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MODELING LONG-TERM LONGITUDINAL HIV DYNAMICS
WITH APPLICATION TO AN AIDS CLINICAL STUDY

BY YANGXIN HUANG1 AND TAO LU

University of South Florida

A virologic marker, the number of HIV RNA copies or viral load, is cur-
rently used to evaluate antiretroviral (ARV) therapies in AIDS clinical trials.
This marker can be used to assess the ARV potency of therapies, but is easily
affected by drug exposures, drug resistance and other factors during the long-
term treatment evaluation process. HIV dynamic studies have significantly
contributed to the understanding of HIV pathogenesis and ARV treatment
strategies. However, the models of these studies are used to quantify short-
term HIV dynamics (< 1 month), and are not applicable to describe long-term
virological response to ARV treatment due to the difficulty of establishing
a relationship of antiviral response with multiple treatment factors such as
drug exposure and drug susceptibility during long-term treatment. Long-term
therapy with ARV agents in HIV-infected patients often results in failure to
suppress the viral load. Pharmacokinetics (PK), drug resistance and imper-
fect adherence to prescribed antiviral drugs are important factors explaining
the resurgence of virus. To better understand the factors responsible for the
virological failure, this paper develops the mechanism-based nonlinear dif-
ferential equation models for characterizing long-term viral dynamics with
ARV therapy. The models directly incorporate drug concentration, adherence
and drug susceptibility into a function of treatment efficacy and, hence, fully
integrate virologic, PK, drug adherence and resistance from an AIDS clinical
trial into the analysis. A Bayesian nonlinear mixed-effects modeling approach
in conjunction with the rescaled version of dynamic differential equations is
investigated to estimate dynamic parameters and make inference. In addition,
the correlations of baseline factors with estimated dynamic parameters are
explored and some biologically meaningful correlation results are presented.
Further, the estimated dynamic parameters in patients with virologic success
were compared to those in patients with virologic failure and significantly im-
portant findings were summarized. These results suggest that viral dynamic
parameters may play an important role in understanding HIV pathogenesis,
designing new treatment strategies for long-term care of AIDS patients.

1. Introduction. For the past decade HIV dynamics has been one of the most
important areas in AIDS research [Ho et al. (1995), Perelson et al. (1996, 1997),
Markowitz et al. (2003), Wu et al. (2005)]. It has since greatly improved our un-
derstanding of the pathogenesis of HIV-1 infection, and guided for the treatment
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of AIDS patients and evaluation of antiretroviral (ARV) therapies [Ding and Wu
(2001), Wu et al. (2005)]. Analysis of the dynamics of HIV infection in response to
drug therapy has elucidated crucial properties of viral dynamics. Long-term treat-
ment in HIV infected patients with highly active antiretroviral therapies (HAART)
results in a decrease of plasma HIV-1 RNA (viral load). The decay in viral load
occurs in the first few weeks from beginning treatment [Perelson et al. (1997)]: it
may be sustained for a long period, but often is followed by resurgence of plasma
viral load within months [Nowak and May (2000)]. The resurgence of virus may
be caused by drug resistance, poor patient adherence, pharmacokinetics and other
factors during therapy [Bangsberg et al. (2000), Wahl and Nowak (2000)].

Figure 1(a) displays the early stage trajectories based on the first 35-day vi-
ral load data (in log10 scale) for 42 subjects enrolled in the AIDS clinical trial
study–A5055 [Acosta et al. (2004)], Figure 1(b) includes the later stage (> 35
days) viral load data of the same patients. This study was a Phase I/II, random-
ized, open-label, 24-week comparative study of the pharmacokinetic, tolerability
and ARV effects of two regimens of indinavir (IDV) and ritonavir (RTV), plus two
nucleoside analogue reverse transcriptase inhibitors (NRTIs) on HIV-1-infected
subjects failing protease inhibitor (PI)-containing ARV therapies [Acosta et al.
(2004)]. 44 subjects who failed their first PI-containing regimens were random-
ized to one of two IDV/RTV regimens: IDV 800 mg twice daily (q12h) + RTV
200 mg q12h (Arm A) and IDV 400 mg q12h + RTV 400 mg q12h (Arm B).
Out of the 44 subjects, 42 subjects are included in the analysis; for the remaining
two subjects, one was excluded from the analysis since the pharmacokinetic (PK)
parameters were not obtained and the other was excluded since PhenoSense HIV
could not be completed on this subject due to an atypical genetic sequence that
causes the viral genome to be cut by an enzyme used in the assay. Plasma HIV-1
RNA (viral load) measurements were taken at days 0, 7, 14, 28, 56, 84, 112, 140
and 168 of follow-up. The data for PK parameters (Cmin which is the trough lev-
els of drug concentration in plasma), phenotype marker (baseline and failure IC50

FIG. 1. The profiles of viral load measured from RNA levels in plasma (in log10 scale) from a group
of patients in an AIDS clinical study (A5055). Change in viral load during treatment is shown for
day 0 to day 35 (a) and to the end of study (b).



1386 Y. HUANG AND T. LU

which represents the drug concentration necessary to inhibit viral replication by
50% in vitro) and adherence from this study were also available. The adherence
data were determined from pill-count data. A more detailed description of this
study and data can be found in the publication by Acosta et al. (2004).

