̂ in the set of champion
trees C such that

lim
n→∞

logLτ (X
n
1) − logLτ̂ (X

n
1)

n
= 0

for any τ  τ̂ .

The next theorem states the consistency of this criterion.

THEOREM 8. Let X1,X2, . . . be an ergodic VLMC compatible with the prob-
abilistic context tree (τ ∗,p∗) with τ ∗ finite. Then,

P(τ̂ �= τ ∗) = 0.

To avoid technical details and facilitate the reading, we delay the proofs of The-
orems 6, 7 and 8 to Appendix A.

The problem now is how to identify this smallest tree. A procedure doing this
is presented in the next section.

4. Implementing the smallest maximizer criterion. In order to implement
the smallest maximizer criterion (henceforth SMC), we first need an algorithm to
compute the BIC context tree estimator τ̂BIC(Xn

1 ; c) for any given constant c > 0.
This can be done in an efficient way by means of the CTW algorithm introduced
by Willems, Shtarkov and Tjalkens (1995) and adapted to the BIC case by Csiszár
and Talata (2006). We present the details of this algorithm in Appendix A.

Using this algorithm, we can compute the set of champion trees Cn by perform-
ing the following steps.

Champion trees computation procedure:

1. Fix i = 0, l = 0 and u > 0 large enough such that τ̂BIC(Xn
1 ;u) is the root tree.

2. Calculate τl = τ̂BIC(Xn
1 ; l), define τ0 = τl and τu = 〈root〉.

3. Do While (τl �= 〈root〉).
(a) Do While (|u − l| > ε).

(i) Do While (τl �= τu) {a = u and u = (l + u)/2}.
(ii) l = u and u = a.

(b) i = i + 1.
(c) τi = τu.
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Once the set of champion trees Cn has been obtained, the next step is to identify
a tree τ̂ belonging to Cn for n sufficiently large but finite. Theorem 6 guarantees
that τ ∗ ∈ Cn. To identify τ ∗, we have to choose, among the champion trees be-
longing to Cn, the smallest one for which the gain in likelihood is negligible when
compared to bigger ones. For this we propose the following procedure.

Bootstrap procedure: (1) For two different sample sizes n1 < n2 < n obtain
B independent bootstrap resamples of X1, . . . ,Xn. Denote these resamples by
X∗,(b,j) = {X∗,(b,j)

i , i = 1, . . . , nj } where b = 1, . . . ,B and j = 1,2.
(2) For j = 1,2 and for all τn ∈ Cn and its successor τ ′

n ∈ Cn in the ≺ order,
compute the average

�(τn,τ ′
n)(nj ) = 1

B

B∑
b=1

logLτn(X
∗,(b,j)) − logLτ ′

n
(X∗,(b,j))

n0.9
j

.

(3) Apply a one-sided t-test for comparing the two means E(�(τn,τ ′
n)(n1)) and

E(�(τ,τ ′
n)(n2)).

(4) Select the tree τ̂ as the smallest champion tree τn such that the test re-
jects the equality of the means in favor of the alternative that E(�(τn,τ ′

n)(n1)) <

E(�(τn,τ ′
n)(n2)).

In step (1) above, any bootstrap resampling method for stochastic chains with
memory of variable length can be used. In our specific case, we use a remarkable
feature for our data set, that is, the fact that one of the symbols is a renewal point.
This makes it possible to sample randomly with replacement independent strings
between two successive renewal points.

5. Simulation study. We perform a simulation study using two variable
length Markov chains models (from now on models 1 and 2) with alphabet
A = {0,1} and context trees transition probabilities presented in Tables 1 and 2.
The two models have the same context trees but different transition probabilities.
The Perl script “simulation.pl” was developed to make the simulation and the sta-
tistical analysis of the simulated data using the SMC procedure. This script was

TABLE 1
Contexts and transition probabilities

over the alphabet A = {0,1} for model 1

Contexts (w) p(0|w)

1 1.0
01 0.3

000 0.25
001 0.20
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TABLE 2
Contexts and transition probabilities

over the alphabet A = {0,1} for model 2

Contexts (w) p(0|w)

1 1.0
01 0.2

000 0.4
001 0.3

included in the directory “SCRIPTS” which is part of the supplementary material
[Galves et al. (2011)] attached to this paper in the AOAS web site.

