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Understanding and modeling the determinants of extreme hourly rainfall
intensity is of utmost importance for the management of flash-flood risk. In-
creasing evidence shows that mesoscale convective systems (MCS) are the
principal driver of extreme rainfall intensity in the United States. We use ex-
treme value statistics to investigate the relationship between MCS activity and
extreme hourly rainfall intensity in Greater St. Louis, an area particularly vul-
nerable to flash floods. Using a block maxima approach with monthly blocks,
we find that the impact of MCS activity on monthly maxima is not homo-
geneous within the month/block. To appropriately capture this relationship,
we develop a mixed-frequency extreme value regression framework accom-
modating a covariate sampled at a frequency higher than that of the extreme
observation.

1. Introduction. All regions of the contiguous1 United States have experienced an in-
crease in rainfall intensities since the 1950s; see Kunkel et al. (2013) for increases to one-day
and two-day totals and Barbero et al. (2017) for increases to one-hour maxima. Increased
precipitation, along with increased population and wealth, have lead to increases in flood
damages (Pielke Jr and Downton (2000)). Compiling a database of fatalities associated with
flooding events from 1959 to 2005, Ashley and Ashley (2008) find no significant decrease
in flood risk despite technological advancements in watch-warning and detection systems.
Atmospheric science suggests that climate change should further increase rainfall intensities
much faster than the total precipitation amount (Trenberth et al. (2003)) and recent global
climate models and regional climate models point in this direction; see Prein et al. (2017) for
the U.S. and Kendon, Blenkinsop and Fowler (2018) for the U.K.

Extreme short time span rainfall intensity (e.g., very large mm/hour) is a main driver of
flash floods and a major threat in the U.S. Flash floods are the “#1 weather-related killer in the
United States!” (National Weather Service (2022)). More than 28,000 flash flood events were
reported across the U.S. over 2007–2015 (Gourley et al. (2017)), and the problem is likely
to worsen in a changing climate with heavier precipitation (Masson-Delmotte et al. (2021)).
Proper design of hydraulic structures and flood-protection infrastructure critically depends
on the successful modeling of extreme hourly rainfall intensity dynamics (Callau Poduje and
Haberlandt (2017)).

Several geographic and atmospheric factors contribute to the nonstationary behavior of
extreme hourly rainfall. Across sites, differences in rainfall can be partially explained by lon-
gitude, latitude, and elevation; see, for example, Tye and Cooley (2015) and Sebille, Fougères
and Mercadier (2017) where these covariates are included to explain annual maximum daily
rainfall at locations in the U.S. and France, respectively. In the U.S., rainfall (daily and hourly)
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1The lower 48 states in North America (including the District of Columbia).
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is further partially explained by the Southern Oscillation Index (SOI) and the Pacific Decadal
Oscillation (PDO); see, for example, Ouarda, Yousef and Charron (2019). Temperature also
partially explains precipitation, but the relationship is complex, and its effect on precipi-
tation extremes is difficult to separate from the combined effects of multiple atmospheric
variables; see, for example, O’Gorman (2012). Summer rainfall in the U.S. has another im-
portant driver: Mesoscale Convective Systems (MCS). MCS are the largest convective clouds
that can be identified by satellite infrared imagery of a large, contiguous precipitation area of
100 km in at least one direction. They are often found downwind of mountain ranges and are
responsible for about 60% of summer rainfall in the Great Plains (Nesbitt, Cifelli and Rut-
ledge (2006)) and a majority of extreme rainfall east of the Rocky Mountains (Stevenson and
Schumacher (2014)). Feng et al. (2016) show that the increases in springtime extreme rainfall
in the Central United States are dominated by MCS. The accurate simulation of MCS, and
the ensuing extreme rainfall, is necessary to evaluate changes in response to climate change.

The scientific community uses global climate models (GCM) to project climate into the
future. GCM are based on mathematical equations that characterize how energy and matter
interact in different parts of the ocean, atmosphere, and land. They use a three-dimensional
grid of cells to represent the Earth’s surface, and they are solved at given time steps (minutes,
hours, days, or years). GCM have to parametrize deep convection due to their coarse grid
spacing. This leads to large uncertainties and model biases, and GCM are typically considered
unreliable at subdaily time scales (Westra et al. (2014)). Regional climate models account for
topography, land-cover distribution, etc, to provide information at finer, sub-GCM grid scales.

Prein et al. (2020) investigate the ability of a regional convection-permitting climate model
(CPM) to reproduce the size, precipitation rate, propagation speed, and lifetime of the ob-
served MCS. A CPM is a high-resolution (≤4 km) model that allows an explicit simulation
of deep convection, and an improved representation of fine-scale orography and variations of
surface fields. Prein et al. (2020) show that the model has notably the poorest reproducibility
in the U.S. Midwest in July, where the number of MCS, mean precipitation, and percentage
of precipitation from tracked MCS are particularly biased (see their Figures 8b, 8f, and 8j).
Feng et al. (2021) also evaluate MCS in CPM simulations. Their simulations show the largest
number of MCS, largest MCS precipitation, and largest % MCS precipitation in Missouri
and neighboring western states (see Figure 5 of Feng et al. (2021)), but they are inadequate.
Simulations most consistently and substantially underestimate all three quantities in Missouri
(see Figures 6 and 7 of Feng et al. (2021)).

Fowler, Wasko and Prein (2021) state “. . . understanding the processes driving change in
various climate zones and their variations on regional scales is vital in advancing the pro-
jection of rainfall extremes,” and “There remains a need for continued investigations and
improved understanding of mechanisms that cause changes in subdaily extreme rainfalls,
which will only be possible by dedicated observational efforts merged with further develop-
ment of CPMs.” This paper is a dedicated observational effort for Greater St. Louis, an area
at the heart of the U.S. Midwest region poorly reproduced by existing CPMs. Our aim is to
study the MCS impact on extreme hourly rainfall intensity within an extreme value regression
model to uncover local relationships that can be used to improve CPMs.