Many HIV dynamic models have been proposed by AIDS researchers [Ho et
al. (1995), Perelson et al. (1997, 1996), Wu and Ding (1999), Ding and Wu (2000),
Nowak and May (2000), Huang, Rosenkranz and Wu (2003)] to provide theoreti-
cal principles in guiding the development of treatment strategies for HIV-infected
patients. Unfortunately, these models are mostly developed to quantify short-term
dynamics. While these models may reflect well short-term viral dynamics, they
do not correctly describe long-term virologic responses with antiretroviral (ARV)
therapies. In other words, these models fit only the early segment of the viral load
trajectory [Figure 1(a)] and thus were limited to interpret typical HIV dynamic
data resulting from AIDS clinical trials. Moreover, as is seen from Figure 1(b), the
viral load trajectory may change to different shapes in the later stage due to, among
other clinical factors, drug resistance and noncompliance. Although some studies
[Jackson (1997), Labbé and Verttoa (2006), Verotta (2005)] explored long-term vi-
ral dynamic models with constant drug efficacy incorporating clinical factors such
as drug adherence to describe virologic responses with ARV therapies, they con-
sidered viral dynamic models incorporating only one factor without accounting for
other potential confounding factors. Huang and Wu (2006) extended the work of
these studies to investigate dynamic models with time varying drug efficacy in-
corporating more than one clinical factor, but they only consider a single drug to
quantify antiviral drug efficacy; in addition, the statistical model, in conjunction
with the differential equations (2.2) in their study, is not parameter identifiable
in the sense that different combinations of values of the nonidentifiable parame-
ters can lead to the same likelihood, making it impossible to decide among the
potential parameter values. Since HAART usually combines two or more ARV
drugs, there is a need to develop models with a priori identifiable parameters that
can describe long-term viral dynamics with more than one drug treatment effect.
Thus, practical models and effective statistical modeling methods must address
the following technical issues: (i) how to obtain a model with a priori identifiable
parameters (from the perspective of the likelihood); (ii) how to account for the
confounding factor effects of drug concentration, susceptibility and adherence on
antiviral responses with ARV therapies of more than one drug combination treat-
ment; (iii) how to investigate associate methodologies in conjunction with models
specified by a system of differential equations with a time varying coefficient, but
without a closed-form solution. Such extensive research efforts are warranted to
study the intermediate to long-term drug effects on HIV through the modeling of
virologic markers.

Data from viral dynamic studies usually consist of repeated viral load mea-
surements taken over treatment time course for each subject. The intra-individual
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variation and the inter-individual variation are usually modeled by a two-stage hi-
erarchical model. The first stage specifies the mean and covariance structure for
a given individual, while the second stage characterizes the inter-individual varia-
tion. Such models are often referred to as nonlinear mixed-effects (NLME) mod-
els. Understanding the nature of inter-individual systemic and random variation at
the second stage often receives far more emphasis. As is evident from Figure 1,
the inter-patient variations appear to be large, in particular, for the long-term pe-
riod. Much of this inter-individual variation may be explained by clinical factors
such as drug exposures and drug resistance. Because the viral dynamic processes
share certain similar patterns between patients while still having distinct individual
characteristics, the hierarchical NLME models are often used to quantify individ-
ual heterogeneity among subjects [Wu, Ding and De Gruttola (1998), Wu and Ding
(1999)]. Although the NLME model fitting can be implemented in standard statis-
tical software, such as the function nlme() in S-plus [Pinheiro and Bates (2000)]
the procedure NLMIXED in SAS (2000), it is difficult to use these standard pack-
ages in fitting NLME models when the closed form of the nonlinear function is not
available.

Viral dynamic models can be formulated through differential equations. But
there has been only limited development of statistical methodologies for estimat-
ing such models or assessing their agreement with observed data. The purpose
of this paper is to develop long-term viral dynamic models based on a system of
differential equations with time-varying coefficients but without closed-form solu-
tions. It also aims to investigate associated statistical methodologies in conjunction
with the viral dynamic models with application to an AIDS clinical trial study. Our
dynamic model should be able to characterize sustained suppression or resurgence
of the virus as arising from intrinsic viral dynamics, and/or influenced by clinical
factors such as pharmacokinetics, compliance to treatment and drug susceptibil-
ity. We combine the Bayesian approach and mixed-effects modeling method to
estimate both population and individual dynamic parameters under a framework
of the hierarchical Bayesian NLME model. The paper is organized as follows. In
Section 2 we introduce the various HIV dynamic systems and propose a simplified
and rescaled viral dynamic model with time-varying drug efficacy which incor-
porates the effects of PK variation, drug resistance and adherence. In Section 3
a Bayesian approach implemented using the Markov chain Monte Carlo (MCMC)
techniques is employed to estimate dynamic parameters for inference. The pro-
posed methodology is applied to the data for pharmacokinetics, drug resistance
and adherence, as well as the viral load from the AIDS clinical trial described in
Section 1, and the results are presented in Section 4. Finally, the paper concludes
with some discussions in Section 5.

2. HIV dynamic models.

2.1. Structural models with constant drug efficacy. The structural model is a
mathematical description of HIV dynamics not including covariates and, in par-
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ticular, drug exposure and resistance to treatment in the description of the data.
Basic models of viral dynamics describe the interaction between cells susceptible
to target cells (T ), infected cells (T ∗) and free virus (V ). The most common model
with imperfect drug effect is expressed in terms of the following set of differential
equations [Perelson and Nelson (1999)]

d

dt
T = λ − dT T − [1 − γ0]kT V,

d

dt
T ∗ = [1 − γ0]kT V − δT ∗,(2.1)

d

dt
V = NδT ∗ − cV,

where λ represents the rate at which new T cells are created from sources within
the body, such as the thymus, dT is the death rate of T cells, k is the infection rate
of T cells infected by virus, δ is the death rate for infected cells, N is the number
of new virions produced from each of the infected cells during their life-time,
and c is the clearance rate of free virions. The parameter γ0 (0 ≤ γ0 ≤ 1) denotes
the constant antiviral drug efficacy. If the regimen is not 100% effective (γ0 �= 1),
the system of ordinary differential equations can not be solved analytically. The
solutions to (2.1) then have to be evaluated numerically. When γ0 = 0 (the drug
has no effect), the model (2.1) reduces to the model in the publications [Nowak et
al. (1995), Nowak and May (2000), Stafford et al. (2000)] while γ0 = 1 (the drug
is 100% effective), the model (2.1) reverts to the model discussed by Perelson et
al. (1996) and Nowak and May (2000).

2.2. Viral dynamic model with time-varying drug efficacy. Since the mod-
el (2.1) assumes drug efficacy with a constant and does not consider the fact of
variability in drug susceptibility (drug resistance) and adherence in the presence
of ARV therapy, this model is only used to quantify short-term dynamics and does
not correctly describe the long-term virologic responses with ARV treatment. In
other words, the model is only used to fit the early segment data of the viral load
trajectory. By considering drug exposures and drug susceptibility, a long-term HIV
dynamic model can be expressed as

d

dt
T = λ − dT T − [1 − γ (t)]kT V,

d

dt
T ∗ = [1 − γ (t)]kT V − δT ∗,(2.2)

d

dt
V = NδT ∗ − cV .

