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OPTIMAL EXPERIMENT DESIGN IN A FILTERING CONTEXT
WITH APPLICATION TO SAMPLED NETWORK DATA

BY HARSH SINGHAL AND GEORGE MICHAILIDIS!
University of Michigan, Ann Arbor

We examine the problem of optimal design in the context of filtering mul-
tiple random walks. Specifically, we define the steady state E-optimal design
criterion and show that the underlying optimization problem leads to a sec-
ond order cone program. The developed methodology is applied to tracking
network flow volumes using sampled data, where the design variable corre-
sponds to controlling the sampling rate. The optimal design is numerically
compared to a myopic and a naive strategy. Finally, we relate our work to the
general problem of steady state optimal design for state space models.

1. Introduction. Consider a wide area computer network such as the one
depicted in Figure 1. A flow is defined as all traffic with common origin and
destination nodes. Monitoring flow volumes plays an important role in network
management tasks, such as capacity planning by tracking demands and fore-
casting traffic, identifying failures together with their causes and impact, detect-
ing malicious activity and configuring routing protocols [Barford et al. (2002),
Soule et al. (2005)]. These flow volumes have been observed to exhibit compli-
cated structure, as seen in Figure 2. For example, the highly aggregated flows usu-
ally have diurnal patterns [Figure 2(a)], while lighter flows can be extremely noisy
[Figure 2(b)]. Network traffic is carried on packets that can be observed (and sam-
pled) at router interfaces, henceforth called observation points. However, during
the measurement process, sampling is employed due to high flow volumes and
resource constraints at routers.

It is increasingly common for such measurement infrastructure to be deployed
in computer networks [Duffield (2004)]. Each packet from the aggregate flow at
an observation point is sampled independently with a certain probability (sam-
pling rate) [Duffield, Lund and Thorup (2004)]. Typical sampling rates range be-
tween 0.001-0.01. For every packet sampled, its header information is recorded
which allows one to reconstruct objects of interest, such as volumes of flows with a
particular source and destination traversing the network. An important issue is how
to select (design) the sampling rates across the network subject to resource con-
straints, in order to collect the maximum amount of information on the underlying
source-destination flows. Obviously low sampling rates result in large sampling
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FIG. 1. Geant Network: (a) geographic view (www.geant.net) and (b) the corresponding logical
topology.

noise. One way of achieving lower estimation error with the same sampling rate is
through filtering; that is, combining the present measurement with past measure-
ments to track the time-series of flow volumes. In designing a sampling scheme
for this situation one needs to take into account measurement noise and process
noise (innovation noise).

While modeling the dynamics of flow volumes is a challenging task in itself
[Park and Willinger (2000)], we use a simple random walk model for this purpose.
This is a robust enough model to be useful in a large range of applications and leads
to scalable filters. We consider the problem of minimizing the (running) estimation
error through optimal design of measurement scheme in the filtering context. In
this paper we take an optimal design of experiment approach to the above problem
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FI1G. 2.  Flow volumes: (a) all flows and (b) one of the lighter flows.
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and demonstrate its application to computer network monitoring using sampled
data.

The related research on optimal design has focused on one of the following
scenarios. There is a large body of work on optimal input design for dynamical
systems [Goodwin (1977), Titterington (1980)]. There the focus is on parameter
estimation (system identification) rather than filtering, as in this paper. Another re-
lated area is sequential design for nonlinear systems [Gautier and Pronzato (1998),
Ford, Titterington and Kitsos (1989)], where the optimal design depends on values
of unknown parameters. While there are some commonalities, the design problem
in a filtering context is unique in that the design at any time affects not just the
current estimation error but also future ones. The problem of optimal sensor place-
ment in control system literature looks at an equivalent problem [Arbel (1982),
Chmielewski, Palmer and Manousiouthakis (2002)]. However, the formulation is
not in terms of information matrices and the special case of random walks has not
been analyzed to our knowledge. More details are provided in Section 4.

The remainder of the paper is organized as follows: in Section 2 we formulate
and investigate the idealized problem of optimal design in the context of filtering
for multiple random walks. In Section 3 we study its application to tracking flow
volumes using sampled data. We end with discussion of a possible generalization
and some comments in Section 4.