In climate science, rainfall extremes are events greater than some extreme threshold (90th,
95th, or 99th percentile of the distribution), and it is natural to think in terms of thresh-
old exceedances. Conversely, it is more natural to look at block maxima, for example, an-
nual maxima, when estimating the more infrequent events required for engineering design:
intensity-duration-frequency (IDF) curves are established based on identification of max-
imum yearly values for different durations, for example, from five to 1440 minutes; see
Koutsoyiannis, Kozonis and Manetas (1998). The generalized extreme value (GEV) distri-
bution is the workhorse of analyses of block maxima in hydrology and continues to serve as
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the building block for methodological innovations; see Asadi, Engelke and Davison (2018)
on annual maxima of river discharges, Zhu, Liu and Lund (2019) on annual minima of daily
temperatures, and Carreau and Toulemonde (2020) on annual maxima of daily precipitation
data, amongst others. There is a very large and long-standing literature on examining annual
maximum daily precipitation; however, studies of subdaily precipitation extremes are more
recent; see Barbero et al. (2019) and references therein.

This paper considers monthly maximum hourly rainfall as a measure of extreme rainfall
intensity in the greater St. Louis, Missouri area. We collect hourly MCS observations in
the form of a binary variable indicating the presence/absence of an MCS at one location
and use this information to build the monthly MCS frequency. Exploratory data analysis in
Section 2 suggests this variable is strongly related to the size of monthly maximum hourly
rainfall, and one could thus build an extreme value regression model (Beirlant et al. (2004))
tying monthly maxima to the monthly MCS frequencies. This does not, however, necessarily
make the most efficient use of the available MCS information. MCS have known diurnal
characteristics (Carbone and Tuttle (2008)) and these may hide more complex patterns in
the MCS-rainfall relationship. Exploratory data analysis in Section 2 suggests that monthly
MCS frequencies computed for each hour of the day contribute unevenly to the dynamics of
monthly maxima. An appropriate extreme value regression model would then require tying
the monthly maximum hourly rainfall to a covariate sampled 24 times within the block, that
is, monthly MCS frequencies per each hour of the day.

There are currently no extreme value regression models available to study how the ex-
tremes of y sampled at a certain frequency depend on a variable x sampled at a higher fre-
quency. Common practice suggests aggregating x to the same frequency as the extreme of y,
but this convention makes inefficient use of the available information and, in the case of our
data, drowns important dynamics. We develop a class of regression models for extreme value
analysis that accommodate observations sampled at different frequencies. We propose a flex-
ible, data-driven aggregation scheme that is proper to the extreme value context, and captures
the important dynamics in our monthly maximum hourly precipitation. Our new model is a
good fit to the data and reveals important previously unidentified dynamics. Our model could
easily check that observed relationships are borne out by CPM simulated data, helping to
improve the representation of relationships in CPM and providing an additional tool to assess
hydrologic hazards within the nonstationary framework.

The remainder of the paper is organized as follows: Section 2 presents the dataset of hourly
rainfall and MCS records; Section 3 outlines our novel mixed-frequency extreme value re-
gression framework; Section 4 shows how our mixed-frequency GEV model is able to un-
cover the impact of MCS on extreme rainfall intensity; Section 5 concludes. Appendices
provide data information and the general form of our mixed-frequency GEV model as well
as a simulation study.

2. Dataset. The city of St. Louis sits on the banks of the Mississippi and Missouri rivers.
Excessive amounts of water from the many tributaries of these rivers leave the city particu-
larly vulnerable to flooding. In 2019, heavy rains on frozen ground, followed by more heavy
rain through the spring, left the city and a record number of counties in the U.S. Midwest un-
der water for several months in the Great Flood of 2019 (Almukhtar et al. (2019)). The region
previously suffered the Great U.S.A. Flood of 1993 (Larson (1996)). The city’s troubles are,
however, not limited to river floods. Pluvial flash floods caused by extreme short time-span
rainfall intensity are more frequent (FloodList News (2018), Davies (2014a, 2014b, 2017)).
The Missouri River Valley is identified as one of the six “hot spots” for flash floods in the
U.S., based on 1981–2010 data (Saharia et al. (2017)), and the state of Missouri suffered
approximately 3000 flash floods during 1996–2017 (Ahmadalipour and Moradkhani (2019)).



MIXED-FREQUENCY EXTREME VALUE REGRESSION 1401

FIG. 1. Data. Grid of filled circles show the 35 pixel locations included in our analysis.

Feng et al. (2016) found that many states in the U.S. Midwest experienced 0.4–0.8 mm/day
(roughly 20–40%) per decade increases in total MCS rainfall over the period of study, so the
area has already been flagged as interesting from an MCS perspective. We use the MCS
database produced by the Feng et al. (2016) study and obtained from these authors. Data
are available for the months of April to August from 1979-04-01 00:00:00 to 2014-08-31
23:00:00 UTC. Following Prein et al. (2017) and Prein et al. (2020), we focus on the warmest
months, June, July, and August (JJA). We show the data in local standard time to favor inter-
pretability. For each pixel location2 shown in Figure 1, we retrieve the hourly precipitation
measured in millimeters and a binary variable recording whether or not the pixel location was
part of an MCS at that hour. In these data, MCS are responsible for 43%, 38%, and 32% of
the rainfall in June, July, and August, respectively. Moreover, these levels rise to 49%, 43%,
and 46% (62%, 55%, and 48%), if one considers quantities exceeding the 95th (99th) quantile
of total rainfall, in June, July, and August, respectively.

As indicated in the Introduction, we use monthly maximum hourly precipitation as a mea-
sure of extreme hourly rainfall intensity. Let ỹt

hd be the rainfall in millimeters at the hth
hour of the dth day in the t th month at any location, with h ∈ {1, . . . ,24}, d ∈ {1, . . . ,Dt },
t ∈ {1, . . . ,108}, the monthly maxima are defined as

yt = max
h,d

{{
ỹt
hd

}24
h=1

}Dt

d=1.

