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OVERLAPPING STOCHASTIC BLOCK MODELS WITH
APPLICATION TO THE FRENCH POLITICAL BLOGOSPHERE1

BY PIERRE LATOUCHE, ETIENNE BIRMELÉ AND CHRISTOPHE AMBROISE

University of Evry

Complex systems in nature and in society are often represented as net-
works, describing the rich set of interactions between objects of interest.
Many deterministic and probabilistic clustering methods have been devel-
oped to analyze such structures. Given a network, almost all of them partition
the vertices into disjoint clusters, according to their connection profile. How-
ever, recent studies have shown that these techniques were too restrictive and
that most of the existing networks contained overlapping clusters. To tackle
this issue, we present in this paper the Overlapping Stochastic Block Model.
Our approach allows the vertices to belong to multiple clusters, and, to some
extent, generalizes the well-known Stochastic Block Model [Nowicki and
Snijders (2001)]. We show that the model is generically identifiable within
classes of equivalence and we propose an approximate inference procedure,
based on global and local variational techniques. Using toy data sets as well
as the French Political Blogosphere network and the transcriptional network
of Saccharomyces cerevisiae, we compare our work with other approaches.

1. Introduction. Networks have been extensively studied ever since the work
of Moreno (1934). They are used in many scientific fields to represent the interac-
tions between objects of interest. For instance, in Biology, regulatory networks can
describe the regulation of genes with transcriptional factors [Milo et al. (2002)],
while metabolic networks focus on representing pathways of biochemical reac-
tions [Lacroix, Fernandes and Sagot (2006)]. In the social sciences, networks are
commonly used to represent relational ties between actors [Snijders and Nowicki
(1997); Nowicki and Snijders (2001)].

In this context, many deterministic and probabilistic clustering methods have
been used to acquire knowledge from the network topology. As shown in Newman
and Leicht (2007), most of these techniques seek specific structures in networks.
Thus, some models look for community structure where vertices are partitioned
into classes such that vertices of a class are mostly connected to vertices of the
same class [Hofman and Wiggins (2008)]. They are particularly suitable for the
analysis of affiliation networks [Latouche, Birmelé and Ambroise (2009)]. Most
existing community discovery algorithms are based on the modularity score of
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Girvan and Newman (2002). However, Bickel and Chen (2009) showed that these
algorithms were (asymptotically) biased and that using modularity scores could
lead to the discovery of an incorrect community structure, even for large graphs.
The model of Handcock, Raftery and Tantrum (2007) which extends Hoff, Raftery
and Handcock (2002) is an alternative approach. Vertices are clustered depending
on their positions in a continuous latent space. They proposed a Bayesian inference
procedure, based on Markov Chain Monte Carlo (MCMC), which is implemented
in the R package latentnet [Krivitsky and Handcock (2009)], as well an asymp-
totic BIC criterion. Other models look for disassortative mixing in which vertices
mostly connect to vertices of different classes. They are commonly used to analyze
bipartite networks [Estrada and Rodriguez-Velazquez (2005)] which are present in
many applications. For more details, see Newman and Leicht (2007).

The Stochastic Block Model (SBM) can uncover heterogeneous structures in
a large variety of networks [Latouche, Birmelé and Ambroise (2009)]. Originally
developed in the social sciences, SBM is a probabilistic generalization [Fienberg
and Wasserman (1981); Holland, Laskey and Leinhardt (1983)] of the method de-
scribed in White, Boorman and Breiger (1976). Given a network, it assumes that
each vertex belongs to a latent class among Q classes and uses a Q×Q connectiv-
ity matrix � to describe the connection probabilities [Frank and Harary (1982)].
No assumption is made on � such that SBM is a very flexible model. In particular,
it can be used, among others, to look for community structure and disassortative
mixing. Many inference methods have been employed to estimate the SBM pa-
rameters. They all face the same problem. Indeed, contrary to Gaussian mixture
models or other usual mixture models, the posterior distribution p(Z|X), of all the
hidden label variables, given the observation X, cannot be factorized due to condi-
tional dependency. Nowicki and Snijders (2001) proposed a Bayesian probabilistic
approach. Their algorithm is implemented in the software BLOCKS, which is part
of the package StoCNET [Boer et al. (2006)]. It uses Gibbs sampling to approx-
imate the posterior distributions and leads to accurate a posteriori estimates. Two
model based criteria have been proposed to choose the optimal value of Q. Thus,
Daudin, Picard and Robin (2008) used an ICL criterion, based on a Laplace ap-
proximation of the Integrated Classification Likelihood, while Latouche, Birmelé
and Ambroise (2009) used a nonasymptotic approximation of the marginal likeli-
hood. For an extensive discussion on statistical network models and blockmodel
selection, we refer to Goldenberg et al. (2010).

A drawback of existing graph clustering techniques is that they all partition
the vertices into disjoint clusters, while lots of objects in real world applications
typically belong to multiple groups or communities. For instance, many proteins,
so-called moonlighting proteins, are known to have several functions in the cells
[Jeffery (1999)], and actors might belong to several groups of interests [Palla et al.
(2005)]. Thus, a graph clustering method should be able to uncover overlapping
clusters. This issue has received growing attention in the last few years, starting
with an algorithmic approach based on small complete sub-graphs developed by
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Palla et al. (2005) and implemented in the software CFinder [Palla et al. (2006)].
They defined a k-clique community as a union of all k-cliques (complete sub-
graphs of size k) that can be reached from each other through a series of adjacent2

k-cliques. Given a network, their algorithm first locates all cliques and then iden-
tifies the communities using a clique–clique overlap matrix [Everett and Borgatti
(1998)]. By construction, the resulting communities can overlap. In order to select
the optimal value of k, the authors suggested a global criterion which looks for a
community structure as highly connected as possible. Small values of k lead to a
giant community which smears the details of a network by merging small com-
munities. Conversely, when k increases, the communities tend to become smaller,
more disintegrated, but also more cohesive. Therefore, they proposed a heuristic
which consists in running their algorithm for various values of k and then to select
the lowest value such that no giant community appears.

More recent work [Airoldi et al. (2008)] proposed the Mixed Membership Sto-
chastic Block model (MMSB) which has been used with success to analyze net-
works in many applications [Airoldi et al. (2007); Airoldi et al. (2006)]. They used
variational techniques to estimate the model parameters and proposed a criterion
to select the number of classes. As detailed in Heller, Williamson and Ghahra-
mani (2008), mixed membership models, as Latent Dirichlet Allocation [Blei, Ng
and Jordan (2003)], are flexible models which can capture partial membership
[Griffiths and Ghahramani (2005); Heller and Ghahramani (2007)], in the form of
attribute-specific mixtures. In MMSB, a mixing weight vector π i is drawn from
a Dirichlet distribution for each vertex in the network, πiq being the probability
of vertex i to belong to class q . The edge probability from vertex i to vertex j

is then given by pij = Z�
i→j BZi←i , where B is a Q × Q matrix of connection

probabilities similar to the � matrix in SBM. The vector Zi→j is sampled from a
multinomial distribution M(1,π i ) and describes the class membership of vertex
i in its relation toward vertex j . By symmetry, the vector Zi←j is drawn from a
multinomial distribution M(1,π j ) and represents the class membership of ver-
tex j in its relation toward vertex i. Thus, depending on its relations with other
vertices, each vertex can belong to different classes and, therefore, MMSB can
be viewed as allowing overlapping clusters. However, the limit of MMSB is that
it does not produce edges which are themselves influenced by the fact that some
vertices belong to multiple clusters. Indeed, for every pair (i, j) of vertices, only a
single draw of Zi→j and Zi←j determines the probability pij of an edge, all the
other class memberships of vertex i and j toward other vertices in the network do
not play a part. In this paper we present a complementary approach which tackles
this issue.

Fu and Banerjee (2008) modeled overlapping clusters on Q components by
characterizing each individual i by a latent {0,1} vector zi of length Q drawn

2Two k-cliques are adjacent if they share k − 1 vertices.
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from independent Bernoulli distributions. The ith row of the data matrix then only
depends on zi . In the underlying clustering structure, i belongs to the components
corresponding to a 1 in zi . Nevertheless, the proposed model needs Q parameters
for each individual and supposes independence between rows and columns of the
data matrix, which is not the case when looking for network structures.