The transition probabilities in model 1 were chosen with the purpose to make it
difficult to find the true model with a small sample. On the contrary, the transition
probabilities in model 2 were chosen to make it easy to find the model even with a
relatively small sample.

For each model, we consider samples of size 5,000, 10,000 and 20,000. For
each sample size we simulated 100 samples. For each sample we identify the set
of champion trees and then we apply our SMC procedure and the BIC procedure
with the penalty constant c = 2. Table 3 shows the proportion of times model 1
was correctly identified for 100 simulated sequences of sizes 5,000, 10,000 and
20,000 using the SMC procedure and using the BIC. Table 4 shows the proportion
of times in which model 2 was correctly identified for 100 simulated sequences of
sizes 5,000, 10,000 and 20,000 using the SMC and the BIC.

We can see that for model 1 our SMC procedure is clearly superior to the other
two methodologies for all the sample sizes. The same happens in model 2 for sam-
ple sizes 5,000 and 10,000; for sample size 20,000, both BIC and our procedure
have a rate of accuracy of almost 1.

We also applied the Peres–Shield order estimator to our simulated samples. This
was done using the procedure proposed by Dalevi and Dubhashi (2005) for the case
of VLMCs. This procedure gave very poor results when applied to our simulation

TABLE 3
Proportion of correct identification of

model 1 for 100 simulated sequences of
sizes 5,000, 10,000 and 20,000

n BIC SMC

5,000 0.04 0.26
10,000 0.15 0.52
20,000 0.27 0.57
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TABLE 4
Proportion of correct identification of

model 1 for 100 simulated sequences of
sizes 5,000, 10,000 and 20,000 for model 2

n BIC SMC

5,000 0.31 0.57
10,000 0.73 0.86
20,000 0.98 0.96

data. More specifically, the procedure never succeeded in identifying the correct
context tree in any one of the simulated samples. We conjecture that the reason
of this failure is the small size of the samples we used in our simulation study, in
contrast to the asymptotic nature of the Peres–Shields estimator.

6. Linguistic case study. The data we analyze is an encoded corpus of news-
paper articles extracted from Folha de São Paulo and Público, daily newspa-
pers from Brazil and Portugal, respectively. The sample consists of 80 articles
randomly selected from the 1994 and 1995 editions. These editions are avail-
able through the project AC/DC (Acesso a Corpora/Disponibilização de Corpora)
at www.linguateca.pt/CETENFolha/ and www.linguateca.pt/CETEMPublico/, re-
spectively. Inside each edition we discarded the articles with less than 1,000 words.
We also discarded interviews, synopsis and transcriptions of laws, whose peculiar
characteristics made them unsuitable for our purposes. The sample consists of 20
articles from each year for each newspaper randomly selected in the set of the
remaining articles. This data set was put in the directory “DATA” in the supple-
mentary material [Galves et al. (2011)] attached to this paper in the AOAS web
site. Each article appears in two versions, one as a Portuguese text indicated by the
extension.txt and an encoded version with extension.bin.

For each data set we first identify the set of champion trees for each number of
degrees of freedom obtained from the sample, as explained in Section 3. We then
apply our SMC procedure, as explained in Section 4.

To implement the SMC procedure, for each data set we choose two different
sample sizes. The first one, n1, corresponds to 30% of the size of the sample. The
second one, n2, corresponds to 90% of the size of the sample. For each sample
size, we resample B = 200 times.

To resample, we take advantage of a striking feature which is present in all the
champion trees, namely, the fact that the symbol 4 either is a context by itself or
appears as the final symbol of a context, as it can be seen in Tables 5 and 6. In
other terms, the successive occurrences of the symbol 4 are renewal points of the
chain. Therefore, the blocks between consecutive occurrences of the symbol 4 are
independent.