We explore the properties of this time series of maxima at each location and find that monthly
maximum hourly precipitation has drastically increased over time, showing an average size
across locations of 12.28 mm/hour (st.dev. 5.73) over the period 1997–2014, compared to
an average size across locations of 9.13 mm/hour (st.dev. 4.45) during the years 1979–19963

During the warm season, midlatitude regions, like the Missouri River Valley, often experience

2Table 2 in Appendix A gives the longitude and latitude coordinates of the pixels.
3Given the short time series, we did not seek an optimal breakpoint to maximize any increases as the near-even

split suffices for motivation.
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FIG. 2. Timing of monthly maximum hourly precipitation. Top panel: Number of monthly maxima by hour during
the 1979–1996 period (discs) and during the 1997–2014 period (squares) for June, July, and August. Bottom
panel: Number of maxima by hour in 1997–2014 minus number of maxima by hour in 1979-1996. Results are
aggregated over the 35 pixel locations in Figure 1 for each month.

the highest rainfall intensity in the late afternoon when precipitation is related to small-scale
thermodynamic processes affecting surface temperature and vertical static stability (Dai and
Trenberth (2004), Evans and Westra (2012)). Hourly rainfall intensity over land, in general,
is often locked into a diurnal cycle and other factors, such as weather types (Moron et al.
(2019)), topographical conditions (Li (2017)), or propagation of moist convection (Ploshay
and Lau (2010)), can make the intensity peak at different times of the day. To investigate fur-
ther, we henceforth examine data for June, July, and August, separately. Figure 2 shows the
time of the day at which the monthly maximum hourly precipitation was observed, pooling
observations across locations. We show the timing for the 1979–1996 and 1997–2014 peri-
ods to highlight the shift that has occurred. In all three months, maxima have moved away
from the overnight period.4 The timing distribution over the 1997–2014 period is actually
quite similar for the three months, with the late afternoon and evening periods being more
prosperous than the first half of the day.

To measure MCS activity, we consider the MCS frequency. As MCS frequency has in-
creased and could more than triple in North America by the end of the 21st century (Prein
et al. (2017)), our interests lie in the role of the MCS frequency in explaining monthly max-
imum hourly precipitation. Let x̃t

hd be the binary variable recording the presence/absence of
an MCS at the hth hour of the dth day in the t th month at any location, we define the monthly

4Two-sample tests for the equality of proportions (1 a.m. to noon) in 1979–1996 and 1997–2014, vs propor-
tion in 1979–1996 greater than that in 1997–2014 show significant differences for all three months (p-value =
7.874e−06, 1.875e−14, and 9.423e−05, for June, July, and August, respectively).
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FIG. 3. Size of maxima by MCS frequency. Observations are aggregated over the 35 pixel locations in Figure 1
for each month.

MCS frequency as

xt = 1

24Dt

Dt∑
d=1

24∑
h=1

x̃t
hd .

Figure 3 indicates that monthly maximum hourly rainfall is strongly and positively related to
the monthly MCS frequency for all three months. This was anticipated since high proportions
of MCS favor more intense storms (Barbero et al. (2019)) and cloud-cloud interactions. The
convective field as a whole acquires a memory of past precipitation and intercloud dynam-
ics, leading to more extreme precipitation (Moseley et al. (2016)). As MCS in the Missouri
River Valley occur when deep convection initiated in the Rocky Mountains in the late af-
ternoon propagates eastwards, MCS frequency in St. Louis also presents interesting diurnal
characteristics and dynamics. We decompose the monthly MCS frequency by hour of the day
obtaining the frequencies

(1) x
(24)
t,h = 1

Dt

Dt∑
d=1

x̃t
hd ∀h ∈ {1, . . . ,24}

to capture these diurnal attributes. Figure 4 shows the average MCS frequency in equation
(1) by hour h in June, July, and August when pooling across locations. Again, we show the
averages for the 1979–1996 and 1997–2014 periods to highlight a possible shift. For June, the
timing distribution of the MCS has not changed over time, but the MCS have become much
more frequent: going from 0.005 at 9 p.m. in 1979–1996 to 0.025 at 9 p.m. in 1997–2014,
a five-fold increase. For July and August, there are fewer MCS in the early morning over
1997–2014 than over 1979–1996. There has been no increase in MCS in the overnight hours
for July. MCS have become more frequent over the rest of the day for July and August, but
increases are less than those observed for June.

Given the strong diurnal pattern in both monthly maximum hourly rainfall and MCS fre-
quency, we use linear 5 regression to explore whether their relationship also displays a diur-
nal pattern. The top panel of Figure 5 shows slope estimates from 24 linear regressions of

5Data have large variability but are quite linear.
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FIG. 4. Timing of MCS. Top panel: Average MCS frequency in equation (1), when pooling across the 35 pixel
locations, by hour during the 1979–1996 period (discs) and during the 1997–2014 period (squares) for June,
July, and August. Bottom panel: MCS frequency by hour in 1997–2014 minus average MCS frequency by hour in
1979–1996.

monthly maximum hourly rainfall on the 12-hour centered average monthly MCS frequency
(bottom panel) for the months of June, July, and August, pooling observations across loca-
tions. For June and August, all estimated coefficients are positive, meaning that more frequent
MCS lead to larger monthly maximum hourly rainfall, but no time-window is more impact-
ful. However, a clear relationship is identified for July: more frequent mid-afternoon MCS
have more than three times the effect of more frequent overnight MCS. The plot for July
gives some intuition, but a proper analysis of these data must account for the extremal nature
of monthly maximum hourly rainfall. We build models to capture the July effect in the next
section.

3. Mixed-frequency extreme value models. In this section, we present a mixed-
frequency extreme value model extending the Block Maxima approach for the statistical anal-
ysis of the extreme values.

