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We introduce random survival forests, a random forests method for the
analysis of right-censored survival data. New survival splitting rules for grow-
ing survival trees are introduced, as is a new missing data algorithm for im-
puting missing data. A conservation-of-events principle for survival forests is
introduced and used to define ensemble mortality, a simple interpretable mea-
sure of mortality that can be used as a predicted outcome. Several illustrative
examples are given, including a case study of the prognostic implications of
body mass for individuals with coronary artery disease. Computations for all
examples were implemented using the freely available R-software package,
randomSurvivalForest.

1. Introduction. In this article we introduce random survival forests, an en-
semble tree method for analysis of right-censored survival data. As is well known,
constructing ensembles from base learners, such as trees, can substantially im-
prove prediction performance. Recently it has been shown by Breiman (2001) that
ensemble learning can be improved further by injecting randomization into the
base learning process, an approach called random forests. Random survival forests
(RSF) methodology extends Breiman’s random forests (RF) method. In RF, ran-
domization is introduced in two forms. First, a randomly drawn bootstrap sample
of the data is used to grow a tree. Second, at each node of the tree, a randomly
selected subset of variables (covariates) is chosen as candidate variables for split-
ting. Averaging over trees, in combination with the randomization used in grow-
ing a tree, enables RF to approximate rich classes of functions while maintain-
ing low generalization error. Considerable empirical evidence has shown RF to be
highly accurate, comparable to state-of-the-art methods such as bagging [Breiman
(1996)], boosting [Schapire et al. (1998)], and support vector machines [Cortes
and Vapnik (1995)].

Until now, applications of RF have focused primarily on classification and re-
gression problems. Even the popular R-software package randomForest [Liaw
and Wiener (2002, 2007)] considers only regression and multiclass data settings,
not survival analysis. Extending random forests to right-censored survival data is
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of great value. Survival data are commonly analyzed using methods that rely on
restrictive assumptions such as proportional hazards. Further, because these meth-
ods are often parametric, nonlinear effects of variables must be modeled by trans-
formations or expanding the design matrix to include specialized basis functions.
Often ad hoc approaches, such as stepwise regression, are used to determine if
nonlinear effects exist. Identifying interactions, especially those involving multi-
ple variables, is also problematic. This must be done by brute force (examining all
two-way and three-way interactions, e.g.), or must rely on subjective knowledge
to narrow the search.

In contrast, these difficulties are handled automatically using forests. We illus-
trate the ease with which RSF can uncover complex data structures through an in-
depth case study of the prognostic implications of being underweight, overweight,
or obese and having severe, but stable coronary artery disease. Although much has
been written about public health ramifications of the obesity epidemic [Olshansky
et al. (2005)], considerable controversy exists regarding the precise association of
body mass with prognosis. Investigators have noted complex patterns surrounding
possible reverse causation in underweight individuals, interactions with smoking,
and an unclear inflection point at which point increasing body mass confers in-
creased risk [Adams et al. (2006), Flegal (2005, 2007), Fontaine et al. (2003)].
Some have identified a possible obesity paradox among patients with established
heart disease in which increased body mass predicts better survival [Urtesky et al.
(2007)]. To clarify these issues, we analyzed a large cohort of patients with coro-
nary artery disease undergoing isolated coronary artery bypass surgery. Using RSF,
we identified a complex relationship between long-term survival, body mass, renal
(kidney) function, smoking, and number of internal coronary artery byass grafts.
We believe our novel findings help explain some of the apparent contradictions
previously reported.

1.1. Other forest approaches. RSF strictly adheres to the prescription laid out
by Breiman (2003) and in this way differs from other forest approaches to survival
data. Breiman’s prescription requires that all aspects of growing a random forest
take into account the outcome. In right-censored survival settings, this comprises
survival time and censoring status. Thus, the splitting criterion used in growing
a tree must explicity involve survival time and censoring information. Tree node
impurity, measuring effectiveness of a split in separating data, must measure sep-
aration by survival difference. Further, the predicted value for a terminal node in
a tree, the resulting ensemble predicted value from the forest, and the measure of
prediction accuracy must all properly incorporate survival information.

This differs from other forest approaches to survival analysis that tend to be
“off-the-shelf.” These do not strictly implement Breiman’s forest method [Breiman
(2003)], but instead recast the survival setting into one that can be treated using ex-
isting forest methodology. For example, survival analysis is possible by working
within the Classification and Regression Tree (CART) paradigm [Breiman et al.
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(1984)] by reformulating a survival tree in terms of a classification tree. One such
example is Ishwaran et al. (2004), where under a proportional hazards assump-
tion, CART methodology is used to produce a relative risk forest by exploiting an
equivalence to Poisson tree likelihoods [LeBlanc and Crowley (1992)]. Another
interesting approach, considered by Hothorn et al. (2006), analyzes right-censored
survival data by using log-transformed survival time as the outcome in a weighted
RF regression analysis. Observations in the regression analysis are weighted by,
what are referred to as, inverse probability of censoring (IPC) weights. See also
Molinaro, Dudoit and van der Laan (2004).