2. Optimal design for multiple random walks. Let us first briefly review the
concept of E-optimality from classical design-of-experiment literature for a simple
setting. Assume we have independent observations

2.1) yi ~ N(xi, 1/m;),

fori =1,2,...,n,. The natural estimate for x; is X; = y; for all i. It is standard
to assume that the inverse variance of observation noise is roughly proportional to
design variables. The inverse variance, m;, can be thought of as the information
collected on parameter x;. Specifically, we assume that the relation between an
n, x 1 information vector m and an n, x 1 vector of design variables £ is

2.2) m=JE&.

For example, suppose there is a library of measurements z1, ..., z,,, €ach of which
is independently distributed as z; ~ N (x[;1, 621), where x|;] is a subset of ele-
ments of x. Let & be equal to (or proportional to) the number of independent
measurement of type i (replications of z;) collected during the experiment. Then,
the weighted least squares estimate y of x can be shown to have distribution given
by (2.1) and (2.2). The matrix J depends on the the membership of subsets x;
and variances oiz (assumed known), fori =1, ..., n,.

We assume that the design variables are constrained to be positive and, in ad-
dition, satisfy n, linear inequality constraints. These can be written as R§ < b,
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where R is an n, X n, matrix and b is n, x 1 vector. We think of this type of
constraint as a budgetary one, that specifies upper limits on weighted sums of the
design variables.

Now the E-optimal design problem is given by

arg max minm; .
RE<b i

The objective function, min; m;, is the minimum information over all flows.
Note that this corresponds to minimizing the maximum mean squared error (MSE)
since 1/m; is the MSE in the estimate of x;. Using maximum MSE as the objective
function corresponds to aiming for the best possible worst case performance.

As an example consider the situation where m| = 40& + 10§, and my = 10§ +
40&,. Further assume the constraint

§1+6& =<1

Figure 3 shows the contours of the objective function, that is, min; m;. The
region below the thick line is the constraint space. As usual, the optimal solution
corresponds to the point where the contour of the objective function is “tangent”
to the boundary of the constraint space. It is clear that the optimal design would be
&1 = & = 0.50, which is also reasonable from the symmetry of the setup.

We now extend the above criteria to the optimal design for random walks in a
steady state. Consider a collection of independent random walks

xi(t) =xi(t — 1)+ &),

fori=1,...,n,andt=1,2,.... The term g; (¢) is called the innovation noise and
we assume that Var(g; (1)) = aiz, which is referred to as the innovation variance.
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F1G. 3. Contours of the objective function for E-optimal design.
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Further, suppose we have noisy observations

yi(t) = x; (1) +n; (2).

Let Var(n;(t)) = 1/m;. As before, we assume the relation between observed in-
formation and design variables to be m = J&, with n, X n, matrix J assumed
known.

The estimates of interest in this case are the ones obtained through filtering

() =E[x;®]yi (), yit —1),...].

Let s; (t) = Var(x; (¢)|y; (t), y; (t — 1), ...). Further, let m; = lim;_, » 1/5;(¢) when
it exists. We will refer to this as the steady state information. When the innovation
and measurement noise, &;(#) and n;(¢) respectively, are Gaussian, the optimal
filter corresponds to a Kalman filter and in this case the steady state always ex-
ists [Harvey (1990)]. For the remainder of the paper we will assume that &;(¢)
and 7;(¢) are independent mean 0 Gaussian random variables. If s; (|t — 1) =
Var(x; (¢)|yi (t — 1), yi(t — 2), ...), then the Kalman filter update equations give us

(2.3) si(tlt — 1) =s;(t — 1) + 07
and
24) si) " =5l =17 +m;
1 N\ 7!
(2.5) = <W + o7 ) + mj.

Note that, given s; (0), oiz and m;, one can calculate s; (¢) at any time ¢ by iterating
the above equations. Further, the choice of m; impacts s; (¢) not just for a specific ¢
but for all ¢. Thus,

-~ <1+cri2n~1,-)1

mi=(—=—) +m
mi

or

252 2. o~
ofm; —o;mim; —m; =0.

Hence,

mioi2 + ,/miza;‘ + 4miai2

201'2

m; =
We define the steady state E-optimal design problem as

arg max minn;.
RE<b i
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FIG. 4. Contours of the objective function for steady state E-optimal design.