3.1. Extreme value theory. Let Ỹ1, . . . Ỹn be a sample of i.i.d. observations drawn from
a distribution function F , and define the sample maxima Yn = max{Ỹ1, . . . Ỹn}. The extreme
value theorem states that if there exist sequences of normalizing constants an and bn such

that the sample maxima converges to a nondegenerate limit, Yn−an

bn

d−→ G(·), as n → ∞, then
G(·) must be the extreme value distribution,

G(y) = exp
{−(1 + ξy)−1/ξ }

, ξ ∈ R,1 + ξy > 0,
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FIG. 5. Possible diurnal pattern in impact of MCS. Top panel: Slope estimates (black line) and 95%-confi-
dence intervals (gray cloud) from linear regressions of monthly maximum hourly rainfall on the 12-hour centered
average monthly MCS frequency (×102). Bottom panel: 12-hour centered average monthly MCS frequency.

and F is said to be in the domain of attraction of the extreme value distribution; see Chap-
ter 3 of Embrechts, Klüppelberg and Mikosch (1997) for a nice history of the theoretical
contributions that lead to the above result.

This limiting result can be exploited to build an inference strategy on the maxima of a
distribution. If a large sample of observations is available and these are independently drawn
from the same distribution, then one can fit the generalized extreme value (GEV) distribution,

H(y|μ,σ, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
−

(
1 + ξ

y − μ

σ

)−1/ξ}
, 1 + ξ

y − μ

σ
> 0, ξ �= 0,

exp
{
− exp

(
−y − μ

σ

)}
, y ∈ R, ξ = 0

with σ > 0 and μ ∈ R to maxima of subsamples. The μ, σ , and ξ are location, scale, and
tail parameters, respectively. The GEV is also the only nondegenerate limit distribution for
stationary series satisfying the D(Un) condition (Leadbetter (1973/74), Leadbetter, Lindgren
and Rootzén (1983)). Use of the GEV for monthly maximum hourly rainfall is justified, as
while hourly rainfall is not independant, it should follow the D(Un) condition; see Coles
(2001) and references therein for numerous published applications of the GEV model in
many different disciplines.

3.2. Mixed-frequency GEV model. No asymptotic theory can be established for nonsta-
tionary block maxima, and the usual practice is to use the GEV model as a template and model
the nonstationarity by allowing parameters to vary with time and other covariates. This is the
statistical approach followed here. Let Y1, . . . , Ym be a sequence of m block maxima with
distribution GEV(y|μt, σt , ξt ), t ∈ {1, . . . ,m}. In a standard extreme value regression setting,
one would let the parameters (μt , σt , ξt ) vary according to vectors of block covariates xt ,
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obtaining μt = μ(xt ), σt = σ(xt ) and ξt = ξ(xt ). Parametric and nonparametric function-
als are available, and the relevant inferential strategies are well established in the literature
(Beirlant et al. (2004)). The maximum hourly rainfall is being retained over a block of one
month, and we have 24 MCS frequencies (equation (1)) per month, and so the covariate is
sampled at a higher frequency than the maxima. Common practice suggests to conveniently
aggregate (average) the data to obtain xt ; however, an arbitrary aggregation scheme may lead
to an inefficient use of the covariate information. Given the diurnal pattern observed for July
in Figure 5, the equal contribution implied by an average seems inappropriate. Any weighting
should, however, be flexible and data-driven.

We consider a model where the location parameter μ varies as a function of the MCS
frequency by hour x

(24)
t,h , h = 1, . . . ,24, defined in equation (1), and keep the scale parameter

σ and shape parameter ξ constant. We let the block maxima Yt follow a GEV distribution
with Yt |x(24)

t ∼ H(y|x(24)
t , θ) with

(2) μt = κ0 + κ1w(φ) · x(24)
t ,

where x(24)
t = (x

(24)
t,1 , . . . , x

(24)
t,24 )′ ∈ R

24, w(φ) = (w(1|φ), . . . ,w(24|φ))′ ∈ R
24 is a vec-

tor of weights obtained from a parametric weighting function w(·|φ) ∈ (0,1) such that
‖w(φ)‖1 = 1, · denotes the dot product, and θ = (κ, σ, ξ,φ) ∈ R

5 is a vector of parameters.
The latter model is a special case of our mixed-frequency GEV (MFGEV) model, detailed
in Appendix B. The motivation behind this approach is that of optimally aggregating the
q = 24 observations of the MCS covariate in the t th block according to a weighting scheme
that is obtained from a function w(·|φ) whose parameter φ needs to be estimated from the
data. Using a well-known adage in the extreme value literature, we are further letting the tails
speak for themselves. Other low-frequency (q = 1) covariates can be added to equation (2) to
model any additional nonstationarity. These covariates will be discussed in Section 4 and are
omitted here to keep notation simple.

The weighting function has to be specified by the researcher. When w(·|φ) = 1/q , we are
back to the simple averaging scheme. In our analysis we rely on the Beta weighting function

(3) w(r|φ) = β( r
q
|φ,φ)∑q

r=1 β( r
q
|φ,φ)

, φ ∈R+,

where β(z|a, b) = za−1(1 − z)b−1/
∫ 1

0 ua−1(1 − u)b−1 du is the probability density function
of a Beta distribution. Figure 6 shows the values of the Beta weighting function for four
different values of φ and can be interpreted as follows. If r = 1 represents 1 a.m. when q = 24
hours, φ < 0 (> 0) corresponds to more weight to late night (late morning) and late evening
(early afternoon) hours. Changing the hour corresponding to r = 1 adds further flexibility
to the distribution of the weights across the hours of the day. The Beta weighing function
must be restrained in some way to have identification (Ghysels and Qian (2019)), and our
one-parameter specification allows for the inverted U-shape behavior seen in the exploratory
analysis in Figure 5.