http://www.linguateca.pt/CETENFolha/
http://www.linguateca.pt/CETEMPublico/
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TABLE 5
Eight first BP champion trees, excluding the elementary root tree. The column n.l. indicates the

number of leaves of each tree. The smallest maximizer champion tree appears in bold face

n.l. Champion trees

5 0 1 2 3 4
8 00 10 20 30 1 2 3 4

11 000 100 200 300 10 20 30 1 2 3 4
13 000 100 200 300 10 20 30 001 201 21 2 3 4
14 000 100 200 300 010 210 20 30 001 201 21 2 3 4
15 000 100 200 300 0010 2010 210 20 30 001 201 21 2 3 4
16 0000 2000 100 200 300 0010 2010 210 20 30 001 201 21 2 3 4
17 0000 2000 100 200 300 0010 2010 210 20 30 0001 2001 201 21 2 3 4

We use these independent blocks to perform the usual Efron’s bootstrap pro-
cedure with replacement for independent random elements [for a description of
different bootstrap resampling methods see Efron and Tibshirani (1993)]. The fi-
nal resample of size nj is obtained by the concatenation of the successively cho-
sen independent blocks truncated at size nj . The Perl script “G4L.pl” was devel-
oped to implement the SMC procedure. This script was included in the directory
“SCRIPTS,” which is part of the supplementary material [Galves et al. (2011)]
attached to this paper in the AOAS web site.

The results are presented in the following figures and tables. Tables 5 and 6
show the eight first champion trees for Brazilian and European Portuguese, re-
spectively. The smallest maximizer champion tree for each language appears in
boldface. Successive branchings producing the successive champion trees in BP
and EP are presented in Tables 7 and 8, respectively. Figure 1 presents the log-
likelihood corresponding to each champion tree for BP and EP according to the
number of leaves. Finally, the selected trees for BP and EP are presented in Fig-

TABLE 6
Eight first EP champion trees, excluding the elementary root tree. The column n.l. indicates the

number of leaves of each tree. The smallest maximizer champion tree appears in bold face

n.l. Champion trees

5 0 1 2 3 4
8 00 10 20 30 1 2 3 4

11 000 100 200 300 10 20 30 1 2 3 4
13 000 100 200 300 10 20 30 001 201 21 2 3 4
14 000 100 200 300 010 210 20 30 001 201 21 2 3 4
17 000 100 200 300 010 210 20 30 001 201 21 02 12 32 42 3 4
20 000 100 200 300 010 0210 1210 3210 4210 20 30 001 201 21 02 12 32 42 3 4
21 000 100 200 300 0010 2010 0210 1210 3210 4210 20 30 001 201 21 02 12 32 42 3 4
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TABLE 7
Successive branchings producing the nine first BP champion trees. The

first column n.l. indicates the total number of leaves of the new
champion tree obtained by the new branching. The second column c
indicates the largest value of the penalty constant making it worth

selecting a tree with the new set of contexts

n.l. c New contexts

5 164.6 root → 0, 1, 2, 3, 4
8 30.1 0 → 00, 10, 20, 30

11 1.54 00 → 000, 100, 200, 300
13 1.037 1 → 001, 201, 21
14 0.75 10 → 010, 210
15 0.51 010 → 0010, 2010
16 0.357 000 → 0000, 2000
17 0.354 001 → 0001, 2001
19 0.30 210 → 0210, 3210, 4210

ure 2 and the corresponding families of transition probabilities are presented in
Table 9.

Besides discriminating EP and BP, the selected trees have properties which are
linguistically interpretable. First, 4 is a context or the ending symbol of a context,
not only in the two selected trees, but actually in all the champion trees. This is a
welcome result on linguistic grounds since it is reasonable to think that the succes-
sive sentences in a text are rhythmically, as well as syntactically, independent.

TABLE 8
Successive branchings producing the nine first EP champion trees. The

first column n.l. indicates the total number of leaves of the new
champion tree obtained by the new branching. The second column c
indicates the largest value of the penalty constant making it worth

selecting a tree with the new set of contexts

n.l. c New contexts

5 177.1 root → 0, 1, 2, 3, 4
8 29.4 0 → 00, 10, 20, 30

11 1.70 00 → 000, 100, 200, 300
13 1.030 1 → 001, 201, 21
14 0.37 10 → 010 210
17 0.34 2 → 02, 12, 32, 42
20 0.325 210 → 0210, 1210, 3210, 4210
21 0.321 010 → 0010, 2010
24 0.276 30 → 030, 130, 330 430



CONTEXT TREE SELECTION 201

FIG. 1. Log-likelihood corresponding to the champion trees for BP and EP according to the num-
ber of leaves.