Early experimental work by Breiman (2002) on survival forests is also relevant.
In this approach a survival tree is grown using a hybrid splitting method in which
nodes are split both on time and covariates. This yields a nonparametric estimate
for the survival function that can then be used to trace the effects of variables on
survival as a function of time.

1.2. Objectives and outline. The purpose of this article is to give a detailed
description of RSF (Sections 2 and 3) and to illustrate several of its important fea-
tures. A core idea underlying the approach is a conservation-of-events principle
for survival trees (Section 4). This principle is used to define ensemble mortality,
a new type of predicted outcome for survival data. Ensemble mortality has a nat-
ural interpretation in terms of the expected total number of deaths and is derived
from the ensemble cumulative hazard function (CHF), the forest predicted value
for the CHF. Prediction error is defined in Section 5, and prediction accuracy of
the ensemble is compared with several competing methods in a large experiment
comprising several real and simulated datasets (Section 6). Our results are quite
promising and add to the growing list of successful applications of RF. In Section 7
we investigate the use of variable importance for variable selection. In Section 8
we introduce a novel missing data algorithm for forests. The algorithm can be used
for both training and test data and applies to missing values for both covariates and
survival data. The paper ends with our case study of body mass of patients with
coronary artery disease (Section 9).

2. Random survival forests algorithm. We begin with a high-level descrip-
tion of the algorithm. Specific details follow:

1. Draw B bootstrap samples from the original data. Note that each bootstrap
sample excludes on average 37% of the data, called out-of-bag data (OOB data).

2. Grow a survival tree for each bootstrap sample. At each node of the tree, ran-
domly select p candidate variables. The node is split using the candidate vari-
able that maximizes survival difference between daughter nodes.

3. Grow the tree to full size under the constraint that a terminal node should have
no less than d0 > 0 unique deaths.

4. Calculate a CHF for each tree. Average to obtain the ensemble CHF.
5. Using OOB data, calculate prediction error for the ensemble CHF.
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3. Ensemble cumulative hazard. Central elements of the RSF algorithm are
growing a survival tree and constructing the ensemble CHF. Here we provide de-
tails necessary to understand these.

3.1. Binary survival tree. Similar to CART, survival trees are binary trees
grown by recursive splitting of tree nodes. A tree is grown starting at the root
node, which is the top of the tree comprising all the data. Using a predetermined
survival criterion, the root node is split into two daughter nodes: a left and right
daughter node. In turn, each daughter node is split with each split giving rise to
left and right daughters. The process is repeated in a recursive fashion for each
subsequent node.

A good split for a node maximizes survival difference between daughters. The
best split for a node is found by searching over all possible x variables and split
values c, and choosing that x∗ and c∗ that maximizes survival difference. By max-
imizing survival difference, the tree pushes dissimilar cases apart. Eventually, as
the number of nodes increase, and dissimilar cases become separated, each node
in the tree becomes homogeneous and is populated by cases with similar survival.

3.2. Terminal node prediction. Eventually the survival tree reaches a satura-
tion point when no new daughters can be formed because of the criterion that
each node must contain a minimum of d0 > 0 unique deaths. The most extreme
nodes in a saturated tree are called terminal nodes. Denote these by T . Let
(T1,h, δ1,h), . . . , (Tn(h),h, δn(h),h) be the survival times and the 0–1 censoring in-
formation for individuals (cases) in a terminal node h ∈ T . An individual i is said
to be right-censored at time Ti,h if δi,h = 0; otherwise, if δi,h = 1, the individual
is said to have died (experienced an event) at Ti,h. Let t1,h < t2,h < · · · < tN(h),h

be the N(h) distinct event times. Define dl,h and Yl,h to be the number of deaths
and individuals at risk at time tl,h. The CHF estimate for h is the Nelson–Aalen
estimator

Ĥh(t) = ∑
tl,h≤t

dl,h

Yl,h

.

All cases within h have the same CHF.
Each case i has a d-dimensional covariate xi . The notation x above refers to one

coordinate of xi . Let H(t |xi ) be the CHF for i. To determine this value, drop xi

down the tree. Because of the binary nature of a survival tree, xi will fall into a
unique terminal node h ∈ T . The CHF for i is the Nelson–Aalen estimator for xi ’s
terminal node:

H(t |xi ) = Ĥh(t), if xi ∈ h.(3.1)

Identity (3.1) defines the CHF for all cases and defines the CHF for the tree.
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3.3. The bootstrap and OOB ensemble CHF. The CHF (3.1) is derived from
a single tree. To compute an ensemble CHF, we average over B survival trees. We
describe both an OOB and bootstrap estimate.

Recall that each tree in the forest is grown using an independent bootstrap sam-
ple. Define Ii,b = 1 if i is an OOB case for b; otherwise, set Ii,b = 0. Let H ∗

b (t |x)

denote the CHF (3.1) for a tree grown from the bth bootstrap sample. The OOB
ensemble CHF for i is

H ∗∗
e (t |xi ) =

∑B
b=1 Ii,bH

∗
b (t |xi )∑B

b=1 Ii,b

.(3.2)

Observe that (3.2) is an average over bootstrap samples in which i is OOB. Equiv-
alently, H ∗∗

e (t |xi ) can be calculated as follows. Drop OOB data down a survival
tree grown from in-bag (bootstrap) data. Keep track of i’s terminal node and its
CHF. Take the average of these CHFs. This yields (3.2).