Although this model also includes the interaction of target uninfected cells, in-
fected cells that actively produce viruses and free virus, it differs from the previous



MODELING LONG-TERM LONGITUDINAL HIV DYNAMICS 1389

model (2.1) in that the model (2.2) includes a time-varying parameter γ (t) (as de-
fined below), which quantifies the time-varying antiviral drug efficacy.

If we assume that the system of equations (2.2) is in a steady-state before initiat-
ing ARV treatment, then it is easy to show that the initial conditions for the system
are

T0 = c

kN
, T ∗

0 = cV0

δN
, V0 = λN

c
− dT

k
.(2.3)

As Huang, Rosenkranz and Wu (2003) have shown, there exists a drug efficacy
threshold ec = 1− cdT /kNλ such that if γ (t) > ec for all t , the virus will be even-
tually eradicated in theory. However, if γ (t) < ec (treatment is not potent enough)
or if the potency falls below ec before virus eradication (due to drug resistance,
e.g.), viral load may rebound [see Huang, Rosenkranz and Wu (2003) for a de-
tailed discussion]. We briefly discuss the drug efficacy model with two or more
agents which includes the model of one agent described in Huang and Wu (2006)
as a special case.

Within the population of HIV virions in a human host, there is likely to be
genetic diversity and corresponding diversity in sensitivity to the various ARV
agents. In clinical practice, genotypic or phenotypic tests can be performed to
determine the sensitivity of HIV-1 to ARV agents before a treatment regimen is
selected. Here we use the phenotypic marker, the median inhibitory concentra-
tion (IC50) [Molla et al. (1996)] to quantify agent-specific drug susceptibility. To
model within-host changes over time in IC50 due to the emergence of new drug
resistant mutations, the following function can be used:

IC50(t) =
⎧⎨⎩ I0 + Ir − I0

tr
t, for 0 < t < tr ,

Ir , for t ≥ tr ,
(2.4)

where I0 and Ir are respective values of IC50(t) at baseline and time point tr at
which the resistant mutations dominate. In our study tr is the time of virologic
failure. For subjects without a failure time IC50, baseline IC50 was held con-
stant overtime. In other words, if Ir = I0, no new drug resistant mutation is devel-
oped during treatment. Although more complicated models for median inhibitory
concentration have been proposed based on the frequencies of resistant mutations
and cross-resistance patterns [Wainberg et al. (1996), Bonhoeffer, Lipsitch and
Levin (1997)] in clinical studies or clinical practice it is common to collect IC50
values only at baseline and failure time as designed in A5055. Thus, this function
may serve as a good approximation. As an example, such function for two ARV
drugs is plotted in Figure 2(a).

Poor adherence to a treatment regimen is one of the major causes of treatment
failure [Besch (1995), Ickovics and Meisler (1997)]. For various reasons patients
may occasionally miss doses, may misunderstand prescription instructions or may
miss multiple consecutive doses. These deviations from prescribed dosing affect
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FIG. 2. (a) The median inhibitory concentration curve [IC50(t)]; (b) the time-course of adher-
ence [A(t)]; (c) the time-course of inhibitory quotient [IQ(t)]; (d) the time-course of antiviral drug
efficacy [γ (t)].

drug exposure in predictable ways. We use the following model to represent ad-
herence:

Ad(t) =
⎧⎨⎩

1, for Tk < t ≤ Tk+1, if all doses are taken in [Tk, Tk+1],
Rd, for Tk < t ≤ Tk+1, if 100Rd%

doses are taken in [Tk, Tk+1],
(2.5)

where 0 ≤ Rd < 1 (d = 1,2), with Rd indicating the adherence rate for drug d

(in our study we focus on the two PI drugs of the prescribed regimen). Tk denotes
the adherence evaluation time at the kth clinical visit. As an example, Figure 2(b)
shows the effect of adherence over time for two ARV drugs, respectively.

The HAART, containing two or more nucleoside/nonnucleoside reverse tran-
scriptase inhibitors (RTI) and protease inhibitors (PI), has proven to be effective
in reducing the amount of virus in the blood and tissues of HIV-infected patients.
To model the relationship of drug exposure and resistance with antiviral efficacy,
we employ the following modified Emax model [Sheiner (1985)] to represent the
time-varying drug efficacy for two ARV agents within a class (e.g., the two PI
drugs IDV and RTV):

γ (t) = IQ1(t)A1(t) + IQ2(t)A2(t)

φ + IQ1(t)A1(t) + IQ2(t)A2(t)
,(2.6)
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where IQd(t) = Cd
min/ICd

50(t) (d = 1,2) denotes the inhibitory quotient (IQ)
[Hsu et al. (2000)], Cd

min, Ad(t) and ICd
50(t) (d = 1,2) are the trough levels of

drug concentration in plasma, adherence profile and the median inhibitory con-
centrations for the two agents, respectively. Note that Cmin could be replaced by
other PK parameters such as the area under the plasma concentration-time curve
(AUC). Although IC50(t) can be measured by phenotype assays in vitro, it may
not be equivalent to the IC50(t) in vivo. The parameter φ is used to quantify the
conversion between in vitro and in vivo IC50 that can be estimated from clinical
data. γ (t) ranges from 0 to 1, implying that one drug appears to be equally ef-
fective as the other. If γ (t) = 1, the drug is 100% effective, whereas if γ (t) = 0,
the drug has no effect. Note that, if Cd

min, Ad(t) and ICd
50(t) are measured from

a clinical study and φ can be estimated from clinical data, then the time-varying
drug efficacy γ (t) can be estimated for the whole period of ARV treatment. Lack
of adherence reduces the drug exposure, which can be quantified by equation (2.5),
and thus, based on the formula (2.6), reduces the drug efficacy which, in turn, can
affect virologic response. The examples of the time courses of the inhibitory quo-
tients and the drug efficacy γ (t) with φ = 1, C1

min = 80 and C2
min = 50 for two PI

drugs are shown in Figures 2(c) and (d), respectively.