Second, in both trees, nonstressed internal syllables provide poor information
about the future. Three successive symbols zero are needed to constitute a context.
This is consistent with linguistic common beliefs according to which nonstressed

FIG. 2. Champion trees for BP (left) and EP (right).
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TABLE 9
Probabilistic context tree for BP (left) and EP (right)

BP EP

w p(0|w) p(1|w) p(2|w) p(3|w) w p(0|w) p(1|w) p(2|w) p(3|w)

0000 0.28 0.72 0.00 0.00 000 0.27 0.73 0.00 0.00
2000 0.32 0.68 0.00 0.00 100 0.00 0.00 0.67 0.25
100 0.00 0.00 0.67 0.21 200 0.36 0.64 0.00 0.00
200 0.40 0.60 0.00 0.00 300 0.00 0.00 0.70 0.20
300 0.00 0.00 0.67 0.22 010 0.05 0.00 0.67 0.19

0010 0.03 0.00 0.67 0.20 210 0.08 0.00 0.63 0.22
2010 0.07 0.00 0.66 0.198 20 0.45 0.55 0.00 0.00
210 0.08 0.00 0.63 0.22 30 0.05 0.00 0.64 0.27
20 0.45 0.55 0.00 0.00 001 0.61 0.00 0.28 0.07
30 0.07 0.00 0.64 0.25 201 0.72 0.00 0.19 0.07

001 0.62 0.00 0.27 0.08 21 0.72 0.00 0.19 0.07
201 0.72 0.00 0.19 0.07 02 0.59 0.41 0.00 0.00
21 0.73 0.00 0.18 0.08 12 0.55 0.45 0.00 0.00

2 0.60 0.40 0.00 0.00 32 0.50 0.50 0.00 0.00
3 0.69 0.00 0.21 0.10 42 0.52 0.48 0.00 0.00
4 0.00 0.00 0.66 0.34 3 0.69 0.00 0.19 0.12

4 0.00 0.00 0.65 0.35

noninitial syllables do not play a salient role in rhythm by their own, but only as
parts of bigger rhythmic units like phonological words.

Note that a stressed syllable alone is not enough to predict the next symbol ei-
ther. The tables of transition probabilities (Table 9) show that in both languages the
distribution of what follows a stressed syllable is dependent on the presence or ab-
sence of a preceding phonological word boundary in the two preceding steps. This
fact, arguably derivable from the morphology of Portuguese, does not discriminate
EP and BP. By morphology, we mean the way words of a particular language are
constituted. This is not surprising since to a great extent EP and BP share the same
lexicon.

Finally, according to the selected trees, the main difference between the two
languages is that whereas in BP both 2 (unstressed boundary of a phonological
word) and 3 (stressed boundary of a phonological word) are contexts, in EP only 3
is a context. This means that in EP, as far as noninitial stress words are concerned,
the choice of lexical items is dependent on the rhythmic properties of the preceding
words. This is not true when the word begins with a stressed syllable. This does not
occur in BP, where word boundaries are always contexts, and as such insensitive
to what occurs before, independently of being stressed or not.

These statistical findings are compatible with the current discussion in the lin-
guistic literature concerning the different behavior of phonological words in the
two languages [cf. Vigário (2003) and Sândalo et al. (2006), among others].
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7. Final discussion. In this article we address the question of the existence
of linguistic rhythm fingerprints that can be retrieved from written texts. In par-
ticular, we address the question of the rhythmic differences between BP and EP.
This is done by encoding two samples of BP and EP newspaper texts, according to
some basic rhythmic features. We formulate the rhythmic features retrieval prob-
lem as a question of statistical model selection in the class of the variable length
Markov chains. The fact that context trees can be linguistically interpreted enables
us to compare our statistical results with current linguistic conjectures concerning
rhythm.

This approach to the problem of linguistic rhythm retrieval is entirely new. New
is our way to encode written texts according to its rhythmic properties and new is
also the idea of using context tree models to characterize linguistic rhythm. The
data set we analyzed was constituted for the purposes of the present study.

