Open Access
Translator Disclaimer
March 2012 Bayesian joint modeling of multiple gene networks and diverse genomic data to identify target genes of a transcription factor
Peng Wei, Wei Pan
Ann. Appl. Stat. 6(1): 334-355 (March 2012). DOI: 10.1214/11-AOAS502

Abstract

We consider integrative modeling of multiple gene networks and diverse genomic data, including protein-DNA binding, gene expression and DNA sequence data, to accurately identify the regulatory target genes of a transcription factor (TF). Rather than treating all the genes equally and independently a priori in existing joint modeling approaches, we incorporate the biological prior knowledge that neighboring genes on a gene network tend to be (or not to be) regulated together by a TF. A key contribution of our work is that, to maximize the use of all existing biological knowledge, we allow incorporation of multiple gene networks into joint modeling of genomic data by introducing a mixture model based on the use of multiple Markov random fields (MRFs). Another important contribution of our work is to allow different genomic data to be correlated and to examine the validity and effect of the independence assumption as adopted in existing methods. Due to a fully Bayesian approach, inference about model parameters can be carried out based on MCMC samples. Application to an E. coli data set, together with simulation studies, demonstrates the utility and statistical efficiency gains with the proposed joint model.

Citation

Download Citation

Peng Wei. Wei Pan. "Bayesian joint modeling of multiple gene networks and diverse genomic data to identify target genes of a transcription factor." Ann. Appl. Stat. 6 (1) 334 - 355, March 2012. https://doi.org/10.1214/11-AOAS502

Information

Published: March 2012
First available in Project Euclid: 6 March 2012

zbMATH: 1235.62031
MathSciNet: MR2951540
Digital Object Identifier: 10.1214/11-AOAS502

Keywords: Bayesian hierarchical model , gene networks , joint modeling , Markov random field , Mixture models , systems biology

Rights: Copyright © 2012 Institute of Mathematical Statistics

JOURNAL ARTICLE
22 PAGES


SHARE
Vol.6 • No. 1 • March 2012
Back to Top