In this paper we propose a new model for generating networks, depending on
(Q + 1)2 + Q parameters, where Q is the number of components in the mixture.
A latent {0,1}-vector of length Q is assigned to each vertex, drawn from products
of Bernoulli distributions whose parameters are not vertex-dependent. Each vertex
may then belong to several components, allowing overlapping clusters, and each
edge probability depends only on the components of its endpoints.

In Section 2 we briefly review the stochastic block model introduced by
Nowicki and Snijders (2001). In Section 3 we present the overlapping stochas-
tic block model and we show in Section 4 that the model is identifiable within
classes of equivalence. In Section 5 we propose an EM-like algorithm to infer the
parameters of the model. Finally, in Section 6 we compare our work with other
approaches using simulated data and two real networks. We show the efficiency of
our model to detect overlapping clusters in networks.

2. The stochastic block model. In this paper we consider a directed binary
random graph G represented by an N × N binary adjacency matrix X. Each entry
Xij describes the presence or absence of an edge from vertex i to vertex j . We
assume that G does not have any self loop, and, therefore, the variables Xii will not
be taken into account. The Stochastic Block Model (SBM) introduced by Nowicki
and Snijders (2001) associates to each vertex of a network a latent variable Zi

drawn from a multinomial distribution:

Zi ∼ M
(
1,α = (α1, α2, . . . , αQ)

)
,

where α denotes the vector of class proportions. As in other standard mixture
models, the vector Zi sees all its components set to zero except one such that
Ziq = 1 if vertex i belongs to class q . The model then verifies

Q∑
q=1

Ziq = 1 ∀i ∈ {1, . . . ,N}(2.1)

and
Q∑

q=1

αq = 1.(2.2)

Finally, the edges of the network are drawn from a Bernoulli distribution:

Xij |{ZiqZjl = 1} ∼ B(πql),
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where � is a Q × Q matrix of connection probabilities. According to this model,
the latent variables Z1, . . . ,ZN are i.i.d. and given this latent structure, all the
edges are supposed to be independent. Note that SBM was originally described in
a more general setting, allowing any discrete relational data. However, as explained
previously, we concentrate in the following on binary edges only.

3. The overlapping stochastic block model. In order to allow each vertex to
belong to multiple classes, we relax the constraints (2.1) and (2.2). Thus, for each
vertex i of the network, we introduce a latent vector Zi , of Q independent Boolean
variables Ziq ∈ {0,1}, drawn from a multivariate Bernoulli distribution:

Zi ∼
Q∏

q=1

B(Ziq;αq) =
Q∏

q=1

α
Ziq
q (1 − αq)

1−Ziq .(3.1)

We point out that Zi can also have all its components set to zero which is a useful
feature in practice as described in Sections 3.2 and 6. The edge probabilities are
then given by

Xij |Zi ,Zj ∼ B(Xij ;g(aZi ,Zj
)) = e

Xij aZi ,Zj g(−aZi ,Zj
),

where

aZi ,Zj
= Z�

i WZj + Z�
i U + V�Zj + W ∗,(3.2)

and g(x) = (1 + e−x)−1 is the logistic sigmoid function. W is a Q × Q real ma-
trix, whereas U and V are Q-dimensional real vectors. The first term in the right-
hand side of (3.2) describes the interactions between the vertices i and j . If i

belongs only to class q and j only to class l, then only one interaction term re-
mains (Z�

i WZj = Wql). However, as illustrated in Table 1, the model can take
more complex interactions into account if one or both of these two vertices belong
to multiple classes (Figure 1). Note that the second term in (3.2) does not depend
on Zj . It models the overall capacity of vertex i to connect to other vertices. By
symmetry, the third term represents the global tendency of vertex j to receive an
edge. These two parameters U and V are related to the sender/receiver effects δi

and γj in the Latent Cluster Random Effects Model (LCREM) of Krivitsky et al.
(2009). However, contrary to LCREM, δi = Z�

i U and γj = V�Zj depend on the
classes. In other words, two different vertices sharing the same classes will have
exactly the same sender/receiver effects, which is not the case in LCREM. Finally,
we use the scalar W ∗ as a bias, to model sparsity.

If we associate to each latent variable Zi a vector Z̃i = (Zi ,1)�, then (3.2) can
be written

aZi ,Zj
= Z̃�

i W̃Z̃j ,(3.3)

where

W̃ =
(

W U
V� W ∗

)
.
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TABLE 1
The values of aZi ,Zj

in functions of Zi (rows) and Zj (columns) for an overlapping stochastic block
model with Q = 2

(0,0) (1,0) (0,1) (1,1)

(0,0) W∗ V1 + W∗ V2 + W∗ V1 + V2 + W∗
(1,0) U1 + W∗ W11 + U1 + V1 + W∗ W12 + U1 + V2 + W∗ W11 + W12 + U1

+ V1 + V2 + W∗

(0,1) U2 + W∗ W21 + U2 + V1 + W∗ W22 + U2 + V2 + W∗ W21 + W22 + U2
+ V1 + V2 + W∗

(1,1) U1 + U2 + W∗ W11 + W21 + U1 W12 + W22 + U1 W11 + W12 + W21
+ U2 + V1 + W∗ + U2 + V2 + W∗ + W22 + U1 + U2

+ V1 + V2 + W∗

The Z̃i(Q+1)’s can be seen as random variables drawn from a Bernoulli distribution
with probability αQ+1 = 1. Thus, one way to think about the model is to consider
that all the vertices in the graph belong to a (Q + 1)th cluster which is overlapped
by all the other clusters. In the following, we will use (3.3) to simplify the notation.

Finally, given the latent structure Z = {Z1, . . . ,ZN }, all the edges are supposed
to be independent (see Figure 2). Thus, when considering directed graphs without
self-loop, the Overlapping Stochastic Block Model (OSBM) is defined through the
following distributions:

p(Z|α) =
N∏

i=1

Q∏
q=1

α
Ziq
q (1 − αq)

1−Ziq(3.4)

FIG. 1. Example of a directed graph with three overlapping clusters.
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FIG. 2. Graphical representation of the overlapping stochastic block model.

and

p(X|Z,W̃) =
N∏

i 	=j

e
Xij aZi ,Zj g(−aZi ,Zj

).

3.1. Modeling sparsity. As explained in Airoldi et al. (2008), real networks
are often sparse3 and it is crucial to distinguish the two sources of noninteraction.
Sparsity might be the result of the rarity of interactions in general, but it might
also indicate that some class (intra or inter) connection probabilities are close to
zero. For instance, social networks (see Section 6.2) are often made of communi-
ties where vertices are mostly connected to vertices of the same community. This
corresponds to classes with high intra connection probabilities and low inter con-
nection probabilities. In (3.2) we can notice that W ∗ appears in aZi ,Zj

for every
pair of vertices. Therefore, W ∗ is a convenient parameter to model the two sources
of sparsity. Indeed, low values of W ∗ result from the rarity of interactions in gen-
eral, whereas high values signify that sparsity comes from the classes (parameters
in W, U and V).

3.2. Modeling outliers. When applied on real networks, graph clustering
methods often lead to giant classes of vertices having low output and input degrees
[Daudin, Picard and Robin (2008); Latouche, Birmelé and Ambroise (2009)].
These classes are usually discarded and the analysis of networks focus on more
highly structured classes to extract useful information. The product of Bernoulli
distributions (3.4) provides a natural way to encode these “outliers.” Indeed, rather

3The corresponding adjacency matrices contain mainly zeros.
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than using giant classes, OSBM uses the null component such that Zi = 0 if vertex
i is an outlier and should not be classified in any class.

4. Identifiability. Before looking for an optimization procedure to estimate
the model parameters, given a sample of observations (a network), it is crucial to
verify whether OSBM is identifiable. A theorem of Allman, Matias and Rhodes
(2009) lies at the core of the results presented in this section.

If we denote F (�) = {Pθ , θ ∈ �}, a family of models we are interested in,
the classical definition of identifiability requires that for any two different values
θ 	= θ ′, the corresponding probability distributions Pθ and Pθ ′ are different.