In contrast to (3.2), the bootstrap ensemble CHF for i is

H ∗
e (t |xi ) = 1

B

B∑
b=1

H ∗
b (t |xi ).(3.3)

Observe that (3.3) uses all survival trees and not just those where i is OOB.

4. Conservation of events. We use (3.2) and (3.3) to define a predicted out-
come. Our approach rests on a conservation-of-events principle [Naftel, Black-
stone and Turner (1985)]. Under fairly general conditions, conservation of events
asserts that the sum of the estimated CHF over observed time (both censored and
uncensored) equals the total number of deaths. This applies to a wide collection of
estimators, including the Nelson–Aalen estimator. For a terminal node h ∈ T in a
given tree, conservation of events can be stated as the following lemma:

LEMMA 1.
∑n(h)

i=1 Ĥh(Ti,h) = ∑n(h)
i=1 δi,h for each terminal node h ∈ T . In

other words, the total number of deaths is conserved within h.

Lemma 1 shows that summing the CHF over observed survival times equals the
total number of deaths within a terminal node: a type of conservation of events
within the ends of a tree. An immediate corollary is the stronger assertion that the
total number of deaths in a tree is also conserved. Let (T1, δ1), . . . , (Tn, δn) denote
survival times and censoring values for the nonboostrapped data.

COROLLARY 1. For each tree grown from the original nonbootstrapped data,

n∑
i=1

H(Ti |xi ) = ∑
h∈T

n(h)∑
i=1

Ĥh(Ti,h) = ∑
h∈T

n(h)∑
i=1

δi,h =
n∑

i=1

δi .

Note that the right-hand side equals total number of deaths.
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4.1. Ensemble mortality. Corollary 1 is used to motivate a predicted outcome
measuring mortality. Corollary 1 shows that the total number of deaths equals the
sum of the CHF over (Ti,xi ). Mortality, in contrast, is defined as the expected
value for the CHF summed over time Tj , conditioned on a specific xi . It measures
the number of deaths expected under a null hypothesis of similar survival behavior.
Specifically, the mortality for i is defined as

Mi = Ei

(
n∑

j=1

H(Tj |xi )

)
,

where Ei is the expectation under the null hypothesis that all j are similar to i.
Mortality can be estimated naturally within a survival tree paradigm. The struc-

ture of a survival tree enforces a null hypothesis of similar survival within its ter-
minal nodes; individuals in a terminal node share a common estimated hazard
function. The nature of a survival tree and its forest therefore suggests an esti-
mate for mortality. We refer to this estimate as ensemble mortality. The ensemble
mortality for i is defined as

M̂∗
e,i =

n∑
j=1

H ∗
e (Tj |xi ).

Similarly, OOB ensemble mortality is defined as M̂∗∗
e,i = ∑n

j=1 H ∗∗
e (Tj |xi ).

5. Prediction error. To estimate prediction error, we use Harrell’s concor-
dance index [Harrell et al. (1982)]. The C-index (concordance index) is related
to the area under the ROC curve [Heagerty and Zheng (2005)]. It estimates the
probability that, in a randomly selected pair of cases, the case that fails first had a
worst predicted outcome. The interpretation of the C-index as a misclassification
probability is attractive, and is one reason we use it for prediction error. Another at-
tractive feature is that, unlike other measures of survival performance, the C-index
does not depend on a single fixed time for evaluation. The C-index also specifically
accounts for censoring.

5.1. C-index calculation. The C-index is calculated using the following steps:

1. Form all possible pairs of cases over the data.
2. Omit those pairs whose shorter survival time is censored. Omit pairs i and j if

Ti = Tj unless at least one is a death. Let Permissible denote the total number
of permissible pairs.

3. For each permissible pair where Ti �= Tj , count 1 if the shorter survival time
has worse predicted outcome; count 0.5 if predicted outcomes are tied. For each
permissible pair, where Ti = Tj and both are deaths, count 1 if predicted out-
comes are tied; otherwise, count 0.5. For each permissible pair where Ti = Tj ,
but not both are deaths, count 1 if the death has worse predicted outcome; oth-
erwise, count 0.5. Let Concordance denote the sum over all permissible pairs.

4. The C-index, C, is defined by C = Concordance/Permissible.
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5.2. OOB prediction error. Calculating C requires a predicted outcome. We
use the OOB ensemble CHF to define a predicted outcome similar to ensemble
mortality described in Section 4.1. Because this value is derived from OOB data,
it can be used to obtain an OOB estimate for C, and, consequently, an OOB error
rate.

Let to1 , . . . , tom denote pre-chosen unique time points (we use the unique event
times, t1, . . . , tN ). To rank two cases i and j , we say i has a worse predicted
outcome than j if

m∑
l=1

H ∗∗
e (tol |xi ) >

m∑
l=1

H ∗∗
e (tol |xj ).