As an example consider the same setting as above, with m; = 40&; 4+ 10&; and
my = 10&; 4 40&;. Further, let the innovation noise be characterized by o1 = 0.1
and o, = 0.2. As before, we assume the design constraint

§1+&6 <1

Notice in Figure 4 that even though there is symmetry in the measured information,
the first random walk is smoother than the second one and, hence, less measure-
ment resources need to be allocated to it.

2.1. Optimization for the steady state E-optimal design. We establish next the
main technical result of the paper, that the steady state E-optimal design problem
is a second order cone program. First, we introduce a new variable 0 as the lower
bound for the steady state information over all flows. To solve the steady state
E-optimal design problem, we have to maximize 8 subject to

mioi2 + ,/ml.zaf + 4m,~0i2
>0

2.6 )
2.6) 207
fori=1,...,n, and

RE <b.
Equation (2.6) can be equivalently written as
) 1
2.7) 0 <mi|0+— ),
o

1

which is a hyperbolic constraint [Lobo et al. (1998)]. Thus, this problem can be
cast as a second order cone program (see the Appendix for a review of second
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order cone programs and the representation of the above optimization in canonical
form). Such optimization programs can be solved efficiently through interior point
methods [Boyd and Vandenberghe (2004)], software implementations of which are
commonly available [Benson and Ye (2008), Grant and Boyd (2009)].

2.2. Myopic approach. In the following, we present a greedy alternative to
the steady state optimal design. As before, assume y; (t) = x;(¢) + n; (¢). Further,
we assume that Var(n;(t)) = 1/m;(t); that is, we allow for time varying design
variables & (¢) with m(t) = J&(¢). As before, s; (1) = Var(x; (¢)]y; (¢), yi (t —1),...).
Define the information at time ¢ to be given by m; (f) = 1/s; (). Note that m; (¢) is
a function of £(¢), (1 — 1), ....

The myopic E-optimal design at time ¢ is defined as

arg Rrgr(lg);b ml_ln m;(t).

Note that the objective function only involves m;(¢), that is, the informa-
tion at time ¢t. However, the choice of £(¢) impacts not just m;(z) but also
m;(t 4+ 1),m;(t + 2), ..., due to the iterative nature of Kalman filtering. Since it
ignores this “long term impact,” we refer to this scheme as myopic. Equation (2.5)
implies that

mi(t) =si(t)t — D7 4+ JEQ@).

As before, a new variable 6 can be introduced to lower bound 1; (f) which gives a
new set of constraints

sitlt =) JE() > 6,

in addition to the original constraint R£(f) < b. Now the objective is to maxi-
mize 6 with the optimization variables being 8 and &(¢). Since both the objective
function and the constraints are linear in £(¢) and 6, the above optimization is a
linear program. Not surprisingly, the myopic optimal design is a much easier prob-
lem than the steady-state optimal design even in more general settings as noted in
Section 4. Note that since the sampling rates are allowed to vary with time, the
myopic optimal design may have an objective function larger than the steady state
optimal case. However, as the objective of optimization is to maximize present in-
formation with no regard to impact on future information, such a scheme can not
be guaranteed to perform well in the long run.

3. Application to tracking flow volumes. The ideas developed above can
be used for designing the sampling rate in a computer network for tracking flow
volumes. As mentioned in the introduction, we will use the random walk model
for flow volumes due to its simplicity and robustness.

Suppose there are n, origin-destination flows in a network. Let x;(¢#) be the
volume of the ith flow in the ¢-the time interval, for i = 1, ..., n,. These flow



OPTIMAL DESIGN IN FILTERING CONTEXT 85

Interface/Observation Point k(i)

Measurement i

Flow /(i) \

FI1G. 5. Schematic representation of an observation, observation points and flows.

volumes are tracked using sampled data which are noisy. Recall that flows are
sampled at router interfaces, which we refer to as observation points. In the past, a
systematic sampling scheme was the dominant technology, but truly random sam-
pling technologies have recently become available and are commonly deployed
[Duffield, Lund and Thorup (2004)]. All flows traversing an observation point
(router interface) experience the same sampling rate. Each incoming edge at a node
in Figure 1(b) is an interface of the corresponding router. Each router typically has
multiple interfaces and each flow may traverse multiple observation points due to
multi-hop paths and multi-path routing.