4.1. Correspondence with (nonoverlapping) stochastic block models. Let
�OSBM be the parameter space of the family of OSBMs with Q classes:

�OSBM = {
(α,W̃) ∈ [0,1]Q × R

(Q+1)2}
.

Each θ in �OSBM corresponds to a random graph model which is defined by the
distribution p(X|α,W̃). The aim of this Section is to characterize whether there
exists any relation between two different parameters θ and θ ′ in �OSBM, leading
to the same random graph model.

We consider the (nonoverlapping) Stochastic Block Model (SBM) introduced
by Nowicki and Snijders (2001). The model is defined by a set of classes C , a
vector of class proportions γ = {γC}C∈C verifying

∑
C∈C γC = 1, and a matrix of

connection probabilities � = (�C,D)C,D∈C 2 . Note that they are an infinite number
of ways to represent and encode the classes. For simplicity, a common choice is to
set C = {1, . . . ,Q} and possibly C = {C ∈ {0,1}Q,

∑Q
q=1 Cq = 1}, for a model with

Q classes. The random graphs are drawn as follows. First, the class of each vertex
is sampled from a multinomial distribution with parameters (1,γ ). Thus, each
vertex i belongs only to one class, and that class is C with probability γC. Second,
the edges are drawn independently from each other from Bernoulli distributions,
the probability of an edge (i, j) being �C,D, if i belongs to class C and j to
class D.

Let �SBM be the parameter space of the family of SBMs with 2Q classes:

�SBM =
{
(γ ,�) ∈ [0,1]2Q × [0,1]22Q

,
∑
C∈C

γC = 1
}
.

Considering that each possible value of the vectors Zi ’s in an OSBM with Q

classes encodes a class in a SBM with 2Q classes (i.e., C = {0,1}Q) yields a natural
function:

φ :
�OSBM → �SBM

(α,W̃) → (γ ,�)
,
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where

γC =
Q∏

q=1

α
Cq
q (1 − αq)

1−Cq ∀C ∈ {0,1}Q,

and

�C,D = g(C�WD + C�U + V�D + W ∗)
∀(C,D) ∈ {0,1}Q × {0,1}Q.

Let GN denote the set of probability measures on the graphs of N vertices.
The OSBM of parameter θ in �OSBM and the SBM of parameter φ(θ) in �SBM
clearly induce the same measure μ in GN . Thus, denoting by ψ(γ ,�) the prob-
ability measure in GN induced by the SBM of parameter (γ ,�), the problem of
identifiability is to characterize the relations between parameters θ ∈ �OSBM and
θ ′ ∈ �OSBM such that ψ(φ(θ)) = ψ(φ(θ ′)):

�OSBM → �SBM → GN,

θ = (α,W̃)
φ→ (γ ,�)

ψ→ μ.

The identifiability of SBM was studied by Allman, Matias and Rhodes (2009),
who showed that the model is generically identifiable up to a permutation of the
classes. In other words, except in a set of parameters which has a null Lebesgue
measure, two parameters imply the same random graph model if and only if they
differ only by the ordering of the classes. Therefore, the main theorem of Allman,
Matias and Rhodes (2009) implies the following result.

THEOREM 4.1. There exists a set �bad
SBM ⊂ �SBM of null Lebesgue measure

such that, for every (γ ,�) and (γ ′,�′) not in �bad
SBM, ψ(γ ,�) = ψ(γ ′,�′) if and

only if there exists a function Pν such that (γ ′,�′) = Pν((γ ,�)), where:

• ν is a permutation on {0,1}Q,
• γ ′

C = γ ν(C),∀C ∈ {0,1}Q,
• �′

C,D = �ν(C),ν(D),∀(C,D) ∈ {0,1}Q × {0,1}Q.

Thus, studying the generical identifiability of the OSBM is equivalent to char-
acterizing the parameters of �OSBM verifying φ(θ ′) = Pν(φ(θ)) for some permu-
tation ν on {0,1}Q.

4.2. Permutations and inversions. As in the case of the SBM, reordering the
Q classes of the OSBM and doing the corresponding modification in α and W̃ does
not change the generative random graph model. Indeed, let σ be a permutation on
{1, . . . ,Q} and let Pσ denote the function corresponding to the permutation σ of
the classes. Then, (α′,W̃′) = Pσ (α,W̃) is defined by

α′
q = ασ(q) ∀q ∈ {1, . . . ,Q},
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and

W̃′
q,l = W̃σ(q),σ (l) ∀(q, l) ∈ {1, . . . ,Q + 1}2.

Now, let ν be the permutation of {0,1}Q defined by

ν(C) = (
Cσ(1), . . . ,Cσ(Q)

) ∀C ∈ {0,1}Q.

It is then straightforward to see that, for every parameter θ in �OSBM and every
permutation σ , φ(Pσ (θ)) = Pν(φ(θ)), where Pν is defined in Theorem 4.1.

There is another family of operations in �OSBM which does not change the
generative random graph model, which we call inversions. They correspond to ex-
changing the labels 0 to 1 and vice versa on some of the coordinates of the Zi’s.
To give an intuition, consider a parameter θ = (α,W̃) in �OSBM. Let us generate
graphs under the probability measure in GN induced by θ and consider only the
first coordinate of the Zi’s. If we denote by “cluster 1” the vertices whose Zi’s
have a 1 as first coordinate, the graph sampling procedure consists in sampling
the set “cluster 1” and then drawing the edges conditionally on that information.
Note that it would be equivalent to sample the vertices which are not in “clus-
ter 1” and to draw the edges conditionally on that information. Thus, there exists
an equivalent reparametrization where the 1’s in the first coordinate correspond to
the vertices which are not in “cluster 1.” This is the parameter θ ′ obtained from θ
by an inversion of the first coordinate.

Let A be any vector of {0,1}Q. We define the A-inversion IA as follows:

IA :
�OSBM → �OSBM

(α,W̃) → (α′,W̃′) ,

where

α′
j =

{
1 − αj , if Aj = 1,
αj , otherwise ∀j ∈ {1, . . . ,Q},

and

W̃′ = M�
AW̃MA.

The matrix MA is defined by

MA =
(

I − 2 diag(A) A
0 · · · 0 1

)
,

with diag(A) being the Q × Q diagonal matrix whose diagonal is the vector A.

PROPOSITION 4.1. For every A ∈ {0,1}Q, let ν be the permutation of {0,1}Q
defined by

∀C ∈ {0,1}Q ν(C)i =
{

1 − Ci, if Ai = 1,
Ci, otherwise.
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Then, for every θ in �OSBM,

φ(IA(θ)) = Pν(φ(θ)),

where Pν is defined in Theorem 4.1.

PROOF. Consider θ ∈ �OSBM and A ∈ {0,1}Q and define (γ ,�) = φ(θ) and
(γ ′,�′) = φ(IA(θ)). It is straightforward to verify that

γ ′
C = γ ν(C) ∀C ∈ {0,1}Q.

Moreover, since MA

(
C
1

)
=

(
ν(C)

1

)
, it follows that

�′
C,D = g

(
(C� 1 )M�

AW̃MA

(
D
1

))

= g

(
( ν(C)� 1 )W̃

(
ν(D)

1

))
= �ν(C),ν(D).

Therefore, φ(IA(θ)) = Pν(φ(θ)) . �

4.3. Identifiability. Let us define the following equivalence relation:

θ ∼ θ ′ if ∃σ,A|θ ′ = IA(Pσ (θ)).

To be convinced that it is an equivalence relation, note that

IA ◦ Pσ = Pσ ◦ Iσ−1(A).

Consider the set of equivalence classes for the relation ∼. It follows that:

• Two parameters in the same equivalence class induce the same measure in GN .
• Each equivalence class contains a parameter θ = (α,W̃) such that α1 ≤ α2 ≤

· · · ≤ αQ ≤ 1
2 . Moreover, if the αi’s are all distinct and strictly lower than 1

2 ,
there is a unique such parameter in the equivalence class.

We are now able to state our main theorem about identifiability, that is, that the
model is generically identifiable up to the equivalence relation ∼.

THEOREM 4.2. For every α ∈]0,1[Q, let β ∈ R
Q be the vector defined by

βk = − ln( αk

1−αk
), for every k.