2.3. Model reparametrization. It is challenging to estimate all the seven para-
meters in the model (2.2) and conduct inference because this model is not a priori
identifiable [in the sense of Cobelli, Lepschy and Jacur (1997): multiple sets of pa-
rameters obtain identical fits to the data], given only viral load measurements. To
obtain a model with a priori identifiable parameters, the model (2.2) is reparame-
trized using the rescaled variables T̃ = (dT /λ)T , T̃ ∗ = (δ/λ)T ∗, Ṽ = (k/dT )V .
These yield the rescaled version as follows:

d

dt
T̃ = dT

(
1 − T̃ − [1 − γ (t)]T̃ Ṽ

)
,

d

dt
T̃ ∗ = δ

([1 − γ (t)]T̃ Ṽ − T̃ ∗)
,(2.7)

d

dt
Ṽ = c(R0T̃

∗ − Ṽ ),

where R0 = kNλ/(cdT ) represents the basic reproductive ratio for the virus, de-
fined as the number of newly infected cells that arise from any one infected cell
when almost all cells are uninfected [Nowak and May (2000), Verotta (2005)].
Note that the rescaled model (2.7) has fewer parameters than the “original”
model (2.2). We reparameterize the dynamic model so that identifiability of
model (2.7) is guaranteed [Cobelli, Lepschy and Jacur (1997), Verotta (2005)]
and parameters of the model can be uniquely identified. For model (2.7), the drug
efficacy threshold ec = 1 − 1/R0.
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If R0 < 1, then the virus will not spread, since every infected cell will on average
produce less than one infected cell. If, on the other hand, R0 > 1, then every in-
fected cell will on average produce more than one newly infected cell and the virus
will proliferate. For the HIV to persist in the host, infected cells must produce at
least one secondary infection, and R0 must be greater than unity. Moreover, the
greater the magnitude of R0 is, the greater the degree of infection would be. If we
assume that on a scale of weeks or days, the T -cell counts, infected cell counts and
free virus do not change before the beginning of drug therapy, then we can compute
a full pretreatment steady state [Perelson and Nelson (1999), Verotta (2005)]. Thus,
initial conditions for the model can now be expressed as simple functions of the ini-
tial condition of viral load (Ṽ0): T̃0 = 1/(1 + Ṽ0), T̃

∗
0 = Ṽ0/(1 + Ṽ0), Ṽ0 = Ṽ (0).

The assumption of the initial steady state is necessary to guarantee identifiable
(none of the models reported or referenced here is identifiable if the initial states
are unknown), and is often justified by the clinical trial protocol [Nowak and
May (2000), Verotta (2005)]. For example, in ACTG protocol 5055 (A5055), in-
dividual patients were taken off the drug before the initiation of the new ther-
apy (washout period) to eliminate the effect of previously administered drugs and
to guarantee that all individuals started from steady-state conditions. Finally, the
predicted viral load (Vp) related to an equation output of viral load amount (Ṽ )
in model (2.7), such as Vp = ρṼ , is required to complete the rescaled model,
where ρ, which is the equivalent of a volume of distribution for pharmacokinetics,
is a viral load scaling (proportionality) factor (10,000 copies/mL) to be estimated
from the data; Ṽ is generally expressed in copies RNA per unit volume.

3. Bayesian nonlinear mixed-effects models. A Bayesian nonlinear mixed-
effects (BNLME) model allows us to incorporate prior information at the popula-
tion level into the estimates of dynamic parameters for individual subjects. Denote
the number of subjects by n and the number of measurements on the ith subject by
mi . For notational convenience, let μ = (logφ, log c, log δ, logdT , logρ, logR0)

T ,
θ i = (logφi, log ci, log δi, logdT i, logρi, logR0i )

T , � = {θ i , i = 1, . . . , n},
�{i} = {θ l , l �= i} and Y = {yij , i = 1, . . . , n; j = 1, . . . ,mi}. Let fij (θ i , tj ) =
log10(Vp(θ i , tj )) , where Vp(θ i , tj ) is proportional to the numerical solution of
Ṽ (t) in the differential equations (2.7) for the ith subject at time tj . Let yij (t) and
ei(tj ) denote the repeated measurements of the common logarithmic viral load and
a measurement error with mean zero, respectively. Note that log-transformation of
dynamic parameters and viral load is used to make sure estimates of dynamic para-
meters are positive and to stabilize the variance, respectively. The BNLME model
can be written in the following three stages [Gelfand et al. (1990), Davidian and
Giltinan (1995), Wakefield (1996)].

Stage 1. Within-subject variation:

yi = fi(θ i ) + ei , ei |σ 2, θ i ∼ N (0, σ 2Imi
),(3.1)
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where yi = (yi1(t1), . . . , yimi
(tmi

))T , fi (θ i ) = (fi1(θ i , t1), . . . , fimi
(θ i , tmi

))T ,
ei = (ei(t1), . . . , ei(tmi

))T .
Stage 2. Between-subject variation:

θ i = μ + bi , [bi |�] ∼ N (0,�).(3.2)

Stage 3. Hyperprior distributions:

σ−2 ∼ Ga(a, b), μ ∼ N (η,�), �−1 ∼ Wi(�, ν),(3.3)

where the mutually independent Gamma (Ga), Normal (N ) and Wishart (Wi) prior
distributions are chosen to facilitate computations [Davidian and Giltinan (1995)].
In this modeling analysis, the data are assumed to be missing at random (MAR)
and, thus, analysis will give valid inferences [Heitjan and Basu (1996)].

Following the studies by Gelfand and Smith (1990) and Davidian and Gilti-
nan (1995), it is shown from (3.1)–(3.3) that the full conditional distributions for
the parameters σ−2,μ and �−1 may be written explicitly as

[σ−2|μ,�−1,�,Y]
(3.4)

∼ Ga

(
a +

∑n
i=1 mi

2
,

{
1

b
+ 1

2

n∑
i=1

mi∑
j=1

[yij − fij (θ i , tj )]2

}−1)
,

[μ|σ−2,�−1,�,Y]

∼ N

(
(n�−1 + �−1)−1

(
�−1

n∑
i=1

θ i + �−1η

)
,(3.5)

(n�−1 + �−1)−1

)
,

[�−1|σ−2,μ,�,Y]
(3.6)

∼ Wi

([
�−1 +

n∑
i=1

(θ i − μ)(θ i − μ)T

]−1

, n + ν

)
.