Suppose there are n,, observation points on the network where sampled data on
flows can be collected. Further, assume that sampling rates of & = (&§1,...,&,,)
are used at observation points 1, ..., n,, respectively. Any given observation point
kef{l,...,n,} generates estimates for gi elements of x(¢), that is, the number of
flows that go through that node. Thus, a total of ng = Z',:”:l gk measurements are
available in each time interval ¢, say, z1(¢), ..., zn ¢ (t), which need to be optimally
combined to get the required estimates. Consider the router in Figure 5. Assume
that k(i) is the observation point at which the ith measurement is collected, i =
1,...,ng, and [(i) the corresponding flow. Thus, k(-):{1,...,ng} — {1,...,n,}
and [(-):{L,...,ng} — {1,...,n,}. Further, let

E[zi(0)|x14)(1)] = x117 (£)
and for the moment assume
3.1 Cov(zi (1) X1y (1)) = iy /§xi)»

where u; = E[x;(t)]. The exact sampling mechanism and approximation involved
in the above relation are described in Section 3.2. Thus, in vector notation we get

(3.2) Elz(®)|x ()] = Lx(1),

where L is a ng x n, matrix with L;; =1 only if /(i) = j (i.e., ith measurement
corresponds to j flow) and O otherwise and

3.3) Cov(z(®)|x(¢)) =D,
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where D is a ng X ng diagonal matrix, with [D];; = u)/&k@)- Using (3.1), the

inverse of D is given by D= > k& Wk, where Wi, k=1,...,n,, are ng X ng
diagonal matrices with their ith element given by

Ve,  ifk=k@),
34 [Wicii = {O, otherwise.

Let y(t) be the general least squares estimate of x(¢), under equation (3.2)
and (3.3). Thus,

3.5) Cov(y(®)|x(t)) = (L'D~'L)~!
-1
(3.6) - (Cewbg) .
k

From the definition of L, it follows that the jth elements of any two columns
of L cannot be nonzero simultaneously. Thus, the matrix in (3.5) is diagonal. Fur-
ther,

Diag(Cov(y(t)|x(1)) "' =m = JE,
where
[J1ik =L ; WL.;.

We will refer to the above as the linear model.

Sampling is employed in network flow measurements because measurement re-
sources like CPU time and available storage are limited. Typically, all observation
points (router interfaces) belonging to a particular router share these resources. We
assume that the sampling rates are constrained to lie in a convex polygon R&; < b.
This includes the case where the sum of sampling rates on the interfaces of a router
is bounded above by the budget for that router. We will focus on this constraint for
the rest of the paper. In this case, the constraints are given as one linear inequality
for each router.

For the available data, we set up the performance evaluation as follows. We
use the Geant network topology, which has n, = 23 nodes (routers) and 37 x 2
bidirectional edges. The available data [Uhlig et al. (2006)] correspond to flow
volumes over time. Each time interval is equal to 15 minutes. The original data
set spans 4 months, but we focus on the first 200 time intervals to avoid se-
vere non-stationarities inherent in an evolving network. Further, we focus on
the top 25% of measured flows by volumes since one is typically interested in
tracking heavy flows. This corresponds to n, = 76 flows. We assume that sam-
pled data can be collected at each incoming edge of a router and, thus, we have
n, = 37 x 2 observation points. We assume that these flows are routed through
minimum distance paths, which is a common routing mechanism in wide area
networks [Peterson and Davie (2003)]. This leads to ng = 163 and the routing in-
formation gives us the mapping /(-) and hence the matrix L. Matrix L is 163 x 76,
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matrices D, Wy, ..., Wy are all 163 x 163. We assume that the sum of sampling
rates on all interfaces of a router is bounded above by 0.01, that is, b; = 0.01 and
R;j =1 if observation point j is an interface of router i and O otherwise. Thus,
matrix R is 23 x 74. Finally, we estimate the al.z and pu; parameters associated
with the flow volume processes, and assume they are available for filtering pur-
poses and measurement design. As we have argued, both the steady state optimal
and myopic design problems are standard optimization programs and once they
are written as such, any standard optimization package [Benson and Ye (2008),
Grant and Boyd (2009)] can be used to solve them numerically.