Define �bad
OSBM as the set of parameters (α,W̃) such that one of the following

conditions holds:

• there exists 1 ≤ k ≤ Q such that αk = 0 or αk = 1 or αk = 1
2 ,

• there exist 1 ≤ k, l ≤ Q such that αk = αl ,
• there exist C,D ∈ {0,1}Q × {0,1}Q such that

∑
k βkCk = ∑

k βkDk ,
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• φ(α,W̃) ∈ �bad
SBM, set of null measure given by Theorem 4.1.

Then �bad
OSBM has a null Lebesgue measure on �OSBM and

∀θ , θ ′ ∈ (�OSBM \ �bad
OSBM)2 φ(θ) = φ(θ ′) ⇐⇒ θ ∼ θ ′.

PROOF. �bad
OSBM is the union of a finite number of hyperplanes or spaces which

are isomorphic to hyperplanes. Therefore, μ(�bad
OSBM) = 0. �

Let θ = (α,W̃), θ ′ = (α′,W̃′), φ(θ) = (γ ,�) and φ(θ ′) = (γ ′,�′). As φ is
constant on each equivalence class and as θ and θ ′ are not in �bad

OSBM, we can as-
sume that 0 < α1 < · · · < αk < 1

2 and 0 < α′
1 < · · · < α′

k < 1
2 . Proving the theorem

is then equivalent to proving that θ = θ ′.
As φ(θ) = φ(θ ′), Theorem 4.1 ensures that there exists a permutation

ν : {0,1}Q → {0,1}Q such that{
γ ′

C = γν(C) ∀C,
�′

C,D = �ψ(C),ψ(D) ∀C,D.

Then, in particular,{∏
k

α
Ck

k (1 − αk)
1−Ck ,C ∈ {0,1}Q

}
(4.1)

=
{∏

k

(α′
k)

Ck (1 − α′
k)

1−Ck ,C ∈ {0,1}Q
}
.

The minima of those two sets as well as the second lowest values are equal, that is,

∏
k

αk = ∏
k

α′
k and

( ∏
k≤Q−1

αk

)
(1 − αQ) =

( ∏
k≤Q−1

α′
k

)
(1 − α′

Q).

Dividing those equations term by term yields αQ

1−αQ
= α′

Q

1−α′
Q

and finally αQ = α′
Q.

Dividing all terms by α
CQ

Q (1 − αQ)1−CQ in (4.1), by induction, it follows that

α = α′.(4.2)

Now, for any C ∈ {0,1}Q, the fact that γ ′
C = γ ν(C) can be written as∏

k

α
Ck

k (1 − αk)
1−Ck = ∏

k

α
ν(C)k
k (1 − αk)

1−ν(C)k ,

∑
k

Ck ln
(

αk

1 − αk

)
+ ∑

k

ln(1 − αk) = ∑
k

ν(Ck) ln
(

αk

1 − αk

)
+ ∑

k

ln(1 − αk),

∑
k

βkCk = ∑
k

βkν(C)k.
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Since θ /∈ �bad
OSBM, this implies that ν(C) = C. As it is true for every C, ν is in fact

the identity function.
Therefore, for every C,D, �C,D = �′

C,D, that is,∑
q,l

wqlcqdl +
∑
q

uqcq + ∑
l

vldl + w∗ = ∑
q,l

w′
qlcqdl +

∑
q

u′
qcq + ∑

l

v′
ldl + w′∗.

Applying it for C = D = 0 implies W ∗ = W ′∗.
Applying it for D = 0 and C = δq , where δq is the vector having a 1 on the qth

coordinate and 0’s elsewhere yields uq + W ∗ = u′
q + W ′∗ and, thus, uq = u′

q .
By symmetry, C = 0 and D = δl implies vl = v′

l .
Finally, C = δq and D = δl gives Wql = W ′

ql .
Thus,

W̃ = W̃′.(4.3)

By equations (4.2) and (4.3), we have θ = θ ′.

5. Statistical inference. Given a network, our aim in this section is to esti-
mate the OSBM parameters.

The log-likelihood of the observed data set is defined through the marginaliza-
tion: p(X|α,W̃) = ∑

Z p(X,Z|α,W̃). This summation involves 2NQ terms and
quickly becomes intractable. To tackle this issue, the Expectation–Maximization
(EM) algorithm has been applied on many mixture models. However, the E-step
requires the calculation of the posterior distribution p(Z|X,α,W̃) which cannot be
factorized in the case of networks [see Daudin, Picard and Robin (2008) for more
details]. In order to obtain a tractable procedure, we present some approximations
based on global and local variational techniques.

5.1. The q-transformation. Given a distribution q(Z), the log-likelihood of
the observed data set can be decomposed using the Kullback–Leibler divergence
KL(·‖·):

lnp(X|α,W̃) = L(q;α,W̃) + KL(q(·)‖p(·|X,α,W̃)),(5.1)

where

L(q;α,W̃) = ∑
Z

q(Z) ln
{

p(X,Z|α,W̃)

q(Z)

}
(5.2)

and

KL(q(·)‖p(·|X,α,W̃)) = −∑
Z

q(Z) ln
{
p(Z|X,α,W̃)

q(Z)

}
.(5.3)

The maximum lnp(X|α,W̃) of the lower bound L (5.2) is reached when q(Z) =
p(Z|X,α,W̃). Thus, if the posterior distribution p(Z|X,α,W̃) was tractable, the
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optimizations of L and lnp(X|α,W̃), with respect to α and W̃, would be equiva-
lent. However, in the case of networks, p(Z|X,α,W̃) cannot be calculated and L
cannot be optimized over the entire space of q(Z) distributions. Thus, we restrict
our search to the class of distributions which satisfy

q(Z) =
N∏

i=1

q(Zi ),(5.4)

with

q(Zi ) =
Q∏

q=1

B(Ziq; τiq) =
Q∏

q=1

τ
Ziq

iq (1 − τiq)
1−Ziq .

Each τiq is a variational parameter which corresponds to the posterior probability
of node i to belong to class q . As for the vector α, the vectors τ i = {τi1, . . . , τiQ}
are not constrained to lie in the (Q − 1)-dimensional simplex.

PROPOSITION 5.1. [Proof in Latouche, Birmelé and Ambroise (2010), Ap-
pendix A]. The lower bound of the observed data log-likelihood is given by

L(q;α,W̃) =
N∑

i 	=j

{Xij τ̃
�
i W̃τ̃ j + EZi ,Zj

[ln g(−aZi ,Zj
)]}

+
N∑

i=1

Q∑
q=1

{τiq lnαq + (1 − τiq) ln(1 − αq)}(5.5)

−
N∑

i=1

Q∑
q=1

{τiq ln τiq + (1 − τiq) ln(1 − τiq)}.

Unfortunately, since the logistic sigmoid function is nonlinear,
EZi ,Zj

[ln g(−aZi ,Zj
)] in (5.5) cannot be computed analytically. Thus, we need

a second level of approximation to optimize the lower bound of the observed data
set.

5.2. ξ -transformation.

PROPOSITION 5.2 [Proof in Latouche, Birmelé and Ambroise (2010) in Ap-
pendix A]. Given a variational parameter ξij , EZi ,Zj

[ln g(−aZi ,Zj
)] satisfies

EZi ,Zj
[ln g(−aZi ,Zj

)]
(5.6)

≥ ln g(ξij ) − (τ̃�
i W̃τ̃ j + ξij )

2
− λ(ξij )

(
EZi ,Zj

[(Z̃�
i W̃Z̃j )

2] − ξ2
ij

)
.
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Eventually, a lower bound of the first lower bound can be computed:

lnp(X|α,W̃) ≥ L(q;α,W̃) ≥ L(q;α,W̃, ξ),(5.7)

where

L(q;α,W̃, ξ) =
N∑

i 	=j

{(
Xij − 1

2

)
τ̃�

i W̃τ̃ j + ln g(ξij ) − ξij

2

− λ(ξij )
(
Tr(W̃�ẼiW̃
j ) + τ̃�

j W̃�ẼiW̃τ̃ j − ξ2
ij

)}

+
N∑

i=1

Q∑
q=1

{τiq lnαq + (1 − τiq) ln(1 − αq)}

−
N∑

i=1

Q∑
q=1

{τiq ln τiq + (1 − τiq) ln(1 − τiq)}.