Using this rule, compute C as outlined above. Denote the OOB estimate by C∗∗.
The OOB prediction error, PE∗∗, is defined as 1 − C∗∗. Note that 0 ≤ PE∗∗ ≤ 1
and that a value PE∗∗ = 0.5 indicates prediction no better than random guessing.

6. Empirical comparisons. Here we report the results of an experiment de-
signed to study prediction accuracy of RSF. Prediction performance was calculated
using the C-index, C, of Section 5.

Eleven datasets were used in the experiment; eight were distinct. One of these,
node-positive breast cancer data studied in Hothorn et al. (2006), was used to cre-
ate three additional datasets. To study stability in high-dimensional settings, 10,
50 and 100 uncorrelated variables representing noise were drawn from a uniform
distribution and were added to the data. We refer to these data as breast10, breast50
and breast100, and the original dataset as breast. Of the remaining seven datasets,
four are provided in the randomSurvivalForest R-package. These are as
follows: veteran’s administration lung cancer data from Kalbfleisch and Pren-
tice (1980) (veteran); primary biliary cirrhosis data from Fleming and Harrington
(1991) (pbc); burn patient data from Kalbfleisch and Prentice (1980) (burn); and
recidivism data from Rossi, Berk and Lenihan (1980) (recid). The remaining three
datasets were a prostate dataset described in Kattan (2003) (prostate), a dataset
comprising patients listed for heart transplant at Cleveland Clinic (transplant), and
early stage esophageal cancer data considered in Ishwaran et al. (2004) (esopha-
gus).

Computations were implemented using randomSurvivalForest software
under its default settings [Ishwaran and Kogalur (2007, 2008)]. In each instance
1000 trees were grown. Each of the four splitting rules available in the software
package were used. These were as follows [for more details see Ishwaran and
Kogalur (2008)]:

1. A log-rank splitting rule (logrank) that splits nodes by maximization of the log-
rank test statistic [Segal (1988), LeBlanc and Crowley (1993)].

2. A conservation-of-events splitting rule (conserve) that splits nodes by finding
daughters closest to the conservation-of-events principle.
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3. A log-rank score rule (logrankscore) that splits nodes using a standardized log-
rank statistic [Hothorn and Lausen (2003)].

4. A random log-rank splitting rule (logrankrandom). A random split is selected
for each of the p candidate variables in a node, and the variable with maximum
log-rank statistic (at its random split point) is used to split the node.

As a benchmark, we used Cox regression. The RF approach of Hothorn et al.
(2006) was also included for comparison. In this latter method, 1000 regression
trees were grown. Each tree was derived from bootstrap data where each observa-
tion was sampled with probability equal to its IPC weight (censored observations
had IPC weights of zero). IPC weights were calculated from the Kaplan–Meier es-
timate for the censoring distribution as recommended in Hothorn et al. (2006). RF
regression with log-transformed time as the outcome was used to grow each tree.
Predicted values were tree-weighted averaged values of log-transformed survival
time using weights as described in Step 4 of Section 3.1 in Hothorn et al. (2006).

To estimate prediction error, 100 independent bootstrap samples of each data
set were used. Each method was fit on the bootstrap data and prediction error was
estimated using the corresponding OOB data. For RSF, this method of estimation
differs from the OOB method discussed in Section 5. Although OOB error estima-
tion could have been employed, not doing so by-passes a potential problem with
the RF censored regression approach. Sometimes a case will receive a very large
IPC weight and appear in all or nearly every bootstrap sample, thus precluding
accurate OOB prediction for that case [Hothorn et al. (2006)].

When computing the C-index, each method used a different predicted outcome.
For RSF, ensemble mortality was used. For RF regression and Cox regression,
predicted survival time and the Cox linear predictor were used, respectively.

Results from our experiment are shown in Figure 1. Our findings are summa-
rized as follows:

1. In nearly all examples, RSF using logrank and logrankscore splitting had the
lowest prediction error. Conservation of events splitting was also very good.

2. Interestingly, RSF using the logrankrandom splitting rule was good in all exam-
ples. Because this splitting rule is significantly faster, its performance suggests
it might be the preferred method in settings where computational speed is es-
sential.

3. Prediction errors from breast10, breast50 and breast100 demonstrated all forest
methods were stable in the presence of noise variables. Cox regression, in con-
trast, became progressively worse as the number of noise variables increased.

4. Performance of RF regression depended strongly on the censoring rate. For the
transplant and veteran data, where almost all cases were deaths, performance
was good. For the prostate and esophagus data, where censoring was higher,
performance was poor.
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FIG. 1. Boxplots of estimated prediction error (calculated using by C-index of Section 5) from
100 independent bootstrap replicates. Prediction error estimated on out-of-bag data. Dots in box-
plots indicate mean values; horizontal lines are medians. Methods compared were as follows: Cox
(Cox-regression); RF (RF for censored data [Hothorn et al. (2006)]; RSF1 through RSF4 (RSF using
log-rank, conservation-of-events, log-rank score and random log-rank splitting). All forest analyses
comprised 1000 trees. Datasets are indicated above each boxplot in bold.
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7. Variable importance (VIMP). Variables can be selected by filtering on
the basis of their variable importance (VIMP). To calculate VIMP for a variable x,
drop OOB cases down their in-bag survival tree. Whenever a split for x is encoun-
tered, assign a daughter node randomly. The CHF from each such tree is calculated
and averaged. The VIMP for x is the prediction error for the original ensemble sub-
tracted from the prediction error for the new ensemble obtained using randomizing
x assignments [Breiman (2001), Ishwaran (2007)].