Here, however, the full conditional distribution of each θ i , given the remain-
ing parameters and the data, cannot be calculated explicitly. The distribution of
[θ i |σ−2,μ,�−1,�{i},Y] has a density function which is proportional to

exp

{−σ−2

2

mi∑
j=1

[yij − fij (θ i , tj )]2 − 1

2
(θ i − μ)T �−1(θ i − μ)

}
.(3.7)

To carry out the Bayesian inference, we need to specify the values of the hyper-
parameters in the prior distributions. In the Bayesian approach we only need to
specify the priors at the population level which are easy to obtain from previous
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studies or reference literature and usually are accurate and reliable. The values
of hyper-parameters in this study were determined from the previous publications
[Ho et al. (1995), Perelson et al. (1996), Perelson et al. (1997), Perelson and Nel-
son (1999), Nowak and May (2000), Verotta (2005)]. After we specify the model
for the observed data and the prior distributions for the unknown parameters, we
can draw statistical inference for the unknown parameters based on their posterior
distributions. In the above Bayesian modeling approach evaluation of the required
posterior distributions in a closed-form solution is prohibitive. However, as indi-
cated above, it is relatively straightforward to derive either full conditional distri-
butions for some parameters or explicit expressions which are proportional to the
corresponding full conditional distributions for other parameters.

The MCMC scheme for drawing samples from the posterior distributions of
all parameters in the above three stage model is obtained by iterating between
the following two steps: (i) sampling from one of the conditional distributions
(3.4)–(3.6); (ii) sampling from the expression (3.7). To implement an MCMC al-
gorithm, here the Gibbs sampler is used to update σ−2,μ and 	−1, while we
update θ i (i = 1,2, . . . , n) using the Metropolis–Hastings (M–H) algorithm. After
collecting the final MCMC samples, we are able to draw statistical inference for
the unknown parameters. In particular, we are interested in the posterior means and
quantiles. See the articles [Carlin and Louis (1996), Gelfand et al. (1990), Huang
and Wu (2006), Roberts (1996) and Wakefield (1996)] for detailed discussions
of the Bayesian modeling approach and the implementation of the MCMC pro-
cedures, including the choice of the hyper-parameters, the iterative MCMC algo-
rithm, the choice of proposal density related to M–H sampling, sensitivity analysis
and convergence diagnostics.

The hierarchical Bayesian approach allows us not only to borrow information
from previous studies, but also to borrow information across-patients in the same
study to estimate the dynamic parameters for an individual patient. Across-patient
information is incorporated in Stages 1 and 2 via Bayesian theories, and the prior
information regarding the estimates of the viral dynamic parameters from previous
studies is incorporated in Stage 3 in the hierarchical model (3.1)–(3.3). Thus, the
estimates of viral dynamic parameters for an individual patient are based on the
data from this particular patient, the data from other patients in the same study
and the prior information from previous studies. The information from these three
resources is weighted according to the uncertainty of each information component
in an efficient and optimal way via Bayesian theories. In contrast, the nonlinear
least squares (NLS) method fits a model to the data from individual patients at a
time. The data from an individual patient sometimes may not be enough to reliably
identify all the viral dynamic parameters, and hence, data from other patients are
generally not used. Thus, the key advantage of the hierarchical Bayesian approach,
compared to the NLS method, is its efficient utilization of all the information avail-
able at hand.
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For individual dynamic estimates, we may carry out further analysis for
the estimated dynamic parameters using standard statistical methods [Ding and
Wu (2001)]. We correlated the estimated viral dynamic parameters with baseline
host factors (baseline viral load, CD4, age and weight) and summary statistics
of virologic/immunologic responses. We used the Spearman rank test to evaluate
statistical significance of correlations. Simple linear relationships were explored
using a robust linear regression method (MM-estimator) due to the presence of
outliers (although some of the relationships may be nonlinear) [Venables and Rip-
ley (1999)]. All P -values are two-sided with a significance level of 0.05, and no
adjustments for multiple testing were made in this analysis.

4. Analysis of A5055 data. In this section we apply the BNLME modeling
approach for fitting the A5055 data described in Section 1. Based on the discussion
in Section 3, the prior distribution for μ was assumed to be N (η,�), with � being
a diagonal matrix. The details of the prior construction for unknown parameters are
discussed in Huang and Wu (2006). Thus, the values of the hyper-parameters are
chosen as follows [Ho et al. (1995), Perelson et al. (1996, 1997), Perelson and
Nelson (1999), Nowak and May (2000), Verotta (2005)]:

a = 4.5, b = 9.0, ν = 8.0,

η = (4.0,1.1,−1.0,−2.5,1.4,0.28)T ,

� = diag(1000.0,1000.0,1000.0,1000.0,1000.0,1000.0),

� = diag(2.0,2.0,2.0,2.0,2.0,2.0).

Note that the noninformative priors are chosen for all the parameters. As suggested
by Geman and Geman (1984), for example, one long run may be more efficient
with considerations of the following two points: (i) a number of initial “burn-in”
simulations are discarded, since from an arbitrary starting point it would be un-
likely that the initial simulations came from the stationary distribution targeted by
the Markov chain; (ii) one may only save every kth (k being an integer) simula-
tion samples to reduce the dependence among samples used for parameter estima-
tion. We are going to adopt these strategies in our MCMC implementation using
FORTRAN code that calls a differential equation subroutine solver (DIVPRK) in
IMSL library (1994), which uses the Runge–Kutta–Verner fifth-order method. The
computer codes are available from the corresponding author upon request. An in-
formal check of convergence is conducted based on graphical techniques according
to the suggestion of Gelfand and Smith (1990). Based on the results, we propose
that, after an initial number of 30,000 burn-in iterations, every 5th MCMC sample
was retained from the next 120,000 samples. Thus, we obtained 24,000 samples of
targeted posterior distributions of the unknown parameters.

4.1. Model fitting and parameter estimation results. The dynamic model (2.7)
was fitted to the viral load data from 42 patients using the proposed Bayesian ap-
proach. We report the individual dynamic parameter estimates in Figure 3 and their
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FIG. 3. The estimated parameters of subject-specific individuals based on an AIDS clinical trial
dataset with 42 patients. SD and CV=SD/Mean denote the standard deviation and coefficient of
variation, respectively.

summary statistics in Table 1. We observed a large between-subject variation in the
estimates of all individual dynamic parameters [the coefficient of variation (CV)
ranges from 18.2% to 175.0% for different dynamic parameters]. For instance,
the smallest virus clearance rate (c) was estimated as 2.157 day−1 with a corre-
sponding half-life of 0.32 (= log 2/c) days or 7.7 hours, and the largest was 6.448
day−1 with a half-life of 0.1 days or 2.4 hours. The smallest death rate of infected
cells (δ) was estimated as 0.08 day−1 with a corresponding half-life of 8.7 days
and the largest was estimated as 0.641 day−1 with a half-life of 1 day.