3.3. Inference. Estimation of model parameters in (2) (and (7)) can be performed at each
pixel location using maximum likelihood. We instead pool observations across locations,
improving efficiency and increasing testing power, compared to the estimation at a single
location. The idea is similar to that of regionalization methods in hydrology (Asadi, Engelke
and Davison (2018)): we exploit the information at all l = 35 locations without modeling
the joint dependence structure. Pooling data from 35 locations, over a less than 100 km ×
100 km grid, with elevations of mean ≈154 m and standard deviation ≈24 m, enables better
parameter estimation without introducing too much noise.
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FIG. 6. Beta weighting function. Four specifications of the Beta weighting function in equation (3) for
r = 1, . . . , q and q = 24.

Let Yi,t and x(24)
i,t be the maxima and the MCS covariate from the t th block at the ith loca-

tion, respectively, with t ∈ {1, . . . ,m} and i ∈ {1, . . . , l}. At each location in the homogeneous
area, we define the pooled MFGEV model as Yi,t ∼ H(y;x(24)

i,t |θ) with shape parameter ξ ,
scale parameter σ = exp(γ ), and location

(4) μi,t = κ0 + κ1w(φ) · x(24)
i,t ,

where θ = (κ, γ, ξ,φ) gathers the common slope and weighting parameters. We use quasi
maximum likelihood (QML) to estimate θ , that is,

(5) θ̂QML := argmax
θ

m∑
t=1

l∑
i=1

logh
(
yit ;x(24)

i,t |θ)
with h(y;x|θ) the density of the GEV distribution,

h(y;x|θ) = 1

σ

(
1 + ξ

y − μ(x; θ)

σ

)−1− 1
ξ

exp
(

1 + ξ
y − μ(x; θ)

σ

)− 1
ξ

.

The QML estimator maximizes an independent likelihood, despite the presence of spatial
dependence among the locations. This approach yields consistent and asymptotically normal
estimates, though it can lose efficiency (Chandler and Bate (2007)). The alternative would be
to perform ML estimation using a max-stable dependence model, but since our interest is in
the marginals, the simpler QML is preferred, as it avoids problems related to assuming the
wrong dependence structure. To account for the possible spatial dependence, inference on the
model parameters is performed using a stratified bootstrap, as in Asadi, Engelke and Davison
(2018): (i) We partition the years in the sample into S = 3 strata; (ii) for each stratum, we
resample B times with equal probability and replacement from the months in the stratum,
thus preserving any spatial dependence among the different locations; (iii) we estimate the



1408 D. J. DUPUIS AND L. TRAPIN

pooled MFGEV model on the B bootstrap datasets and obtain (1 − α) confidence intervals
for the model parameters computing α/2 and (1 − α/2) quantiles of the bootstrap estimates.

A simulation study in Appendix C confirms that the QML estimator performs well and
that the bootstrapped confidence intervals allow for a reliable inference. Functions to carry
out all the computations are written in an R package available upon request.

4. Empirical analysis. The exploratory data analysis in Figure 5 suggests that MCS
frequency in different parts of the day may not contribute evenly to explain extreme hourly
rainfall intensity during the month of July. The MFGEV model, developed in Section 3.2, is
suitable to capture such diurnal effects. We fit the MFGEV model in (4) where w(φ) is the
Beta weighting function in (3) to monthly maximum hourly rainfall for the month of July.
Formally, let Yi,t denote the monthly maximum hourly precipitation in July from the t th year
at the ith location, and let x(24)

MCS,i,t be the corresponding vector of 24 hourly MCS frequencies.

We consider the pooled model Yi,t ∼ H(y;μ(x(24)
MCS,i,t , t, xTemp,t , xSOI,t , xPDO,t ), σ, ξ) with

(6)
μi,t = κ0 + κMCSw(φMCS) · x(24)

MCS,i,t

+ κTrendt + κTempxTemp,t + κSOIxSOI,t + κPDOxPDO,t ,

where i = 1, . . . ,35, t = 1, . . . ,36, w(·|φMCS) is the Beta weighting function (3) with q = 24
hours. Besides the MCS frequency, we include a time trend and the explanatory variables
discussed in Section 1, obtaining the data from NOAA6: temperature, SOI, and PDO. Tem-
perature data are monthly mean temperature at St. Louis Lambert International Airport. We
include all the usual covariates to guard against estimated MCS effects being the result of
unmodeled nonstationarity. We fit five specifications for μi,t : equation(6) and four subset
models. Models that also include the covariates in the scale parameter σ were considered,
but they yielded nonsignificant parameter estimates, so they are not reported.

An additional modeling issue is the correspondence between the value of r in (3) and the
hour of the day. We consider all possibilities. We let r = 1 represent each of the 24 possible
hours and retain the setting that maximizes the likelihood. For our five model specifications,
the likelihood is maximized when r = 1 corresponds to 2 a.m. Table 1 shows the parameter
estimates under this setting. Parameter estimates of κMCS, φMCS, γ and ξ are stable across the
five specifications. Parameter estimates for κMCS are always positive and statistically signifi-
cant, confirming that the MCS rate is a strong predictor of the monthly maximum hourly pre-
cipitation. Confidence interval estimates for non-MCS parameters never indicate significant
effects. Point estimates of the time trend parameter are positive, but the bootstrap confidence
intervals suggest a nonsignificant effect. For all five specifications, point estimates for φMCS
are roughly equal to 1, a value of φ which corresponds to considerably more weight on MCS
hourly frequencies near 1 p.m. and 2 p.m. given r = 1 is set to 2 a.m. (recall shapes of the
Beta weighting function in Figure 6). Figure 7 shows the point and confidence interval esti-
mates of the weights for all five specifications. The dark gray cloud exceeds the black curve
(uniform weight) in the afternoon and is below the black curve in the overnight hours. The
1–2 p.m. peak is a few hours earlier than in the diurnal pattern detected in the exploratory
data analysis in Figure 5, but these empirical Beta weights are computed within an appro-
priate likelihood function where the extremal nature of monthly maxima is considered and
the covariate has not been smoothed. Finally, estimates of ξ are always positive, though the
confidence intervals suggest they are never significantly different from zero. This does not
necessarily imply that maximum hourly precipitation is not heavy tailed, as we are modeling
heterogeneity with equation (6); see Einmahl and He (2022).