Large importance values indicate variables with predictive ability, whereas
zero or negative values identify nonpredictive variables to be filtered. Under the
C-index, one can interpret VIMP in terms of misclassification. Recall the C-index
estimates the probability of correctly classifying two cases. Thus, VIMP for x mea-
sures the increase (or drop!) in misclassification error on the test data if x were not
available.

One should be careful interpreting VIMP. Although tempting, it is incorrect to
think VIMP estimates change in prediction error for a forest grown with and with-
out a variable. For example, if two variables are highly correlated and both pre-
dictive, each can have large VIMP values. Removing one variable and regrowing
the forest may affect the VIMP for the other variable (its value might get larger),
but prediction error will likely remain unchanged. VIMP measures the change in
prediction error on a fresh test case if x were not available, given that the original
forest was grown using x. Although, in practice, this often equals change in pre-
diction error for a forest grown with and without x, conceptually the two quantities
are different.

To examine the empirical properties of VIMP, we re-analyzed the breast cancer
datasets used in Section 6. For each dataset, a forest of 1000 trees was grown
using log-rank splitting. VIMP for each variable in each dataset was recorded. The
analysis was repeated 100 times independently and VIMP averaged over the runs
(Table 1).

Table 1 shows VIMP to be reasonably stable across datasets. In some instances,
VIMP increases or decreases slightly for a variable as number of noise variables
increases, but the ranking and relative size of VIMP is reasonably consistent. Also
apparent from the table is the ability of VIMP to identify noise variables. The
average absolute VIMP for noise variables in breast10, breast50 and breast100
is 0.001, and number of noise variables with VIMP exceeding 0.002 is 0.21 on
average for breast100. This latter observation can be used as a means for thresh-
olding variables, because any variable with a VIMP exceeding 0.002 is unlikely to
be noise. Hence, we can conclude positive nodes, age, and progesterone are highly
predictive, and hormone therapy and estrogen are moderately predictive. However,
menopause, tumor size and tumor grade are unlikely to be predictive.

8. Missing data. One of the earliest algorithms for treating missing data in
CART was based on the idea of a surrogate split [Chapter 5.3, Breiman et al.
(1984)]. If s is the best split for a variable x, the surrogate split for s is the split
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TABLE 1
Variable importance (VIMP) for breast cancer datasets. Last two rows are mean of absolute VIMP
for noise variables and number of noise variables with VIMP exceeding 0.002 (applies to breast10,
breast50 and breast100). All reported values averaged over 100 independent runs. Each run based

on 1000 trees under log-rank splitting

breast breast10 breast50 breast100

Hormone therapy 0.005 0.003 0.002 0.001
Age 0.021 0.018 0.016 0.017
Menopause −0.002 0.000 0.000 0.000
Tumor size −0.002 −0.002 0.000 0.001
Tumor grade 0.003 0.001 0.001 0.001
Positive nodes 0.037 0.040 0.041 0.042
Progesterone 0.009 0.015 0.018 0.019
Estrogen 0.003 0.003 0.004 0.005
Noise [mean] — 0.002 0.001 0.001
Noise [misclass] — 0.090 0.190 0.210

s∗ using some other variable x∗ such that s∗ and s are closest to one another in
terms of predictive association [Breiman et al. (1984)]. To assign a case having
a missing value for the variable used to split a node, the CART algorithm uses
the best surrogate split among those variables not missing for the case. Surrogate
splitting ensures every case can be classified, whether the case has missing values
or not.

Although surrogate splitting works well for trees, the method may not be well
suited for forests. Speed is one issue. Finding a surrogate split is computation-
ally intensive and may become infeasible when growing a large number of trees,
especially for fully saturated trees used by forests. Further, surrogate splits may
not even be meaningful in a forest paradigm. RF randomly selects variables when
splitting a node and, as such, variables within a node may be uncorrelated, and a
reasonable surrogate split may not exist. Another concern is that surrogate splitting
alters the interpretation of a variable, which affects measures such as VIMP.

For these reasons, a different strategy is required for RF. The current method
for imputing data uses a proximity approach [Breiman (2003), Liaw and Wiener
(2002)]. This works as follows. First, the data are roughly imputed: missing val-
ues for continuous variables are replaced with the median of nonmissing values,
or if the variable is categorical, data are imputed using the most frequent occur-
ring nonmissing value. The roughly imputed data is analyzed using RF. Missing
data are imputed using the resulting proximity matrix, an n × n symmetric matrix
whose (i, j) entry records the frequency that case i and j occur within the same
terminal node. For continuous variables, imputed data are the proximity weighted
average of the nonmissing data. For integer variables, imputed data are the inte-
ger value having the largest average proximity over nonmissing data. The updated
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data are then used as an input in RF, and the cycle is repeated. Typically, only a
few iterations are needed to achieve a stable solution [Breiman (2003)].