The resulting variational EM algorithm (see Algorithm 1) alternatively com-
putes the posterior probabilities τ i and the parameters α and W̃ maximizing

max
ξ

L(q;α,W̃, ξ).

The optimization equations are given in Latouche, Birmelé and Ambroise (2010),
Appendix B.

The computational cost of the algorithm is equal to O(N2Q4). For compari-
son the computational cost of the methods proposed by Daudin, Picard and Robin
(2008) and Latouche, Birmelé and Ambroise (2009) for (nonoverlapping) SBM is
equal to O(N2Q2). Analyzing a sparse network with 100 nodes takes about ten
seconds on a dual core, and about a minute for dense networks.

For all the experiments we present in the following section, set σ 2 = 0.5 and
we used the Ascendant Hierarchical Classification (AHC) algorithm implemented
in the R package “mixer” which is available at the following: http://cran.r-project.
org/web/packages/mixer.

6. Experiments. We present some results of the experiments we carried out
to assess OSBM. Throughout our experiments, we compared our approach to SBM
(the nonoverlapping version of OSBM), the Mixed Membership Stochastic Block
model (MMSB) of Airoldi et al. (2008), and the work of Palla et al. (2005), imple-
mented in the software (Version 2.0.1) CFinder [Palla et al. (2006)].

In order to perform inference in SBM, we used the variational Bayes algorithm
of Latouche, Birmelé and Ambroise (2009) which approximates the posterior dis-
tribution over the latent variables and model parameters, given the edges. We com-
puted the Maximum A Posteriori (MAP) estimates and obtained the class member-
ship vectors Zi . We recall that SBM assumes that each vertex belongs to a single

http://cran.r-project.org/web/packages/mixer
http://cran.r-project.org/web/packages/mixer
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Algorithm 1 Overlapping stochastic block model for directed graphs without self
loop.
// INITIALIZATION

Initialize τ with an Ascendant Hierarchical Classification algorithm Sample W̃ from a zero mean

σ 2 spherical Gaussian distribution

// OPTIMIZATION

repeat

// ξ -transformation

for (i, j) ∈ V do

ξij ←
√

Tr(W̃�ẼiW̃
j ) + τ̃�
j W̃�ẼiW̃τ̃ j

end

// M-step

for q = 1 : Q do

αq ←
∑N

i=1 τiq

N

end

Optimize L(q;α,W̃, ξ) with respect to W̃, with a gradient based optimization algorithm

[e.g., quasi-Newton method of Broyden et al. (1970)]

// E-step

repeat

for i = 1 : N do

Optimize L(q;α,W̃, ξ) with respect to τ i , with a box constrained (τiq ∈ [0,1])
gradient based optimization algorithm [e.g., Byrd method Byrd et al. (1995)]

end

until τ converges

until L(q;α,W̃, ξ) converges

class and, therefore, each vector Zi has all its components set to zero except one,
such that Ziq = 1 if vertex i is classified into class q . For OSBM, we relied on the
variational approximate inference procedure described in Section 5 and computed
the MAP estimates. Contrary to SBM, each vertex can belong to multiple clusters
and, therefore, the vectors Zi can have multiple components set to one. As de-
scribed in Section 1, MMSB can also be viewed as allowing overlapping clusters.
For more details, we refer to Airoldi et al. (2008). In order to estimate the MMSB
mixing weight vectors π i , we used the collapsed Gibbs sampling approach imple-
mented in the R package lda [Chang (2010)]. We then converted each vector π i

into a binary membership vector Zi using a threshold t . Thus, for πiq ≥ t , we set
Ziq = 1 and Ziq = 0 otherwise. In all the experiments we carried out, we defined
t = 1/Q and we found that for higher values MMSB tended to behave like SBM.
Finally, we considered CFinder which is a widely used algorithmic approach to
uncover overlapping communities. As described in Section 1, CFinder looks for
k-clique communities where each k-clique community is a union of all k-cliques
(complete sub-graphs of size k) that can be reached from each other through a se-



OVERLAPPING STOCHASTIC BLOCK MODELS 325

ries of adjacent k-cliques. The algorithm first locates all cliques and then identifies
the communities and overlaps between communities using a clique–clique overlap
matrix [Everett and Borgatti (1998)]. Vertices that do not belong to any k-clique
are seen as outliers and not classified.

Contrary to OSBM (and CFinder), SBM and MMSB cannot deal with outliers.
Therefore, to obtain fair comparisons between the approaches, when OSBM was
run with Q classes, SBM and MMSB were run with Q + 1 classes and we identi-
fied the class of outliers. In practice, this can easily be done since this class contains
most of the vertices of the network having low output and input degrees.

The code implementing all the experiments is available upon request.

6.1. Simulations. In this set of experiments we generated two types of net-
works using the OSBM generative model. In Section 6.1.1 we sampled networks
with community structures (Figure 3), where vertices of a community are mostly
connected to vertices of the same community. To limit the number of free parame-
ters, we considered the Q × Q real matrix W:

W =

⎛
⎜⎜⎜⎝

λ −ε . . . −ε

−ε λ
...

...
. . . −ε

−ε . . . −ε λ

⎞
⎟⎟⎟⎠ .(6.1)

FIG. 3. Example of a network with community structures. Overlaps are represented in black and
outliers in gray.
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FIG. 4. Example of a network with community structures and stars. Overlaps are represented in
black and outliers in gray.

In Section 6.1.2 we generated networks with more complex topologies, using
the matrix W:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ λ −ε . . . . . . . . . −ε

−ε −λ −ε . . . . . . . . .
...

... −ε λ λ −ε . . .
...

...
... −ε −λ −ε . . .

...
...

...
... −ε

. . . −ε −ε
...

...
...

... −ε λ λ
−ε . . . . . . . . . . . . −ε −λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(6.2)

In these networks, if class i is a community and has therefore a high intra con-
nection probability, then its vertices also highly connect to vertices of class i + 1
which itself has a low intra connection probability. Such star patterns (Figure 4) of-
ten appear in transcription networks, as shown in Section 6.3, and protein–protein
interaction networks.

For these two sets of experiments, we used the Q-dimensional real vectors U
and V:

U = V = ( ε . . . ε ) ,(6.3)

and we set Q = 4, λ = 4, ε = 1, W ∗ = −5.5. Moreover, for the vector α of class
probabilities, we set αq = 0.25,∀q ∈ {1, . . . ,Q}. We generated 100 networks with
N = 100 vertices and for each of these networks, we clustered the vertices us-
ing CFinder, SBM, MMSB and OSBM. Finally, we used a criterion similar to the
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one proposed by Heller and Ghahramani (2007); Heller, Williamson and Ghahra-
mani (2008) to compare the true Z and the estimated Ẑ clustering matrices. Thus,
for each network and each method, we computed the L2 distance d(P, P̂) where
P = ZZ� and P̂ = ẐẐ�. These two N × N matrices are invariant to column per-
mutations of Z and Ẑ and compute the number of shared clusters between each
pair of vertices of a network. Therefore, d(P, P̂) is a good measure to determine
how well the underlying cluster assignment structure has been discovered. Since
CFinder depends on a parameter k (size of the cliques), for each simulated net-
work, we ran the software for various values of k and selected k̂ for which the
L2 distance was minimized. Note that this choice of k tends to overestimate the
performances of CFinder compared to the other approaches. Indeed, in practice,
when analyzing a real network, k needs to be estimated (see Section 6.2), while P
is unknown. OSBM was run with Q classes, whereas SBM and MMSB were run
with Q + 1 classes. For both SBM and MMSB, and each generated network, after
having identified the class of outliers, we set the latent vectors of the correspond-
ing vertices to zero (null component). The L2 distance d(P, P̂) was then computed
exactly as described previously.