6Data were downloaded from NOAA and are available from the authors upon request.
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TABLE 1
Fitted MFGEV models. Point estimates and 95% bootstrap confidence intervals for five specifications (Spec) including: the monthly MCS occurrence rate (MCS), a trend component

(Trend), the monthly average temperature (Temp), and the monthly value of Southern Oscillation Index (SOI) and Pacific Decadal Oscillation (PDO). Confidence intervals are
computed using B = 500 bootstrap samples

Spec. κMCS κTrend κTemp κSOI κPDO φMCS γ ξ

(i) 2.47 1.01 1.21 0.08
(1.94; 3.37) (0.47; 1.49) (1.06; 1.33) (−0.01; 0.17)

(ii) 2.45 0.037 0.96 1.21 0.07
(1.85; 3.22) (−0.01; 0.11) (0.54; 1.52) (1.05; 1.32) (−0.02; 0.16)

(iii) 2.44 −0.036 1.01 1.21 0.08
(1.89; 3.30) (−0.27; 0.30) (0.57; 1.56) (1.05; 1.32) (−0.01; 0.18)

(iv) 2.43 0.036 −0.029 0.97 1.21 0.07
(1.82; 3.24) (−0.013; 0.11) (−0.25; 0.36) (0.49; 2.81) (1.06; 1.29) (−0.02; 0.16)

(v) 2.47 0.031 −0.04 −0.47 −0.05 0.97 1.20 0.08
(1.68; 3.21) (−0.052; 0.11) (−0.32; 0.36) (−1.20; 0.56) (−0.27; 0.67) (0.33; 2.21) (1.02;1.29) (−0.03; 0.16)
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FIG. 7. Estimated Beta weights. Point estimates of Beta weights (white line), Beta weight bounds implied by the
95% confidence interval (dark gray cloud), and uniform weights (black line). The light-gray shaded area spans
values from 0 (inner rim) to 0.2 (outer rim). Weights are for the 24 hours of the day, as shown on the most outer
rim.

To better appreciate the impact of heterogeneous weights across the hours of the day, we
compare specification (i) in Table 1 with an alternative where weights are constrained to be
uniform, that is, φMCS = 0. For both models we compute the 99th quantile at each location
under three scenarios:

(a) the MCS frequency equals the in-sample average across the years;
(b) the MCS frequency is twice as large as the MCS frequency in scenario (a);
(c) the MCS frequency is twice as large as the MCS frequency in scenario (a), on aver-

age, but grows more during daytime hours following an inverted U-shaped pattern to mimic
changes seen in the bottom panel of Figure 4 for July.

Finally, we take scenario (a) as the reference and compute the growth rates in the quantiles of
both models under scenarios (b) and (c). We find that the average growth rate across locations
is 29% and 34% under scenario (b) and 29% and 39% under scenario (c) for the model with
uniform and beta weights, respectively. Letting the weights to vary across the hours of the
day can have a large impact on upper quantiles.

To assess the goodness of fit of our MFGEV model, we perform a graphical validation
using a QQ-plot (Beirlant et al. (2004)). We use the transformation

Ri,t = 1

ξ̂
log

(
1 + ξ̂

Yi,t − μ̂i,t

σ̂

)
to obtain Gumbel random variables that no longer depend on the covariates. We can thus
compare the quantiles of R1, . . . ,Rn against the Gumbel quantiles. Figure 8 shows the QQ-
plot at each pixel location for the fitted MFGEV model with specification (i). The fits are
generally satisfactory, most observations lying well within confidence bounds, though in a
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FIG. 8. Goodness of fit. QQ-plots at 35 pixel locations in Figure 1 for fitted MFGEV model with specification (i)
(see Table 1). Plots are on a common Gumbel scale. Dotted lines show bounds of 95% confidence intervals based
on the distribution of order statistics.

few locations the model seems to underestimate the tail probabilities. This might be due to the
pooling of observations, but it could also just be a small sample effect associated to the short
time series. To investigate this possibility, we count the number of times the sample maximum
exceeds the model-implied 90th quantile at each location and find that the observed number
of violations is comparable to that obtained in a unreported simulation using the estimated
model as the data generating process.

We also use the Ri,t to check for any spatial dependence remaining in the residuals after
conditioning on the MCS covariates. We find that the pairwise correlation among locations
is, on average, 0.39 (st.dev. 0.25) and that the pairwise tail dependence computed at the 90th
quantile is, on average, 0.34 (st.dev. 0.26). The simulation study in Appendix C suggests that
such dependence does not affect the size of the hypothesis test of flat weights (φ = 0) but can
reduce its power. This implies that our significance results on the weighting parameter φ are
somewhat conservative.

5. Discussion. Westra et al. (2014) call for more thorough observational and modeling
studies exploring the dominant processes that could further drive extreme rainfall in a fu-
ture climate, and a more recent similar appeal appears in Fowler, Wasko and Prein (2021).
We develop a mixed-frequency extreme value model that allows for a flexible integration of
covariates observed at a higher frequency than the sample maxima. We use this novel frame-
work to gain a better understanding of how changes to MCS frequency have affected extreme
rainfall intensities, as measured by monthly maximum hourly rainfall.

Examination of records from the greater St. Louis area shows that MCS frequency has a
strong positive impact on hourly extreme rainfall intensity, but this impact is not necessarily
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uniform over the day. We document an important diurnal pattern in the way MCS frequency
affects monthly maximum hourly precipitation levels in July. Figure 5 shows a middle-day
hump for the impact of MCS frequency on monthly maxima, and Figure 7 shows that our
model successfully captures and estimates this behavior. Climate models need to reproduce
this characteristic. The importance of the latter is amplified by the uneven diurnal increases
in MCS frequency over time, observed in Figure 4, and the forecast that MCS frequency
could more than triple in North America by the end of the twenty-first century (Prein et al.
(2017)). CPM simulations not able to reproduce these characteristics in the data will continue
to underestimate extreme hourly precipitation in the region.