For the purpose of comparison, we also define a naive sampling scheme as fol-
lows. For any given router, an equal sampling rate is allocated to every interface
that carries any of the 76 flows of interest. This allocation is done so as to make the
corresponding budget constraint tight. For example, suppose the ith router has 5
interfaces, but only 4 of them are traversed by one of the 76 flows of interest. In
this case, each of the latter 4 interfaces will be allocated a sampling rate of b; /4,
while the remaining interface will be allocated a sampling rate of 0.

3.1. Performance of various sampling schemes for the linear model. Fig-
ure 6(a) shows the value of the maximum MSE as a function of time. Note that
as information accumulates over time, we obtain an improvement in performance
under all three sampling mechanisms, myopic, naive and steady state optimal. Here
performance is measured as the maximum of s; (¢) over all flows, calculated using
equations (2.3) and (2.5). Surprisingly, both the myopic and steady state optimal
sampling mechanisms perform equally well in the steady state and achieve a 42%
improvement over the naive sampling in the steady state. Figure 6(b) shows that
the myopic optimal sampling rates at all observation points reach a steady state.
Figure 7 shows the value of steady state sampling rates at various router inter-
faces in the network topology. Even though the myopic scheme has the flexibility

Myopic
- = Naive
= = = Steady State Optimal | q

Maximum MSE

_______________________________

0 20 40 60 80 100 120 140 160 180 200 0 5 10 15 20 25 30 35 40 45 50
Time Period t Time Period t

(a) (b)

FI1G. 6. Performance of various sampling schemes [panel (a)] and sampling rates at various inter-
faces under a myopic scheme [panel (b)].
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FI1G. 7. Spatial view of steady state optimal sampling rates.

of time varying sampling rates, if the sampling rates do reach a steady state, its
performance can clearly be no better than the steady-state optimal scheme. How-
ever, as Figure 6 shows, in this case, the additional flexibility permits the myopic
scheme to reach steady state performance faster than the steady state optimal one.

3.2. Departures from the linear model: performance with geant data. A more
detailed model for flow volumes and sampled measurements would have to include
significant departures from the linear model assumed above. First, the true flow
volumes clearly have more structure than independent random walks, as seen in
Figure 2. In applying the above ideas to the Geant data, we will investigate their
robustness to the independent random walk assumption.

A more serious departure is the following. Suppose that a flow with volume X
in a certain time interval is sampled at a rate &. If the number of sampled packets
is N, then the usual (approximate maximum likelihood) estimate of flow volume
is Z = N /&. The variance of measurement noise can be shown to be Var(Z|X) ~
X /& [Duffield, Lund and Thorup (2002)]. Thus, w; in (3.1) is actually equal to the
unknown x; (¢).

The observation above implies that in applying the presented techniques to sam-
pled network data, one would have to rely on an approximate model for measure-
ments z; (¢). We will follow an approach similar to batch sequential design [Gautier
and Pronzato (1998)]. Assume that the sampling rates are to be held constant for
a batch of contiguous time intervals. At the beginning of each batch, we use the
most recent estimate x;(r — 1) in place of w; in (3.4) for sampling rate design.
For filtering purposes, we employ a Kalman filter with x; ( — 1) in place of y; in
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FI1G. 8. Performance of various sampling schemes using batch sequential design with flow volumes
from the Geant data.

equation (3.4) at each time ¢. We replace the budget constraint inequalities R < b
with the corresponding equalities RE = b to force full utilization of available re-
sources. For routers that are traversed by at least one of the 76 flows of interest,
we introduce additional equality constraints as follows. Design variable &; for an
interface k not traversed by one of the 76 flows of interest is constrained to be iden-
tically 0. Figure 8 shows the performance of different sampling schemes averaged
over 200 realizations of sampled data. The sampled data emulate the exact sam-
pling mechanism described above (with respective sampling rates) with the Geant
data treated as the underlying (unobserved) flow volumes.

Sampling rates were adjusted only at the beginning of a 40 time period block
and were held constant over each block. In the first block, the sampling rates were
forced to be the same as the naive scheme irrespective of the sampling mecha-
nism under study. Notice that for low values of the objective function (maximum
mean squared error) the myopic and steady state allocations perform better than
the naive allocation. On the other hand, when the maximum mean squared error
spikes, the naive allocation performs better, indicating robustness to model depar-
tures. The median (over time periods 41 to 200) of maximum MSE for myopic,
naive and steady-state optimal sampling is 5.46 x 10°, 7.49 x 10 and 6.14 x 10°,
respectively. Thus, the myopic scheme performs better than the steady state opti-
mal scheme, which in turn performs better than the naive scheme.