An obvious advantage of such an approach is that it works off-the-shelf with-
out special modification of the RF algorithm. Also, an important property of RF
is its ability to cluster the data. Imputation via proximity exploits this. However,
although the method is reasonable, there are some disadvantages:

1. OOB estimates for prediction error are biased, generally on the order of
10–20% [Breiman (2003)]. Further, because prediction error is biased, so are
other measures based on it, such as VIMP.

2. The forest cannot be used to predict on test data with missing values.

8.1. A new missing data algorithm: adaptive tree imputation. To address these
issues, we introduce a new missing data algorithm for forests. The idea is to adap-
tively impute missing data as a tree is grown. Imputation works by drawing ran-
domly from the set of nonmissing in-bag data within the working node. Because
only in-bag data are used for imputing, OOB data are not touched, and the OOB
prediction error is not optimistically biased. The key steps involved are sketched
below. For simplicity, we initially focus on the case where only x variables have
missing data:

1. For each node h, impute missing data prior to splitting. Let X∗
k,h be the set of

nonmissing values for the kth coordinate of those x-variables in-bag in h. Let
P

∗
k,h be the empirical distribution function for X∗

k,h. For each in-bag case in h

with missing value for the kth coordinate, impute by drawing a random value
from P

∗
k,h. Repeat for each k. Splitting proceeds as usual once the data are

imputed. Note carefully that only in-bag data is used as the basis for imputation
and splitting.

2. The OOB data plays a passive role. It is imputed by drawing from P
∗
k,h.

3. Daughter nodes contain no missing data because the parent node is imputed
prior to splitting. Reset the imputed data in the daughters to missing. Proceed
as in Step 1 above, continuing until the tree can no longer be split.

The final summary imputed value for a missing case uses in-bag imputed values
from the case’s terminal nodes across the forest. If a case has a missing value for a
continuous variable, the final summary value is the average of its imputed in-bag
values. If a case has a missing value for an integer variable, the summary value
is its in-bag imputed value occurring most frequently (in case of ties, a random
tie-breaking rule is used).

8.2. Imputation for test data. The missing data algorithm can be used for test
data. The test data are dropped down each tree of the forest and missing values
are imputed dynamically as in Step 1 using P

∗
k,h. Once terminal node membership

across the forest is established, missing data are summary imputed. If a test case
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has missing values for a continuous variable, the final summary value is its av-
erage imputed value. If a test case has missing values for an integer variable, the
summary value is its imputed value occurring most frequently.

8.3. Imputation for missing outcomes. Imputation for missing values of cen-
soring indicators and survival times proceeds in the same manner as for x vari-
ables. Within the working node h, missing outcome data are drawn randomly from
the empirical distribution function of the nonmissing in-bag outcome data. Once
missing outcome data and missing values for x variables are imputed, splitting
proceeds using imputed in-bag data.

Summary imputation for outcomes is similar to that for x variables. If survival
time for a case is missing, the summary value is the average of its imputed in-bag
values. If the censoring indicator for a case is missing, the summary value is its in-
bag imputed censoring indicator occurring most frequently. OOB prediction error
is calculated using imputed outcomes. If a case has a missing outcome, its OOB
summary imputed value is used when calculating the prediction error.

Test data with missing outcomes are treated as follows. Test data are dropped
down each tree and missing data are imputed within a node by drawing a random
value from the empirical distribution function of the nonmissing in-bag training
outcome data. Final summary imputation uses imputed values of test cases from
terminal nodes.

8.4. Iterating the missing data algorithm. With increasing amounts of miss-
ing data, accuracy of imputed values may degrade. In such cases, accuracy can
be improved substantially by iterating the missing data algorithm. Iterative im-
putation works as follows. After the initial cycle of growing the forest, missing
data are imputed using OOB summary values. A new forest is then grown using
the imputed data. For each case originally missing a value, draw a random value
from the nonmissing in-bag cases within its terminal node. A value is drawn for
each tree in the new forest. Impute cases with missing data using full (in-bag plus
OOB data) summary imputation. Use the reimputed data and grow another forest.
Repeat iteratively.

8.5. Empirical performance. To illustrate the missing data algorithm, we use
the pbc data considered in Section 6. The data is from a clinical trial involving
primary biliary cirrhosis (an autoimmune disease of the liver) and comprise 312
individuals who participated in a randomized trial to study the effectiveness of
the drug D-penicillamine. The dataset contains 17 variables, as well as censor-
ing information and time until death for each individual [Fleming and Harrington
(1991)].

A preliminary analysis of the data using RSF (1000 trees under log-rank split-
ting) identified several variables that have large VIMP values. VIMP for the top
predictive variable, serum bilirubin, was especially large, being almost twice the
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size of the second most predictive variable, age. This finding is consistent with
biology. In normal patients, a small amount of bilirubin, a waste produced by the
breakdown of old red blood cells and hemoglobin, circulates in the blood, but el-
evated amounts are found in patients with liver disease. Serum bilirubin level is
considered an accurate test of liver function. Therefore, it is not surprising that this
variable is predictive of disease.