New is also the statistic approach we introduced to select a context tree model
out from data. In effect, we introduced the smallest maximizer criterion to estimate
the context tree of a chain with memory of variable length from a finite sample. The
criterion selects a tree in the class of champion trees. This class coincides with the
subset of trees obtained, given a sample, by varying the penalizing constant in the
BIC criterion. For this reason, the smallest maximizer criterion actually suggests a
tuning procedure for VLMC selection using the BIC. Therefore, the present paper
is a contribution to the solution of the important problem of constant-free model
selection in the class of variable length Markov chains.

To our knowledge, Bühlmann (2000) was the first to address the problem of
how to tune a context tree estimator, in the case of the algorithm context. This
paper proposes the following tuning procedure. First, use the algorithm context
with different values of the threshold to obtain a sequence of candidate trees. For
each one of these candidate trees estimate a global risk function, as, for example,
the Final Prediction Error (FPE) or the Kullback–Leibler Information (KLI), by
using a parametric bootstrap approach. Then choose as cutoff parameter the one
providing the tree with smallest estimated risk.

In the above mentioned paper there is no proof that the sequence of nested
trees obtained by the pruning procedure using the algorithm context will contain
eventually almost surely the tree generating the sample, which in our case is given
in Theorem 6. It also misses the crucial point of the change of regime in the set of
champion trees, which is given in our Theorem 7.

The change of regime was not missed by the more recent paper of Dalevi and
Dubhashi (2005). They extend to chains with memory of variable length the or-
der estimator introduced in Peres and Shields (2005). They suggest without any
rigorous proof that at the correct order there exists a sharp transition that can be
identified from a finite sample. Then they apply the criterion to the identification of
sequence similarity in DNA. Our main contribution with respect to this paper is the
rigorous proof of Theorem 8, as well as the algorithm implementing the smallest
maximizer criterion.
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From an applied statistics point of view, in our simulation study the Peres–
Shields criterion had a very poor performance when compared to the BIC and
SMC procedures. This suggests that the Peres–Shields estimator requires bigger
sample sizes to be effective, at least in the case of VLMCs.

Modeling linguistic data as a stochastic process is by no means a new idea. Ac-
tually this was the original motivation of Markov himself when he introduced his
famous chains at the beginning of the 20th century. Even the more specific question
of linguistic rhythm was already addressed in the statistic literature, in particular,
by Kolmogorov who looked for statistical regularities discriminating poems from
different Russian authors [see, e.g., Kolmogorov and Rychkova (1999)]. However,
the issue of the existence of different rhythmic classes of languages, as well as
the question of the existence of rhythmic fingerprints in written texts and their
retrieval, is still largely open.

The approach proposed here offers a new perspective to the domain of linguistic
rhythm. It also proposes a concrete statistical tool to identify rhythmic features in
written texts. But the interest of our approach goes far beyond its linguistic origi-
nal motivation. The smallest maximizer criterion and the algorithm implementing
it have a broad application in statistical data analysis and constitute an effective
contribution to the question of constant free model selection with large but finite
samples.

APPENDIX A: MATHEMATICAL PROOFS

We begin this section by presenting the algorithm to compute the BIC context
tree estimator τ̂BIC(Xn

1 ; c) for any given constant c > 0.
For a string w with �(w) ≤ d and

∑
a∈A Nn(wb) > 0 define

Lw(Xn
1) = ∏

a∈A

p̂n(a|w)Nn(wa)

and df(w) = ∑
a∈A χ(wa). Then, for any constant c > 0 define recursively the

value

V c
w(Xn

1) =
⎧⎪⎨
⎪⎩

max
{
n−c·df(w)Lw(Xn

1),
∏
a∈A

V c
aw(Xn

1)

}
, if 0 ≤ �(w) < d ,

n−c·df(w)Lw(Xn
1), if �(w) = d,

and the indicator

δc
w(Xn

1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if 0 ≤ �(w) < d and
∏
a∈A

V c
aw(Xn

1) > n−c·df(w)Lw(Xn
1),

0, if 0 ≤ �(w) < d and
∏
a∈A

V c
aw(Xn

1) ≤ n−c·df(w)Lw(Xn
1),

0, if �(w) = d.
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Now, for any finite string w, with �(w) ≤ d and for any tree τ ∈ Tn, we define
the irreducible tree τw as the set of branches in τ which have w as a suffix, that is,

τw = {u ∈ τ :w � u}.
Let Tw(Xn

1) be the set of all trees defined in this way, that is,

Tw(Xn
1) = {τw : τ ∈ Tn}.