Finally, we look at the performance of the myopic allocation when the above
scheme is employed with a block size of just one time interval; that is, sampling
rates were adjusted at the beginning of each time period using the myopic scheme.
The results are displayed in Figure 9. As before, the current estimate of flow vol-
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FI1G. 9. Performance of fully time varying myopic and naive sampling mechanism with flow volumes
from Geant Data.

umes is used in place of w; in equation (3.4) for both filtering and myopic sampling
scheme design. The myopic sampling scheme can be seen to perform better than
the naive version in most time periods. The median (over time periods 1 to 200)
of maximum MSE is 4.50 x 10” and 7.44 x 10° for myopic and naive sampling,
respectively.

4. Discussion and future work. The specification of the steady state opti-
mal design problem can be easily generalized to linear dynamical systems. Such
systems are described by a pair of equations [Harvey (1990)]. The state transition
equation can be written as

xt)=Cx(t—1)+w(),
where Cov(w(t)) = W. The observation equation can be written as
y(t) =Lx(t) 4+ e(t).

Assume Cov(e(t)) = lIf(é)_l, where W (-) is a linear function and & is the value of
design variables.

For the above dynamical system a Kalman filter can be used to iteratively com-
pute E[x(¢)|y(t), y(t —1),...]. Let the steady state estimation error covariance be
»=M"! (assuming the system is observable [Harvey (1990)]). Then, M satisfies
the Algebraic Riccati equation:

(4.1) M=CM'C'+W)'+L'WE)L.
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Such equations have no analytic solution in general.
The steady state optimal design problem can now be defined as

mgggf@ﬂ,

where f(-) is an appropriate scalarization of the information matrix [Fedorov and
Hackl (1997)]. An interesting open problem is to solve the above optimization ef-
ficiently in the absence of an analytic solution to (4.1). The sensor placement prob-
lem in control system literature [Arbel (1982)] is equivalent, though not identical.
The Newton-type algorithm proposed in [Arbel (1982)] for this problem requires
the solution of the Algebraic Riccati equation at each iteration of the algorithm. It
would be desirable to develop more efficient algorithms.

In summary, we have shown that steady state E-optimal design for random
walks is a second order cone program. We have illustrated numerically that the
performance of the Kalman filter can be significantly improved by incorporating
an optimal experimental design. The linear state space model is of general interest
and one would like to investigate the steady state optimal design problem described
above. Finally, from a practical point of view, it would be useful to extend these
ideas to nonlinear filtering.

APPENDIX: OPTIMIZATION REVIEW

In this section we summarize the concepts of second order cone programs and
hyperbolic constraints from Lobo et al. (1998). We also present the steady state
optimal design problem in the canonical form.

A second order cone program is defined as

minimize f'x

subject to | Pix + qill <rix +si, i=1,...,N.
Here, x € R" is the optimization variable, and the problem parameters are f € R”,
P e R"*" g; e R", r; € R" and s; € R. The norm in the constraints is the stan-
dard Euclidean norm. A second order cone program is a standard convex program
and algorithms to numerically solve it are well studied and implemented in com-

putational software.
A constraint of the form

w?<xy, x>0, y>0

is called hyperbolic. The above can be shown to be equivalent to

2w
() =x e

Using the above representations, we can write the steady state optimal design
problem as a canonical second order cone program as follows. Equation (2.7) can
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be equivalently written as

Thus, the steady state optimal problem is a second order cone program with
N=nr +nvax/=(09£1’--"$n0)’ f/=(_1907---’0)’

2 0 ... 0
P’_(—l Jir - Ji,n0>’

fori=1,...,n,and P, =0, fori =n, +1,...,n, + ny, ql./=(0,—1/al.2), for
i=1,....,n,and g; =0,fori=n,+1,....n +ny, r/ =1, Ji1,..., Jin,), for
i=1,...,n,andr; =0, —Ri—p, 1,..., —Ri—pn, n,), fori=n, +1,....n, +ny,
s,-=1/ai2,f0ri=1,...,nr and s; =b;_,, . fori =n,+1,...,n, +n,.
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