Given the importance of serum bilirubin, we were curious to see how well we
could impute this value and what effects imputation might have on prediction error.
Because the variable had no missing data (in fact, few data were missing), we
randomly assigned missing values. In doing so, we first put aside a 20% subset
of the data for testing. Over the remaining data, missing values were randomly
assigned to variables. The missing data algorithm was applied to these data, and
the root-mean-square error (RMSE) between the imputed and true value for serum
bilirubin was calculated. The OOB error rate from the training data and the test set
error were also calculated.

For comparison, we iterated the missing data algorithm. We also used proximity
imputation [Breiman (2003), Liaw and Wiener (2002)]. A five-iteration cycle was
used in both cases. Results for all three methods are reported in Table 2. Values
given are averaged over 100 random datasets generated under differing amounts of
missingness.

Several trends can be observed from Table 2:

1. Imputed values were accurate and OOB error matched test set error for the
missing data algorithm under moderate amounts of missing data (5–10%). As
missing data increased (25–50%), OOB error overestimated test set error and
RMSE performance degraded.

TABLE 2
Imputation for pbc data under differing amounts of missing values. Reported for each method are

the following: (i) root-mean-square error (RMSE) between imputed and actual values for the
covariate serum bilirubin (for comparison note that serum bilirubin had standard deviation 4.41);
(ii) OOB prediction; (iii) test set prediction error using a 20% hold out test set (TEST). Values are

averaged over 100 random datasets. Forests comprised 1000 trees under log-rank splitting

Missing data Proximity

%
missing
data

Missing data algorithm imputation
algorithm (5 iterations) (5 iterations)

RMSE OOB TEST RMSE OOB TEST RMSE OOB TEST

5 3.181 0.170 0.174 3.033 0.165 0.175 3.068 0.171 0.174
10 3.537 0.173 0.168 3.323 0.163 0.169 3.381 0.173 0.166
25 3.766 0.185 0.165 3.357 0.159 0.169 3.420 0.173 0.165
50 3.912 0.204 0.155 3.416 0.156 0.161 3.464 0.164 0.157
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2. The iterative missing data algorithm was consistently good. RMSE was consis-
tently low and OOB error closely matched test set error in all settings.

3. Proximity imputation was also consistently good. Imputed values were accu-
rate, and OOB error rates matched test set errors in all settings. We did not
notice bias in OOB error rates reported elsewhere [Breiman (2003)].

These findings suggest the missing data algorithm can be used confidently with
low to moderate missing data. Its advantages include the ability to predict on test
data with missing values and that it can be used when outcomes are missing. With
increasing amounts of missing data, the algorithm can still be used, but should be
iterated a few times to improve accuracy of imputed values. Interestingly, iterating
the algorithm did not bias OOB error rates in our simulations. Informal experi-
ments with other data showed this pattern to be consistent, suggesting that the use
of OOB summary imputation on the first iteration and full summary imputation on
further iterations (which mixes in-bag and OOB data) is helping to mitigate bias.
We believe this same effect is also at play for proximity imputation. Proximity
summary imputation uses both in-bag and OOB data, and this must be helping to
reduce bias. The results for proximity imputation were better than expected and
suggest it could also be used for missing data.

9. Body mass index and long-term survival among patients undergoing
coronary artery bypass grafting (CABG) surgery. Over the past twenty years,
public health investigators have documented a dramatic increase in the proportion
of the US population that is overweight or obese [Mokdad et al. (2003)]. A com-
mon method of assessing obesity is the calculation of body mass index, which is
weight (in kilograms) divided by height (in meters) squared (kg/m2). Body mass
index values of < 18.5, 18.5–25, 25–30, 30–35 and > 35 correspond to under-
weight, normal weight, overweight, grade I obesity and grade II obesity [Flegal
(2005, 2007)].

The association of body mass with mortality is complex. People who are un-
derweight are at increased risk [Adams et al. (2006), Flegal et al. (2005)], but it
is unclear whether this is due to reverse causality from chronic conditions such
as renal dysfunction or undiagnosed cancer. Smoking decreases body mass but
increases death risk from coronary artery disease, lung cancer, obstructive lung
disease, and other diseases. High body mass index predicts increased risk, but it is
not clear whether risk starts to increase when subjects become simply overweight
or frankly obese [Adams et al. (2006), Flegal et al. (2005)].

Obesity increases the risk of developing and dying from coronary artery dis-
ease [Flegal et al. (2007)], at least in part by predisposing people to diabetes and
hypertension. Although it is widely accepted that obesity increases the risk of de-
veloping disease, there is controversy over the prognostic implications of obesity
among patients with established disease; some suggest there may even be a para-
doxical protective effect of obesity [Urtesky et al. (2007)].
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In order to explore these complex patterns relating obesity to mortality in pa-
tients with stable, documented, severe coronary artery disease, we focus on pa-
tients who underwent primary isolated CABG surgery. CABG was developed in
the late 1960s for treating refractory angina and has been shown to improve life
expectancy in patients with severe obstructive coronary artery disease. Early ran-
domized trials demonstrated that compared with medical therapy, CABG resulted
in better survival [Yusuf, Zucker and Peduzzi (1994)]. Since its inception, the pro-
cedure has evolved substantially, with greater use of arterial revascularization and
incorporation of minimally invasive techniques [Puskas et al. (2004)]. A number
of models have been constructed to predict long-term survival after CABG, but
none has included body mass index as a predictor [Eagle et al. (2001)].