If w is a sequence such that δc
w(Xn

1) = 1, we define the maximizing tree assigned
to the sequence w as the tree τM

w (Xn
1) ∈ Tw(Xm

1 ) given by

τM
w (Xn

1) = {u : δc
u(X

n
1) = 0, δc

v(X
n
1) = 1 for all w � v ≺ u}.

On the other hand, if δc
w(Xn

1) = 0, we define τM
w (Xn

1) = {w}.
The following lemma, proven in Csiszár and Talata (2006), is the key for the

efficient computation of the BIC context tree estimator. We omit its proof here.

LEMMA 9. For any finite string w, with �(w) ≤ d , we have

V c
w(Xn

1) = max
τ∈Tw(Xn

1 )

∏
u∈τ

n−c·df(u)Lu(X
n
1) = ∏

u∈τM
w (Xn

1 )

n−c·df(u)Lu(X
n
1).(6)

The second equality in (6) implies, in particular, that

τ̂BIC(Xn
1) = τM

λ (Xn
1) = {u : δc

u(X
n
1) = 0, δc

v(X
n
1) = 1 for all v ≺ u}

and the BIC context tree estimator can be obtained by computing the func-
tions V c

w(Xn
1) and δc

w(Xn
1) over the set of sequences w satisfying �(w) ≤ d and∑

a∈A Nn(wb) > 0.

Proof of Theorem 6. First recall that the BIC context tree estimator is strongly
consistent for any constant c > 0. Therefore, since the set C is countable, it follows
that eventually almost surely τ ∗ ∈ Cn as n → ∞.

The fact that the champion trees are ordered by ≺ follows immediately from the
following lemma.

LEMMA 10. Let 0 < c1 < c2 be arbitrary positive constants. Then

τ̂BIC(Xn
1 ; c1)  τ̂BIC(Xn

1 ; c2).

PROOF. Denote by τ 1 = τ̂BIC(Xn
1 ; c1) and τ 2 = τ̂BIC(Xn

1 ; c2). Suppose that it
is not true that τ 1  τ 2. Then there exists a sequence w ∈ τ 1 and w′ ∈ τ 2 such that
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w is a proper suffix of w′. This implies that τ 2
w �= ∅. Since τ 2 is irreducible, we

have that |τ 2
w| ≥ 2. Then, using the definition of maximizing tree, we obtain

logLw(Xn
1) ≥ ∑

w′∈τ 2
w

logLw′(Xn
1) + c1

(
df(w) − ∑

w′∈τ 2
w

df(w′)
)

logn

≥ ∑
w′∈τ 2

w

logLw′(Xn
1) + c2

(
df(w) − ∑

w′∈τ 2
w

df(w′)
)

logn

> logLw(Xn
1),

which is a contradiction. The first inequality follows from the assumption that
τ 1 = τ̂BIC(Xn

1 ; c1) and the second equality in (6). To derive the second inequality,
we use the fact that 0 < c1 < c2 and df(w) − ∑

w′∈τ 2
w

df(w′) < 0. Finally, the last

inequality leading to the contradiction follows from τ 2 = τ̂BIC(Xn
1 ; c2) and again

the second equality in (6). We conclude that τ 1  τ 2. �

Proof of Theorem 7. To prove (1) let τ ∈ Cn be such that τ ≺ τ ∗. Then

logLτ (X
n
1) − logLτ∗(Xn

1)

= ∑
w′∈τ,a∈A

Nn(w
′a) log p̂n(a|w′) − ∑

w∈τ∗,a∈A

Nn(wa) log p̂n(a|w)

= ∑
w′∈τ

∑
w∈τ∗,w�w′

∑
a∈A

Nn(wa) log
p̂n(a|w′)
p̂n(a|w)

.