6.1.1. Networks with community structures. The results that we obtained are
presented in Table 2 and in Figure 5. We can observe that CFinder, MMSB and
OSBM lead to very accurate estimates Ẑ of the true clustering matrix Z. For most
networks, they retrieve the clusters and overlaps perfectly, although CFinder and
MMSB appear to be slightly biased. Indeed, while the median of the L2 distance
d(P, P̂) over the 100 samples is null for OSBM, it is equal to 22 for CFinder and
27.5 for MMSB. Since CFinder is an algorithmic approach, and not a probabilistic
model, it does not classify a vertex vi if it does not belong to any k-cliques of a
k-clique community. Conversely, OSBM is more flexible and can take the random
nature of the network into account. Indeed, the edges are assumed to be drawn ran-
domly, and, given each pair of vertices, OSBM deciphers whether or not they are
likely to belong to the same class, depending on their connection profiles. There-

TABLE 2
Comparison of CFinder, SBM, MMSB and OSBM in

terms of the L2 distance d(P, P̂) over the 100
samples of networks with community structures

Mean Median Min Max

CFinder 43.53 22 0 203
SBM 116.46 103.3 0 321
MMSB 53.76 27.5 0 293
OSBM 41.83 0 0 258
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0
50

10
0

15
0

20
0

25
0

30
0

CFinder SBM MMSB OSBM

FIG. 5. L2 distance d(P, P̂) over the 100 samples of networks with community structures, for
CFinder, SBM, MMSB and OSBM. Measures how well the underlying cluster assignment structure
has been retrieved.

fore, OSBM can predict that vi belongs to a class q, although it does not belong to
any k-cliques. Overall, we found that MMSB retrieves the clusters well but often
misclassifies some of the overlaps. Thus, if a given vertex belongs to several clus-
ters, it tends to be classified by MMSB into only one of them. Nevertheless, the
results clearly illustrate that MMSB improves over SBM, which cannot retrieve
any of the overlapping clusters. It should also be noted that CFinder has fewer
outliers (Figure 5) than MMSB and OSBM and appears to be slightly more stable
when looking for overlapping community structures in networks.

6.1.2. Networks with community structures and stars. In this set of experi-
ments we considered networks with more complex topologies. As shown, in Ta-
ble 3 and in Figure 6, the results of CFinder dramatically degrade while those of
OSBM remain more stable. Indeed, the median of the L2 distances d(P, P̂) over
the 100 samples is equal to 43 for OSBM, while it is equal to 354.5 for CFinder.
This can be easily explained since CFinder only looks for community structures of
adjacent k-cliques, and cannot retrieve classes with low intra connection probabil-
ities. Conversely, OSBM uses a Q × Q real matrix W and two real vectors U and
V of size Q to model the intra and inter connection probabilities. No assumption
is made on these matrix and vectors such that OSBM can take heterogeneous and
complex topologies into account. As for CFinder, the results of MMSB degrade, al-
though they remain better than SBM. As for the previous Section, MMSB retrieves
the clusters well but misclassifies the overlaps more frequently when considering
networks with community structures and stars.
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TABLE 3
Comparison of CFinder, SBM, MMSB and OSBM in

terms of the L2 distance d(P, P̂) over the 100 samples
of networks with community structures and stars

Mean Median Min Max

CFinder 362.07 354.5 181 567
SBM 134.68 118.87 15.14 352.09
MMSB 119.01 98.5 0 367
OSBM 77 43 0 328

6.2. French political blogosphere. We consider the French political blo-
gosphere network and we focus on a subset of 196 vertices connected by 2864
edges. The data consists of a single day snapshot of political blogs automatically
extracted on the 14th of October 2006 and manually classified by the “Observatoire
Présidentielle project” [Zanghi, Ambroise and Miele (2008)]. Nodes correspond
to hostnames and there is an edge between two nodes if there is a known hyperlink
from one hostname to another. The four main political parties which are present in
the data set are the UMP (french “republican”), UDF (“moderate” party), liberal
party (supporters of economic-liberalism) and PS (french “democrat”). Therefore,
we applied our algorithm with Q = 4 clusters and we obtained the results pre-
sented in Figure 7 and Table 4.

First, we notice that the clusters we found are highly homogeneous and corre-
spond to the well-known political parties. Thus, cluster 1 contains 35 blogs among

0
50

15
0

25
0

35
0

45
0

55
0

CFinder SBM MMSB OSBM

FIG. 6. L2 distance d(P, P̂) over the 100 samples of networks with community structures and
stars, for CFinder, SBM, MMSB and OSBM. Measures how well the underlying cluster assignment
structure has been retrieved.
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cluster 1
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cluster 3

cluster 4
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 UMP
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0
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0
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 liberal
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0
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1 + 1
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 others

0

0
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FIG. 7. Classification of the blogs into Q = 4 clusters using OSBM. The entry (i, j) of the matrix
describes the number of blogs associated to the j th political party (column) and classified into clus-
ter i (row). Each entry distinguishes blogs which belong to a unique cluster from overlaps (single
membership blogs + overlaps). The last row corresponds to the null component.

which 33 are associated to UMP, while cluster 2 contains 39 blogs among which
30 are related to UDF. Similarly, it follows that cluster 3 corresponds to the liberal
party and cluster 4 to PS. We found nine overlaps. Thus, three blogs associated to
UMP belong to both clusters 1 (UMP) and 2 (UDF). This is a result we expected
since these two political parties are known to have some relational ties. Moreover,

TABLE 4
The estimated W̃ matrix for the classification of the blogs into Q = 4

clusters using OSBM. The 4 × 4 matrix on the top left-hand side
represents the W matrix, while the vectors on the top right-hand side

and bottom left-hand side represent the vectors U and V�
respectively. The remaining term corresponds to the bias. The

diagonal of W indicates that blogs have a heavy tendency to connect
to blogs of the same class. Blogs of cluster 1 (UMP) have also a
positive tendency to connect to blogs of clusters 2 (UDF) and 3

(liberal party). Conversely, blogs of cluster 4 (PS), representing the
left wing, are more isolated in the network

3.89 0.17 0.54 −0.70 −0.70
0.17 2.47 −0.40 −0.84 0.40
0.55 −0.40 4.43 −0.85 −0.38

−0.70 −0.84 −0.85 1.66 0.87

−0.70 0.40 −0.38 0.87 −3.60
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a blog associated to UDF belongs to both clusters 1 (UMP) and 4 (PS), while
another UDF blog belongs to clusters 2 (UDF) and 4 (PS). This can be easily un-
derstood since UDF is a moderate party. Therefore, it is not surprising to find UDF
blogs with links with the two biggest political parties in France, representing the
left and right wings. Very interestingly, among the nine overlaps we found, four
of them correspond to blogs of political analysts. Thus, a blog overlaps clusters
1 (UMP) and 4 (PS). Another one overlaps clusters 2 (UDF), 3 (liberal party) and
4 (PS). Finally, the two last blogs of political analysts overlap clusters 2 (UDF)
and 4 (PS).

We ran CFinder and we used the criterion [Palla et al. (2005)] they proposed to
select k (see Section 1). Thus, we ran the software for various values of k and we
found k̂ = 7. Lower values lead to giant components which smear the details of
the network. Conversely, for higher values, the communities start disintegrating.
Using k̂, we uncovered 11 clusters which correspond to sub-clusters of the clusters
we found using OSBM. For instance, cluster 3 (liberal party) was split into two
clusters, whereas cluster 4 (PS) was split into three. Indeed, while OSBM predicted
that the connection profiles of these sub-clusters were very similar and therefore
should be merged, CFinder could not uncover any k-clique community, that is, a
union of fully connected sub-graphs of size k, containing these sub-clusters. Note
that using CFinder, we retrieved the overlaps uncovered by our algorithm. CFinder
did not classify 95 blogs.

We also clustered the blogs of the network using MMSB and SBM. As pre-
viously, for both models, we used Q + 1 clusters and we identified the class of
outliers. The results of MMSB are presented in Figure 8. Overall, we can notice
that MMSB led to similar clusters as OSBM, although cluster 4 is less homo-
geneous in MMSB than in OSBM. We found eight overlaps using MMSB and
we emphasize that five of them correspond exactly to the one found with our ap-
proach. Thus, the model retrieved two among the three UMP blogs overlapping
clusters 1 (UMP) and 2 (UDF). Moreover, MMSB uncovered the UDF blog over-
lapping clusters 1 (UMP) and 4 (PS), as well as the blog of political analysts over-
lapping clusters 2 (UDF), 3 (liberal party) and 4 (PS). It also retrieved the blog
of political analysts overlapping clusters 1 (UMP) and 4 (PS). Finally, the results
of SBM are presented in Figure 9. Again, the clusters found by this approach are
very similar to the one uncovered by OSBM. However, because SBM does not
allow each vertex to belong to multiple clusters, it misses a lot of information in
the network. In particular, while some of the blogs of political analysts are viewed
as overlaps by OSBM, because of their relational ties with the different political
parties, they are all classified into a single cluster by SBM.