The population posterior means and the corresponding 95% equal-tail credible
intervals (CI) for the six parameters are summarized in Table 2. It is shown that the
population estimates are 4.736 and 0.360 for c and δ, respectively, which are the
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TABLE 1
The summary of estimates of individual dynamic parameters, where SD and CV = SD/Mean denote

the standard deviation and coefficient of variation, respectively

φi ci δi dT i ρi R0i

Minimum 1.216 2.157 0.080 0.002 0.208 1.043
Median 10.112 4.815 0.158 0.012 1.395 2.818
Maximum 322.851 6.448 0.341 0.196 11.319 4.064
Mean 39.755 4.827 0.170 0.033 1.472 2.726
SD 69.600 0.878 0.063 0.043 2.570 0.738
CV(%) 175.0 18.2 36.7 131.0 175.0 27.1

most important parameters in understanding viral dynamics. In comparison with
previous studies, our population estimate of c (4.736) is greater than the mean es-
timate of c, 3.07 in Perelson et al. (1996) and 3.1 in Perelson and Nelson (1999),
further, our population estimate of c, 4.736, with CI being (1.570, 8.408) is greater
than the population estimate of c, 2.81, with CI being (1.24, 6.49) obtained by Han,
Chaloner and Perelson (2002) and 3.09 with CI being (2.80, 3.40) in Huang and
Wu (2006). Our population estimate of δ is almost equal to the mean value of δ,
0.37 in Huang and Wu (2006), Stafford et al. (2000) and Klenernam et al. (1996).
On the other hand, our population estimate of δ (0.36) is less than the first-phase
decay rate of 0.49 [Perelson et al. (1996)], 0.5 [Perelson and Nelson (1999)] and
0.43 [Nowak et al. (1995)]. In addition, in two separate studies by Perelson et
al. (1997) and Markowitz et al. (2003), the mean values of 1.0 and 0.7 for δ were
obtained by holding clearance rate c as constant with values of 23 and 3, respec-
tively, and these two values are substantially greater than our population estimate
of 0.36 for δ. Our population estimate of ρ (3.701) is less than those (4.31 and 4.32)
for two different data sets estimated by Labbé and Verttoa (2006) and the popula-
tion estimate of R0 (2.608) is greater than that (1.03) in Labbé and Verttoa (2006).
These differences may be due to the various reasons as follows. The analysis of
those studies assumed that viral replication was completely stopped by the treat-
ment, they did not incorporate critical clinical factors in the models, and/or they

TABLE 2
A summary of the estimated posterior means (PM) of population parameters and the

corresponding 95% equal-tail credible intervals, where LCI and RCI denote the left and right
credible limits of 95% credible intervals

φ c δ dT ρ R0

PM 14.216 4.736 0.360 0.016 3.701 2.608
LCI 3.394 1.570 0.112 0.003 0.587 1.523
RCI 37.132 8.408 0.529 0.075 7.144 4.072
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used short-term viral load data to fit their models as well as other issues such as
parameter unidentifiability problems in the models. In addition, the first-phase de-
cay rate, estimated from a biexponential viral dynamic model [Ho et al. (1995),
Perelson et al. (1996), Wu and Ding (1999)] under perfect treatment assumption,
is not the exact death rate of infected cells (δ) since the current ARV therapy can-
not completely block viral replication [Ding and Wu (1999), Perelson and Nelson
(1999), Callaway and Perelson (2002)]. In this study we estimated the death rate
of infected cells (δ) directly by accounting for the nonperfect treatment with time-
varying drug efficacy. Note that we are unable to validate our results of the other
parameter estimates as no conclusive or comparable estimates have been published
to date.

As an example, Figure 4 presents six individually fitted curves (solid lines) with
observed viral load data in log10 scale as well as the estimated drug efficacy γ̂ (t)

(dotted lines) and the corresponding threshold ec (broken lines). The constant γ̂ (t)

indicates that both adherence rate A(t) and IC50(t) were held constant over time.
It can be seen that the model provides a good fit to the observed data for these
subjects. Notably, by comparing the fitted curves and estimated drug efficacy γ̂ (t),
we have seen that, in general, if γ̂ (t) falls below the threshold ec, viral load re-
bounds as shown in subjects four and six, and in contrast, if γ̂ (t) is above ec, the
corresponding viral load does not rebound, which are consistent with our theo-

FIG. 4. Individual fitted curves (solid line) with observed viral load measurements in log10 scale,
estimated drug efficacies γ̂ (t) (dotted line) and corresponding thresholds ec (broken line) for the six
representative subjects.
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retical analysis of the dynamic models [Huang, Rosenkranz and Wu (2003)]. It is
also important that we can estimate the threshold of the drug efficacy (ec) which
is an indicator of drug potency; ec may reflect the immune response of a patient
for controlling virus replications by the patient’s immune system and, thus, may
pave the way for clinicians to assess whether an ARV regimen is potent enough
to suppress viral replication for a patient and to decide whether regimens should
be switched. In addition, ARV drugs may show different potencies (Figure 4) for
different patients being treated on the same regimen. This may be explained by
the fact that a large between-subject variation in estimates of individual parame-
ters may be observed from our modeling approach (see Figure 3), suggesting that
parameter estimates such as δ, c may be an important indicator for clinicians to
choose individualized ARV therapy.

4.2. Correlations between baseline factors and viral dynamic parameters. We
have correlated the baseline factors such as baseline viral load (copies/mL), CD4
cells (cells/mm3), age and weight of patients with the estimated viral dynamic
parameters using the Spearman rank correlation test. Baseline viral load and CD4
cell counts were significantly correlated with most of the viral dynamic parameters.
These correlations are plotted in Figure 5. No significant correlation was observed
between the age or weight of patients and viral dynamic parameters.