The data analyzed comprised 15,586 patients accrued between the years 1990
and 2003 at Cleveland Clinic. The outcome used for the analysis was all cause
mortality. Mean follow-up time was 6.5 ± 3.8 years, the median was 6.4 years. In
total there were 36 variables analyzed, including: body mass index; age in years;
creatinine clearance, a continuous measure of renal function; smoking history; and
number of internal thoracic artery grafts used for CABG. These latter five variables
were found to be among the most predictive using a RSF analysis.

Five-year predicted survival (estimated from the ensemble) appears in Figure 2
plotted against body mass index. Survival has been conditioned on smoking his-
tory and creatinine clearance level. Solid lines appearing in the figure are lowess
smoothed estimates of survival stratified by number of internal thoracic artery
grafts used.

One can see a distinctive “hockey stick” pattern in Figure 2. At low body mass
index, survival is low, after which survival increases with increasing body mass
until reaching an inflection point of roughly 25 kg/m2, where it then begins to
decrease. Interestingly, this pattern is highly dependent on creatinine clearance
levels. For creatinine clearance values larger than 90 ml/min, signifying healthy
renal function, the hockey stick pattern is much straighter (coplots on the extreme
right-hand side).

These results add strength to the hypothesis that there is a reverse causation ef-
fect for underweight individuals. The poor survival seen in patients with low body
mass index could be construed as an effect of being underweight, but this may be
incorrect. As seen, the association of low body mass with survival is related to renal
function, and this effect dissipates as renal function improves. Thus, poor survival
in patients with low body mass index may not be due to being underweight, but
rather due to the systemic effects of renal disease.

The effect of smoking on survival is also interesting. Smoking decreases body
mass, but at the same time leads to increased risk and poorer survival. This effect
can be seen in Figure 2. For patients with no internal thoracic artery grafts (black
curves) and normal renal function (creatinine clearance > 90 ml/min), smoking
leads to a more pronounced hockey stick pattern (top right coplot versus bottom
right coplot). Note that for the same range of creatinine clearance, there is no effect
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FIG. 2. Predicted five-year survival versus body mass index (kg/m2), conditioned on creatinine
clearance (ml/min) and smoking history. Curves are smoothed using lowess and stratified by number
of internal thoracic artery grafts (black = 0; red = 1; green = 2; blue = combined). Analysis of
CABG data based on RSF using 1000 trees with log-rank splitting.

when patients have at least one internal thoracic artery graft (green and red curves).
These patients have additional coronary artery protection, and the protection that
this confers masks the lesser effect of smoking. The effect of smoking on survival
is also less apparent in patients with abnormal creatinine clearance levels. Again,
this is because the effect is being masked, in this case by renal dysfunction.

10. Discussion. In this paper we have introduced RSF, a new extension of
Breiman’s forests method [Breiman (2001)], to right-censored survival data. A ran-
dom survival forest consists of random survival trees. Using independent bootstrap
samples, each tree is grown by randomly selecting a subset of variables at each
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node and then splitting the node using a survival criterion involving survival time
and censoring status information. The tree is considered fully grown when each
terminal node has no fewer than d0 > 0 unique deaths. The estimated CHF for a
case is the Nelson–Aalen estimator for the case’s terminal node. The ensemble is
the average of these CHFs. Because trees are grown from in-bag data, an OOB
ensemble can be calculated by dropping OOB cases down their in-bag survival
trees and averaging. The predicted value for a case using the OOB ensemble does
not use survival information for that case, and, therefore, it can be used for nearly
unbiased estimation of prediction error. From this, other useful measures can be
derived, such as VIMP values for filtering and selecting variables.

RSF incorporates many of the useful ideas promoted by Breiman (2001). At
the same time, we have proposed new ways to extend the methodology. A novel
missing data algorithm was introduced that can be used for both training and test-
ing data and that provides nearly unbiased estimates for error rates even with large
amounts of missing data.

A large experiment was used to assess prediction accuracy of RSF. Over a wide
range of real as well as simulated datasets, we found RSF to be consistently better
than, or at least as good as, competing methods. Since the introduction of RF to
the machine learning community, there has been a tremendous effort to document
its empirical performance. Our results confirm what has generally been found: RF
produces highly accurate ensemble predictors.

We have also illustrated the ease with which RSF can be applied to real data
settings to uncover highly complex interrelationships between variables. Our case
study involving coronary artery disease found important relationships among re-
nal function, body mass index, and long-term survival that help explain much of
the confusion reported in the literature on this controversial topic. Complex rela-
tionships like this are found with ease using tools such as VIMP in combination
with the highly adaptive nature of forests. In contrast, conventional methods are
much less automatic and require considerable subjective input from the user in
data settings where variables are highly interrelated.
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