6.3. Saccharomyces cerevisiae transcription network. We consider the yeast
transcriptional regulatory network described in Milo et al. (2002) and we focus on
a subset of 197 vertices connected by 303 edges. Nodes of the network correspond
to operons, and two operons are linked if one operon encodes a transcriptional



332 P. LATOUCHE, E. BIRMELÉ AND C. AMBROISE

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

 UMP

27 + 2

2 + 2

0

0

9

 UDF

0 + 2

29 + 1

0

0 + 1

1

 liberal

0

0

25

0

0

 PS

0

0 + 1

0

30 + 1

26

 analysts

1 + 1

3 + 2

1 + 2

0 + 2

3

 others

0

0

0

1

30

FIG. 8. Classification of the blogs into Q = 5 clusters using MMSB. The entry (i, j) of the matrix
describes the number of blogs associated to the j th political party (column) and classified into clus-
ter i (row). Each entry distinguishes blogs which belong to a unique cluster from overlaps (single
membership blogs + overlaps). Cluster 5 corresponds to the class of outliers.

factor that directly regulates the other operon. The network is made of three regu-
lation patterns, each one of them having its own regulators and regulated operons.
Therefore, using Q = 6 clusters, we applied our algorithm and we obtained the
results in Table 5.
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FIG. 9. Classification of the blogs into Q = 5 clusters using SBM. The entry (i, j) of the matrix de-
scribes the number of blogs associated to the j th political party (column) and classified into cluster i

(row). Cluster 5 corresponds to the class of outliers.
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TABLE 5
Classification of the operons into Q = 6 clusters. Operons in bold belong to multiple clusters

Cluster Size Operons

1 2 STE12 TEC1

2 33 YBR070C MID2 YEL033W SRD1 TSL1 RTS2 PRM5 YNL051W PST1
YJL142C SSA4 YGR149W SPO12 YNL159C SFP1 YHR156C YPS1
YPL114W HTB2 MPT5 SRL1 DHH1 TKL2 PGU1 YHL021C RTA1
WSC2 GAT4 YJL017W TOS11 YLR414C BNI5 YDL222C

3 2 MSN4 MSN2

4 32 CPH1 TKL2 HSP12 SPS100 MDJ1 GRX1 SSA3 ALD2 GDH3 GRE3
HOR2 ALD3 SOD2 ARA1 HSP42 YNL077W HSP78 GLK1 DOG2
HXK1 RAS2 CTT1 HSP26 TPS1 TTR1 HSP104 GLO1 SSA4 PNC1
MTC2 YGR086C PGM2

5 2 YAP1 SKN7

6 19 YMR318C CTT1 TSA1 CYS3 ZWF1 HSP82 TRX2 GRE2 SOD1 AHP1
YNL134C HSP78 CCP1 TAL1 DAK1 YDR453C TRR1 LYS20 PGM2

First, we notice that clusters 1, 3 and 5 contain only two operons each. These
operons correspond to hubs which regulate respectively the nodes of clusters 2,
4 and 6, all having a very low intra connection probability. To analyze our re-
sults, we used GOToolBox [Martin et al. (2004)] on each cluster. This software
aims at identifying statistically over-represented terms of the Gene Ontology (GO)
in a gene data set. We found that the clusters correspond to well-known biolog-
ical functions. Thus, the nodes of cluster 2 are regulated by STE12 and TEC1
which are both involved in the response to glucose limitation, nitrogen limitation
and abundant fermentable carbon source. Similarly, MSN4 and MSN2 regulate the
nodes of cluster 4 in response to different stress such as freezing, hydrostatic pres-
sure and heat acclimation. Finally, the nodes of cluster 6 are regulated by YAP1
and SKN7 in the presence of oxygen stimulus. Our algorithm was able to uncover
two overlapping clusters (operons in bold in Table 5). Interestingly, contrary to the
other operons of clusters 2, 4 and 6, which are all regulated by operons of a sin-
gle cluster (clusters 1, 3 or 5), these overlaps correspond to co-regulated operons.
Thus, SSA4 and TKL2 belong to clusters 2 and 4 since they are co-regulated by
(STE12, TEC1) and (MSN4 and MSN2). Moreover, HSP78, CTT1 and PGM2 be-
long to clusters 4 and 6 since they are co-regulated by (MSN4, MSN2) and (YAP1,
SKN7). It should also be noted that OSBM did not classify 112 operons which all
have very low output and input degrees.

Because the network is sparse, we obtained very poor results with CFinder. In-
deed, the network contains only one 3-clique and no k-clique for k > 3. Therefore,
for k = 2, all the operons were classified into a single cluster and no biological
information could be retrieved. For k = 3, only three operons were classified into
a single class and for k > 3 no operon was classified.
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As previously, we ran MMSB and SMB with Q + 1 clusters and we iden-
tified the class of outliers. Both approaches retrieved the six clusters found by
OSBM. However, we emphasize that, contrary to the political blogoshpere net-
work, MMSB did not uncover any overlap in the yeast transcriptional regulatory
network.

As in Section 6.1, these results clearly illustrate the capacity of OSBM to re-
trieve overlapping clusters in networks with complex topological structures. In
particular, in situations where networks are not made of community structures,
while the results of CFinder dramatically degrade or cannot even be interpreted,
OSBM seems particularly promising.

7. Conclusion. In this paper we proposed a new random graph model, the
Overlapping Stochastic Block Model, which can be used to retrieve overlapping
clusters in networks. We used global and local variational techniques to obtain
a tractable lower bound of the observed log-likelihood and we defined an EM
like procedure which optimizes the model parameters in turn. We showed that the
model is identifiable within classes of equivalence and we illustrated the efficiency
of our approach compared to other methods, using simulated data and real net-
works. Since no assumption is made on the matrix W and vectors U and V used to
characterize the connection probabilities, the model can take very different topo-
logical structures into account and seems particularly promising for the analysis of
networks. In the experiment section we set the number Q of classes using a priori
information we had about the networks. However, in future works, we believe it
is crucial to develop a model selection criterion to estimate the number of classes
automatically from the topology. We will also investigate introducing some priors
over the model parameters to work in a full Bayesian framework.
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SUPPLEMENTARY MATERIAL

Supplement: Appendix (DOI: 10.1214/10-AOAS382SUPP; .pdf). Describe
how global and local variational techniques can be used to obtain a tractable lower
bound. Introduce the optimization equations for the inference procedure.

REFERENCES

AIROLDI, E., BLEI, D., XING, E. and FIENBERG, S. (2006). Mixed membership stochastic block
models for relational data with application to protein–protein interactions. In Proceedings of the
International Biometrics Society Annual Meeting. Montréal, Québec, Canada.

AIROLDI, E., BLEI, D., FIENBERG, S. and XING, E. (2007). Mixed membership analysis of high-
throughput interaction studies: Relational data. Available at ArXiv e-prints.

AIROLDI, E. M., BLEI, D. M., FIENBERG, S. E. and XING, E. P. (2008). Mixed membership
stochastic blockmodels. J. Mach. Learn. Res. 9 1981–2014.

http://dx.doi.org/10.1214/10-AOAS382SUPP


OVERLAPPING STOCHASTIC BLOCK MODELS 335

ALLMAN, E. S., MATIAS, C. and RHODES, J. A. (2009). Identifiability of parameters in latent
structure models with many observed variables. Ann. Statist. 37 3099–3132. MR2549554

BICKEL, P. and CHEN, A. (2009). A non parametric view of network models and Newman–Girvan
and other modularities. Proc. Natl. Acad. Sci. USA 106 21068–21073.

BLEI, D., NG, A. and JORDAN, M. (2003). Latent Dirichlet allocation. J. Mach. Learn. Res. 3
993–1022.