Some correlations between baseline viral load and viral dynamic parame-
ters are interesting. A strong negative correlation (r = −0.727,p < 0.0001) be-
tween baseline viral load and viral clearance rate (c) and a positive correlation
(r = 0.711,p < 0.0001) between baseline viral load and viral load scaling fac-
tor (ρ) were consistent with the fact that the slower clearance rate of virions
and a larger viral load scaling factor, which is the equivalent of a volume of
distribution for pharmacokinetics, result in a higher viral load. The positive cor-
relation (r = 0.694,p < 0.0001) between baseline viral load and the death rate
of target cells (dT ) is also interpretable. One possible interpretation is that the
higher death rate of target cells may lead to more targets for HIV to infect, which
may result in a higher baseline viral load level. A strong positive correlation
(r = 0.761,p < 0.0001) between baseline viral load and drug efficacy parame-
ter (φ) indicates that the larger value of φ, which corresponds to the lower drug
efficacy (because drug efficacy decreases when φ increases), leads to a higher vi-
ral load. The positive correlation (r = 0.488,p = 0.0018) between baseline vi-
ral load and the death rate of infected cells (δ) may indicate that the more virus
(higher baseline viral load) may accelerate the apoptosis of infected cells. This
may also clarify the conflicting results in the recent literature on correlation be-
tween baseline viral load and first-phase viral decay rate. For example, Notermans
et al. (1998) and Wu et al. (2004) reported that plasma baseline HIV-1 RNA levels
were positively correlated with first phase viral decay rates; in contrast, Wu et al.
(1999) and Wu et al. (2003) found a negative correlation between baseline plasma
HIV RNA and first phase viral decay rates in two studies. These confused results
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FIG. 5. Correlations of baseline log10(RNA), baseline CD4 cell counts with estimated dynamic pa-
rameters. The correlation coefficients and p-values are obtained from the Spearman rank correlation
test.

may be due to the following reason. The first-phase viral decay rate, estimated
from a biexponential viral dynamic model [Wu et al. (1999), Ding and Wu (2001)]
under perfect treatment assumption, is not the true death rate of infected cells (δ)
because the current ARV therapy can not completely block viral replication.
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FIG. 5. Continued.

It is clearly shown from Figure 5 that baseline CD4+ T cell counts had opposite
relationships with the estimated dynamic parameters as baseline viral load had.
This is presumably due to a negative correlation between baseline CD4+ T cell
count and viral load (data not shown).

4.3. Relations of viral dynamic parameters with virologic responses. Virolog-
ical failure in this study was defined as confirmed two consecutive plasma HIV-1
RNA levels of ≥ 200 copies/mL with less than a 1.0-log10 decrease in plasma
HIV-1 RNA from baseline by week 8, or failure to achieve a confirmed plasma
HIV-1 RNA level of < 200 copies/mL by week 24. Treatment response (success)
was defined as two consecutive plasma HIV-1 RNA levels of < 200 copies/mL at
any point during the 24-week study [Acosta et al. (2004)].

The estimated viral dynamic parameters in patients with virological success
were compared to those in patients with virological failure using the Wilcoxon
rank sum test (Figure 6). First we included 33 patients with confirmed virological
success or failure status. The patients with virological success had significantly
smaller φ, higher clearance rate of free virions (c), lower death rate of infected
cells (δ), lower death rate of target T cells (dT ), smaller viral load scaling factor
(ρ), and higher basic reproductive ratio for the virus (R0). Intent-to-treat analysis
(treating missing data cases as failure) produced similar results.

We correlated the estimated viral dynamic parameters with the viral load
changes from baseline to weeks 2, 4 (short-term) and 24 (longer-term). We found
that some of the dynamic parameters were significantly correlated with weeks
2 and 4 (short-term) virological responses, but not week 24 (long-term) virological
responses. The death rate of infected cells (δ) was positively correlated with short-
term weeks 2 and 4 viral load reduction in log10 scale (r = 0.35 with p = 0.029
at week 2 and r = 0.38 with p = 0.019 at week 4). The death rate of target cells
(dT ) was positively correlated with short-term weeks 2 (r = 0.45 with p = 0.0044)
and 4 (r = 0.40 with p = 0.015). These correlations suggest that the higher death
rates of infected cells and target cells may result in a larger viral load decline at
short-term from baseline.
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FIG. 6. Comparisons of estimated dynamic parameters for patients with virological success versus
failure (9 patients were excluded due to missing virological response data).

Based on the protocol, the patient’s virological response status was classified as
success, failure and missing for a longer-term (24 weeks) response. The patients
with virological success had a significantly smaller value of φ, which indicates a
stronger drug efficacy (more potent regimen) obtained. It is also understandable
biologically that the patients with virological success had a significantly higher
clearance rate of free virions (c), lower death rate of target T cells (dT ) and a
smaller value of viral load scaling factor (ρ). The patients with virological success
had a significantly lower death rate of infected cells (δ) and a higher basic repro-
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ductive ratio (R0); and these results were not always consistent with the analysis
results of short-term response correlations, which may suggest a discrepancy be-
tween the short-term viral response and the longer-term response. For example,
the higher death rate of infected cells (δ) may result in a larger viral load reduction
in a short-term (2 to 4 weeks), but may not increase the likelihood of virological
success in the longer-term (24 weeks). Although this is perplexing, if immune re-
sponses are important in virological success, perhaps such responses are continued
if infected cells live longer.

5. Discussion. The advent of HAART has provided a wealth of information
on the interaction between HIV and the human immune system, and is continuing
to stimulate the debate on the basic mechanism of viral pathogenesis. However,
most of the models developed by biomathematicians and biologists are too com-
plicated and contain too many unknown parameters to be used to analyze real clin-
ical data [Wein, Damato and Perelson (1998), Nowak and May (2000), Stafford et
al. (2000)]. In the past decade, some simplified models have been proposed and
applied to real viral load data [Ho et al. (1995), Perelson et al. (1996, 1997), Wu et
al. (1999), Ding and Wu (2000), Markowitz et al. (2003)]. However, most of these
studies only modeled viral dynamic data in a short time period (2 to 8 weeks)
after initiating an ARV treatment which was frequently assumed to be 100% ef-
fective. In this article we developed a mechanism-based nonlinear time-varying
differential equation model for characterizing long-term dynamics to (i) establish
the relationship of virological response (viral load trajectory) with drug exposure
(pharmacokinetics and adherence) and drug resistance (IC50), (ii) to describe both
suppression and resurgence of virus, (iii) to directly incorporate observed drug
concentration, adherence and drug susceptibility into a function of treatment effi-
cacy and (iv) to use a hierarchical BNLME modeling approach that can not only
combine prior information with current clinical data for estimating dynamic para-
meters, but also characterize inter-subject variability. Thus, the results of estimated
dynamic parameters based on this model should be more reliable and reasonable
to interpret long-term HIV dynamics. Our models are simplified with the main
goals of retaining crucial features of HIV dynamics and, at the same time, guaran-
tying their applicability to typical clinical data, in particular, long-term viral load
measurements. We investigated a hierarchical BNLME modeling approach to es-
timate dynamic parameters in the reparametrized model (2.7) for long-term HIV
dynamics. The proposed model fitted the clinical data reasonably well for most
patients in our study, although the fitting for a few patients (less than 10%) was not
completely satisfactory due to unusual viral load fluctuation patterns, inaccurate
measurements of drug exposure and/or adherence for these subjects. For example,
self-reported pill count measurements may not reliably reflect actual adherence
profiles for some subjects.