Dividing by n and using Jensen’s inequality in the right-hand side, we have that

∑
w′∈τ

∑
w∈τ∗,w�w′

∑
a∈A

Nn(wa)

n
log

p̂n(a|w′)
p̂n(a|w)

−→ ∑
w′∈τ ′

∑
w∈τ∗,w�w′

∑
a∈A

p∗(wa) log
p∗(a|w′)
p∗(a|w)

< 0

as n goes to +∞ (by the minimality of τ ∗). Then, for a sufficiently large n there
exists a constant c(τ ∗, τ ) > 0 such that

logLτ∗(Xn
1) − logLτ (X

n
1) ≥ c(τ ∗, τ )n.

To prove (2), we have that

logLτ ′(Xn
1) − logLτ (X

n
1)

= ∑
w′∈τ ′,a∈A

Nn(w
′a) log p̂n(a|w′) − ∑

w∈τ,a∈A

Nn(wa) log p̂n(a|w)

≤ ∑
w′∈τ ′,a∈A

Nn(w
′a) log p̂n(a|w′) − ∑

w∈τ,a∈A

Nn(wa) logp∗(a|w)
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= ∑
w∈τ

∑
w′∈τ ′,w′�w

∑
a∈A

Nn(w
′a) log

p̂n(a|w′)
p∗(a|w)

= ∑
w∈τ

∑
w′∈τ ′,w′�w

Nn(w
′·)D(p̂n(·|w′)‖p∗(·|w)).

By Lemmas 6.2 and 6.3 in Csiszár and Talata (2006) we have that, if n is suffi-
ciently large, we can bound above the last term by

∑
w∈τ

∑
w′∈τ ′,w′�w

Nn(w
′·) ∑

a∈A

[p̂n(a|w′) − p∗(a|w)]2

p∗(a|w)

≤ ∑
w∈τ

∑
w′∈τ ′,w′�w

Nn(w
′·) 1

p∗
min

|A| δ logn

Nn(w′·) ,

where p∗
min = minw∈τ,a∈A{p∗(a|w) :p∗(a|w) > 0}. This concludes the proof of

Theorem 7.

Proof of Theorem 8. It follows directly from Theorems 6 and 7.

APPENDIX B: DESCRIPTION OF THE ENCODED SAMPLES

The newspaper articles of the sample were selected in the following way. We
first randomly selected 20 editions for each newspaper for each year. Inside each
edition we discarded all the texts with less than 1,000 words as well as some type
of articles (interviews, synopsis, transcriptions of laws and collected works) which
are unsuitable for our purposes. From the remaining articles we randomly selected
one article for each previously selected edition.

Before encoding each one of the selected texts, they were submitted to a linguis-
tically oriented cleaning procedure. Hyphenated compound words were rewritten
as two separate words, except when one of the components is unstressed. Sus-
pension points, question marks and exclamation points were replaced by periods.
Dates and special symbols like “%” were spelled out as words. All parentheses
were removed.

To use the smallest maximizer criterion, we need to compute the number of
degrees of freedom of each candidate context tree. To do this, we must take into
account the linguistic restrictions on the symbolic chain obtained after encoding.
The restrictions are the following:

(1) Due to Portuguese morphological constraints, a stressed syllable (encoded
by 1 or 3) can be immediately followed by at most three unstressed syllables (en-
coded by 0).

(2) Since by definition any phonological word must contain one and only one
stressed syllable (encoded by 1 or 3), after a symbol 3 no symbol 1 is allowed,
before a symbol 2 (nonstressed syllable starting a phonological word) appears.
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(3) By the same reason, after a symbol 2 no symbols 2 or 3 are allowed before
a symbol 1 appears.

(4) As sentences are formed by the concatenation of phonological words, the
only symbols allowed after 4 (end of sentence) are the symbols 2 or 3 (beginning
of phonological word).
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SUPPLEMENTARY MATERIAL

Data set and scripts (DOI: 10.1214/11-AOAS511SUPP; .zip). The directory
SUPPLEMENT [Galves et al. (2011)] contains two subdirectories DATA and
SCRIPTS. The directory named DATA contains the samples used in our linguis-
tic case study. A Readme file describing the data sources as well as the linguistic
preprocessing and encoding procedure is included in this directory. The directory
named SCRIPTS contains the three Perl scripts used in this paper and three asso-
ciated Readme files explaining how to use the scripts.
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