BOER, P., HUISMAN, M., SNIJDERS, T., STEGLICH, C., WICHERS, L. and ZEGGELINK, E. (2006).
StOCNET: An open software system for the advanced statistical analysis of social networks,
Version 1.7.

BROYDEN, C., FLETCHER, R., GOLDFARB, D. and SHANNO, D. F. (1970). BFGS method. J. Inst.
Math. Appl. 6 76–90.

BYRD, R. H., LU, P., NOCEDAL, J. and ZHU, C. (1995). A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16 1190–1208. MR1346301

CHANG, J. (2010). The lda package Version, 1.2.
DAUDIN, J.-J., PICARD, F. and ROBIN, S. (2008). A mixture model for random graphs. Statist.

Comput. 18 173–183. MR2390817
ESTRADA, E. and RODRÍGUEZ-VELÁZQUEZ, J. A. (2005). Spectral measures of bipartivity in com-

plex networks. Phys. Rev. E (3) 72 046105. MR2202758
EVERETT, M. and BORGATTI, S. (1998). Analyzing clique overlap. Connections 21 49–61.
FIENBERG, S. and WASSERMAN, S. (1981). Categorical data analysis of single sociometric rela-

tions. Soc. Methodol. 12 156–192.
FRANK, O. and HARARY, F. (1982). Cluster inference by using transitivity indices in empirical

graphs. J. Amer. Statist. Assoc. 77 835–840. MR0686407
FU, Q. and BANERJEE, A. (2008). Multiplicative mixture models for overlapping clustering. In

Proceedings of the IEEE International Conference on Data Mining 791–796. Pisa, Italy.
GIRVAN, M. and NEWMAN, M. E. J. (2002). Community structure in social and biological net-

works. Proc. Natl. Acad. Sci. USA 99 7821–7826. MR1908073
GOLDENBERG, A., ZHENG, A., FIENBERG, S. and AIROLDI, E. (2010). A survey of statistical

network models. Found. Trends Mach. Learn. 2 129–233.
GRIFFITHS, T. and GHAHRAMANI, Z. (2005). Infinite latent feature models and the Indian buffet

process. Adv. Neural Inform. Process. Syst. 18 475–482.
HANDCOCK, M. S., RAFTERY, A. E. and TANTRUM, J. M. (2007). Model-based clustering for

social networks. J. Roy. Statist. Soc. Ser. A 170 301–354. MR2364300
HELLER, K. and GHAHRAMANI, Z. (2007). A nonparametric Bayesian approach to modeling over-

lapping clusters. In Proceedings of the 11th International Conference on AI and Statistics. San
Juan, Puerto Rico.

HELLER, K., WILLIAMSON, S. and GHAHRAMANI, Z. (2008). Statistical models for partial mem-
bership. In Proceedings of the 25th International Conference on Machine Learning 392–399.
Helsinki, Finland.

HOFF, P. D., RAFTERY, A. E. and HANDCOCK, M. S. (2002). Latent space approaches to social
network analysis. J. Amer. Statist. Assoc. 97 1090–1098. MR1951262

HOFMAN, J. and WIGGINS, C. (2008). A Bayesian approach to network modularity. Phys. Rev. Lett.
100 258701.

HOLLAND, P. W., LASKEY, K. B. and LEINHARDT, S. (1983). Stochastic blockmodels: First steps.
Social Networks 5 109–137. MR0718088

JEFFERY, C. (1999). Moonlighting proteins. Trends Biochem. Sci. 24 8–11.
KRIVITSKY, P. and HANDCOCK, M. (2009). The latentnet package, Version 2.1-1.
KRIVITSKY, P., HANDCOCK, M., RAFTERY, A. and HOFF, P. (2009). Representing degree distri-

butions, clustering, and homophily in social networks with latent cluster random effects models.
Social Networks 31 204–213.

http://www.ams.org/mathscinet-getitem?mr=2549554
http://www.ams.org/mathscinet-getitem?mr=1346301
http://www.ams.org/mathscinet-getitem?mr=2390817
http://www.ams.org/mathscinet-getitem?mr=2202758
http://www.ams.org/mathscinet-getitem?mr=0686407
http://www.ams.org/mathscinet-getitem?mr=1908073
http://www.ams.org/mathscinet-getitem?mr=2364300
http://www.ams.org/mathscinet-getitem?mr=1951262
http://www.ams.org/mathscinet-getitem?mr=0718088


336 P. LATOUCHE, E. BIRMELÉ AND C. AMBROISE

LACROIX, V., FERNANDES, C. and SAGOT, M.-F. (2006). Motif search in graphs: Application to
metabolic networks. Trans. Comput. Biol. Bioinform. 3 360–368.

LATOUCHE, P., BIRMELÉ, E. and AMBROISE, C. (2009). Advances in Data Analysis, Data Han-
dling, and Business Intelligence, Bayesian Methods for Graph Clustering 229–239. Springer,
Berlin, Heidelberg.

LATOUCHE, P., BIRMELÉ, E. and AMBROISE, C. (2010). Supplement A to “Overlapping sto-
chastic block models with application to the French blogosphere network.” DOI: 10.12.14/10-
AOAS382SUPP.

MARTIN, D., BRUN, C., REMY, E., MOUREN, P., THIEFFRY, D. and JACQ, B. (2004). GOToolBox:
Functional analysis of gene datasets based on Gene Ontology. Genome Biol. 5.

MILO, R., SHEN-ORR, S., ITZKOVITZ, S., KASHTAN, D., CHKLOVSKII, D. and ALON, U. (2002).
Network motifs: Simple building blocks of complex networks. Science 298 824–827.

MORENO, J. (1934). Who Shall Survive?: A New Approach to the Problem of Human Interrelations.
Nervous and Mental Disease Publishing, Washington, DC.

NEWMAN, M. and LEICHT, E. (2007). Mixture models and exploratory analysis in networks. Proc.
Natl. Acad. Sci. USA 104 9564–9569.

NOWICKI, K. and SNIJDERS, T. A. B. (2001). Estimation and prediction for stochastic blockstruc-
tures. J. Amer. Statist. Assoc. 96 1077–1087. MR1947255

PALLA, G., DERENYI, I., FARKAS, I. and VICSEK, T. (2005). Uncovering the overlapping commu-
nity structure of complex networks in nature and society. Nature 435 814–818.

PALLA, G., DERENYI, I., FARKAS, I. and VICSEK, T. (2006). CFinder the community/cluster find-
ing program, Version 2.0.1.

SNIJDERS, T. A. B. and NOWICKI, K. (1997). Estimation and prediction for stochastic blockmodels
for graphs with latent block sturcture. J. Classification 14 75–100. MR1449742

WHITE, H., BOORMAN, S. and BREIGER, R. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. Amer. J. Soc. 81 730–780.

ZANGHI, H., AMBROISE, C. and MIELE, V. (2008). Fast online graph clustering via Erdös–Renyi
mixture. Pattern Recognition 41 3592–3599.

LABORATOIRE STATISTIQUE ET GÉNOME

UMR CNRS 8071, INRA 1152
UNIVERSITY OF EVRY

91000 EVRY

FRANCE

E-MAIL: pierre.latouche@genopole.cnrs.fr
etienne.birmele@genopole.cnrs.fr
christophe.ambroise@genopole.cnrs.fr

http://dx.doi.org/10.12.14/10-AOAS382SUPP
http://www.ams.org/mathscinet-getitem?mr=1947255
http://www.ams.org/mathscinet-getitem?mr=1449742
mailto:pierre.latouche@genopole.cnrs.fr
mailto:etienne.birmele@genopole.cnrs.fr
mailto:christophe.ambroise@genopole.cnrs.fr
http://dx.doi.org/10.12.14/10-AOAS382SUPP

	Introduction
	The stochastic block model
	The overlapping stochastic block model
	Modeling sparsity
	Modeling outliers

	Identifiability
	Correspondence with (nonoverlapping) stochastic block models
	Permutations and inversions
	Identifiability

	Statistical inference
	The q-transformation
	xi-transformation

	Experiments
	Simulations
	Networks with community structures
	Networks with community structures and stars

	French political blogosphere
	Saccharomyces cerevisiae transcription network

	Conclusion
	Acknowledgment
	Supplementary Material
	References
	Author's Addresses