We investigated the correlations between baseline factors and estimated dy-
namic parameters. Some biologically meaningful and interesting correlation re-
sults were found. Thus, we may be able to use the baseline viral load or CD4 count
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to determine whether a treatment regimen is potent enough for a particular patient,
as dynamic parameters such as the death rate of infected cells (δ) or viral clearance
rate (c) can be an indicator of treatment potency. These correlations will help clin-
icians to select a treatment for their patients. The estimated dynamic parameters in
patients with virologic success were compared to those in patients with virologic
failure and significantly important findings were summarized in Section 4.

The basic tool for investigating model uncertainty is the sensitivity analysis.
That is, we simply make reasonable modifications to the assumptions in question,
recompute the posterior quantities of interest, and see whether they have changed
in a way that significantly affects the resulting interpretations or conclusions. If the
results are robust against the suspected assumptions, we can report the results with
confidence and our conclusions will be solid. However, if the results are sensitive
to the assumptions, we choose to communicate the sensitivity results and interpret
the results with caution [Gamerman (1997)]. In order to examine the dependence
of dynamic parameter estimates on the prior distributions and initial values, we
conducted the sensitivity analyses using the different mean vector η of prior dis-
tributions and different initial values (data not shown). The sensitivity analysis
results can be summarized as follows: (i) The estimated dynamic parameters were
not sensitive to both priors and/or the initial values, and final results are reasonable
and robust. (ii) When different priors and/or different initials were used, the results
follow the same patterns as those presented in this paper. The conclusions of our
analysis remain unchanged.

Although the analysis presented here used a simplified model which appeared to
perform well in capturing and explaining the observed patterns, and characterizing
the biological mechanisms of HIV infection under relatively complex clinical situ-
ations, some limitations exist for the proposed modeling method. First, our model
is a simplified model and there are many possible variations [Perelson and Nelson
(1999), Nowak and May (2000), Callaway and Perelson (2002)]. We did not sep-
arately consider the compartments of short-lived productively infected cells, long-
lived and latently infected cells [Perelson et al. (1997)]. Instead, we examined a
pooled productively infected cell population. The virus compartment was not fur-
ther decomposed into infectious virions and noninfectious virions as in Perelson et
al. (1996). Thus, different mechanisms of NRTI and PI drug effects were not mod-
eled. In fact, we only considered PI drug effects in the drug efficacy model (2.6)
since the information of NRTI drugs was not collected in our study and the effect
of NRTI drugs was considered less important compared to the PI drugs. Second,
one may notice that we only have the IC50 data at baseline and failure time. We
extrapolated the IC50 data linearly to the whole treatment period in our modeling.
The linear extrapolation is the best approximation that we can get from the sparse
IC50 data [Wu et al. (2005)]. The linear assumption might have some influence
on the estimation results since the IC50 might have jumped to a higher level ear-
lier before the failure time when we obtained the sample for the drug resistance
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test. But we expect that this assumption had little effect on the prediction of viro-
logical response since we had relatively frequent monitoring (monthly in the later
stage) of virological failure in this study. Third, as measurements of adherence, pill
counts, may not reflect actual adherence profiles for individual patients, the data
quality would affect our estimation results for viral dynamic parameters. More ac-
curate measurements for adherence such as electronic monitoring devices (e.g.,
MEMs caps) may improve data quality. Further studies on these issues are defi-
nitely needed. Nevertheless, these limitations would not offset the major findings
from our modeling approach, although further improvement may be warranted.

We assumed that the distribution of the random effects bi is normal. However,
due to the nature of AIDS clinical data, it is possible that the data may contain
outlying individuals and, thus, may result in a skewed distribution of individual
parameters, that is, the random effects may not follow a normal distribution. As
Wakefield (1996) suggested, a t distribution may be used which is more robust
to outlying individuals than the normal distribution. An extended direction is to
incorporate baseline characteristics, such as age and weight, in our drug efficacy
model to test the effect of these covariates on each parameter. In addition, this pa-
per combined new technologies in mathematical modeling and statistical inference
with advances in HIV/AIDS dynamics and ARV treatment to quantify complex
HIV disease mechanisms. The complex nature of HIV/AIDS ARV therapy will
naturally pose some challenges, including missing data and measurement error
in covariates. These complicated problems, which are beyond the purpose of this
article, may be addressed using two-step methods [Higgins, Davidian and Gilti-
nan (1996)] and the joint model method [Wu (2002)]. We are actively investigating
these problems now. We hope that we could report these interesting results in the
near future.

In summary, the mechanism-based dynamic model is powerful and efficient to
characterize relations between antiviral response and drug exposures, drug suscep-
tibility, although some biological assumptions are required. The fitting of a model
specified as a set of nonlinear differential equations is routinely done in many
fields (in particular, pharmacokinetics and pharmacodynamics, which are closely
associated with the analysis of clinical data considered in this article). Long-term
viral dynamics can be reasonably modeled with careful considerations of the ef-
fects of pharmacokinetics, adherence and drug resistance. Dynamic parameters for
individual subjects can be estimated by borrowing information from prior popula-
tion estimates and across subjects in the same patient population using the novel
Bayesian approach. The established models may also be used to simulate antiviral
responses of new antiviral agents and will have a notable impact on our understand-
ing of HIV pathogenesis, long-term care with HIV-infected patients and design of
new treatment strategies. Although this paper concentrated on HIV dynamics, the
basic concept of longitudinal dynamic systems and the proposed methodologies
in this study are generally applicable to dynamic systems in other fields such as
biology, biomedicine, PK/PD studies or physics, as long as they meet the relevant
technical specification (e.g., specified by a set of differential equations).
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