Our study of St. Louis in July is compelling and our discovery of previously undocumented
empirical findings is perhaps not surprising, given the CPMs’ inability to reproduce MCS
characteristics in the area (see Section 1). The feature-based evaluation presented in Prein
et al. (2020) allows some individual components of the bias to be identified. Our model
could also be exploited to check that observed relationships are borne out by CPM simulated
data. Our maximum hourly rainfall problem is set within the block maxima setting to directly
estimate the more infrequent events required for engineering design, but our mixed frequency
block maxima models can be adapted to threshold exceedances. For instance, one might be
interested in tying daily exceedances to covariates sampled at a intraday frequency; see Bee,
Dupuis and Trapin (2019) for a financial application.

APPENDIX A: DATASET

TABLE 2
St. Louis Data Locations. Latitude and longitude of the 35 pixel locations in Figure 1

lat. long. lat. long. lat. long. lat. long. lat. long.

38.313 −90.563 38.438 −90.563 38.563 −90.563 38.688 −90.563 38.813 −90.563
38.313 −90.438 38.438 −90.438 38.563 −90.438 38.688 −90.438 38.813 −90.438
38.313 −90.313 38.438 −90.313 38.563 −90.313 38.688 −90.313 38.813 −90.313
38.313 −90.188 38.438 −90.188 38.563 −90.188 38.688 −90.188 38.813 −90.188
38.313 −90.063 38.438 −90.063 38.563 −90.063 38.688 −90.063 38.813 −90.063
38.313 −89.938 38.438 −89.938 38.563 −89.938 38.688 −89.938 38.813 −89.938
38.313 −89.813 38.438 −89.813 38.563 −89.813 38.688 −89.813 38.813 −89.813

APPENDIX B: GENERAL MFGEV MODEL

In what follows, we discuss how to fully exploit the information content of covariates
sampled at a higher frequency than that of the block maxima.

Consider k covariates where x
(qj )

j,t = (x
(qj )

j,t,1, . . . , x
(qj )

j,t,q)
′ is a vector of observations sampled

qj times within block t for the j th covariate, with j = {1, . . . , k}. We let the block maxima

Yt ∼ H(y;x(q1)
1,t , . . . ,x(qk)

k,t |θ) with

μt = gμ

(
κ0 +

k∑
j=1

κj w(φj ) · x
(qj )

j,t

)
,

σt = gσ

(
γ0 +

k∑
j=1

γj w(φj ) · x
(qj )

j,t

)
,(7)
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ξt = gξ

(
ζ0 +

k∑
j=1

ζj w(φj ) · x
(qj )

j,t

)
,

where gμ(·), gσ (·), gξ (·) are functions that can be used to constrain the parameter space,
w(φj ) = (w(1|φj ), . . . ,w(q|φj ))

′ ∈ R
q is a vector of weights obtained from a parametric

weighting function w(·|φ) ∈ (0,1) such that ‖w(φj )‖1 = 1, · denotes the dot product, and
θ = (κ,γ , ζ ,φ) ∈ R

3+4k is a vector of parameters. We call our model the mixed-frequency
GEV (MFGEV) model. Of course, including same-frequency terms, that is, with q = 1, is
possible.

Let Yi,t and (x(q1)
1,i,t , . . . ,x(qk)

k,i,t ) be the maxima and the k covariates from the t th block
at the ith location, respectively, with t ∈ {1, . . . ,m} and i ∈ {1, . . . , l}. At each loca-
tion in the homogeneous area, we can define a general pooled MFGEV model as Yi,t ∼
H(y;x(q1)

1,i,t , . . . ,x(qk)
k,i,t |θ) with

(8)

μi,t = κ0 +
k∑

j=1

κj w(φj ) · x
(qj )

j,i,t ,

σi,t = exp

(
γ0 +

k∑
j=1

γj w(φj ) · x
(qj )

j,i,t

)
,

ξi,t = ζ0 +
k∑

j=1

ζj w(φj ) · x
(qj )

j,i,t ,

where θ = (κ,γ , ζ ,φ) gathers the common slope and weighting parameters and h(y;x|θ)

the density of the GEV distribution,

h(y;x|θ) = 1

σ(x; θ)

(
1 + ξ(x; θ)

y − μ(x; θ)

σ (x; θ)

)−1− 1
ξ(x;θ)

× exp
(

1 + ξ(x; θ)
y − μ(x; θ)

σ (x; θ)

)− 1
ξ(x;θ)

.

Linear forms are used for gμ and gξ , while gσ is chosen to guarantee a positive scale.

APPENDIX C: SIMULATIONS

We conduct a simulation study in order to assess: (i) the finite sample properties of the
QML estimator of our pooled MFGEV model and (ii) the validity of the bootstrap confidence
interval obtained with the procedure described in Section 3.3. We generate sample max-
ima Yt = (Y1,t , . . . , Yl,t ) at l spatial locations for t = {1, . . . ,m} according to the following
model:

Yt ∼ Cα

(
H

(
y1;x(q)

1,t |θ
)
, . . . ,H

(
yl;x(q)

l,t |θ))
,

where Cα is a copula characterizing the spatial dependence structure with dependence pa-
rameter α and H(y;x(q)

i,t |θ) is the marginal GEV distribution with i ∈ {1, . . . , l}. We assume
constant scale and tail parameters through time and space, that is, σi,t = exp(γ ) and ξi,t = ξ ,
and time-varying location parameters

μi,t = κ0 + κ1w(φ) · x(q)
i,t + κ2t,
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FIG. 9. Simulated MCS frequency. Average value of the covariate at each ith location for hour r ∈ {1, . . . , q}
obtained from a single draw of the model in (9), setting m = 36, l = 35, q = 24. A different shade of bullet is used
for each location.

where w(φ) = (w(1|φ), . . . ,w(q|φ)) is a q-vector of weights and x(q)
i,t = (x

(q)
i,t,1, . . . , x

(q)
i,t,q) is

a covariate sampled q times within the t th block at the ith location. We let each component
of x(q)

i,t to evolve according to the following model:

(9)
x

(q)
i,t,r = cz

(q)
i,t,r ,(

z
(q)
1,t,r , . . . , z

(q)
l,t,r

) ∼ CGauss
ρ

(
Po(z1|λr), . . . ,Po(zl|λr)

)
,

where r ∈ {1, . . . , q}, c is a scaling constant, Po(z|λ) denotes the Poisson distribution with
rate parameter λ, and CGauss

ρ is a Gaussian copula with equicorrelation ρ. These dynam-
ics are designed to match the empirical regularities observed in Section 4. Figure 9 depicts
the average value of the covariate, 1

m

∑m
t=1 x

(q)
i,t,r , at each ith location for each r ∈ {1, . . . , q}

obtained from a random draw of the model setting m = 36, l = 35 and q = 24. The diur-
nal cycle in the covariate clearly emerges and resembles that empirically observed in Fig-
ure 4.

We generate R samples {Yi,t ,x(q)
i,t }l,mi=1,t=1 of size m = 36, l = 35 and q = 24. We con-

sider three copula functions to assess how the QML estimator and the bootstrap confidence
interval behave under different assumptions on the spatial dependence of the maxima: an
Independence copula (CInd) implying zero spatial dependence; a Gaussian copula (CGauss

0.5 )
with constant correlation coefficient equal to 0.5 across locations, implying a moderate spatial
dependence but zero asymptotic dependence; a Gumbel copula (CGumbel

2 ) with dependence
parameter α = 2 implying positive tail dependence ≈ 0.6. We consider also two scenarios
on the weighting parameter, that is, φ = {0,1}, in order to assess the ability of our inference
procedure to identify the situations requiring a mixed-frequency approach. The remaining
model parameters are kept constant.
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TABLE 3
Performance of QML estimator with ξ = 0.05. True parameter values, median estimates and rejection

probabilities at the 10% (CI0.90), 5% (CI0.95), 1% (CI0.99) levels over B = 100 replications for different three
dependence structures, that is, CInd, CGauss

0.5 and CGumbel
2 , and two assumptions on the weighting parameter, i.e.

φ = {0,1}. When φ = 1, we also count the rejection rates for the null hypothesis φH0
= 0

Independence (Cα = CInd)

φ = 0 φ = 1

κ0 κ1 κ2 γ ξ φ κ0 κ1 κ2 γ ξ φ φH0

True 5 1.65 0.015 1.2 0.05 0 5 1.65 0.015 1.2 0.05 1 0
Median 4.98 1.63 0.015 1.19 0.044 −0.02 4.99 1.64 0.016 1.2 0.04 1.01
CI0.9 0.12 0.14 0.10 0.11 0.11 0.15 0.16 0.14 0.09 0.11 0.10 0.13 0.97
CI0.95 0.09 0.10 0.04 0.04 0.05 0.07 0.07 0.09 0.03 0.05 0.05 0.07 0.94
CI0.99 0.01 0.03 0.01 0.01 0.02 0.04 0.00 0.03 0.01 0.01 0.02 0.01 0.84

Asymptotic independence (Cα = CGauss
0.5 )

κ0 κ1 κ2 γ ξ φ κ0 κ1 κ2 γ ξ φ φH0

True 5 1.65 0.015 1.2 0.05 0 5 1.65 0.015 1.2 0.05 1 0
Median 4.91 1.62 0.019 1.16 0.048 −0.04 4.82 1.64 0.019 1.16 0.04 0.98
CI0.9 0.09 0.13 0.10 0.23 0.20 0.12 0.08 0.15 0.10 0.23 0.20 0.08 0.49
CI0.95 0.04 0.08 0.05 0.21 0.14 0.06 0.03 0.10 0.06 0.21 0.12 0.06 0.39
CI0.99 0.00 0.01 0.01 0.11 0.07 0.02 0.00 0.04 0.01 0.11 0.06 0.01 0.23

Asymptotic dependence (Cα = CGumbel
2 )

κ0 κ1 κ2 γ ξ φ κ0 κ1 κ2 γ ξ φ φH0

True 5 1.65 0.015 1.2 0.05 0 5 1.65 0.015 1.2 0.05 1 0
Median 5.18 1.66 0.021 1.17 0.04 −0.08 4.87 1.62 0.022 1.17 0.04 0.86
CI0.9 0.10 0.09 0.11 0.17 0.25 0.08 0.10 0.08 0.11 0.20 0.24 0.08 0.33
CI0.95 0.04 0.06 0.07 0.15 0.15 0.05 0.06 0.06 0.06 0.14 0.16 0.04 0.21
CI0.99 0.02 0.03 0.02 0.05 0.05 0.02 0.02 0.03 0.02 0.05 0.05 0.01 0.06

Tables 3 and 4 report the median estimates of the model parameters and the rejection prob-
abilities for the 90%-, 95%-, and 99%-confidence intervals over R = 100 replications with
slightly heavy (ξ = 0.05) and heavier (ξ = 0.2) tails, respectively. Confidence intervals are
built using B = 500 bootstrap samples. In both tables the results suggest that the QML esti-
mator is centered on the true model parameters. Rejection probabilities are close to the correct
size, in general, and we only note a slight tendency of overrejections on the scale (γ ) and tail
(ξ ) parameters, as spatial dependence increases, probably due to the model misspecification.
Finally, when φ = 1 we compute the rejection probabilities for the null assumption φH0 = 0.
The test is very powerful, when there is no spatial dependence, but decreases in power with
increased dependence.
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TABLE 4
Performance of QML estimator with ξ = 0.2. True parameter values, median estimates, and rejection

probabilities at the 10% (CI0.90), 5% (CI0.95), 1% (CI0.99) levels over B = 100 replications for different three
dependence structures, that is, CInd, CGauss

0.5 , and CGumbel
2 , and two assumptions on the weighting parameter,

that is φ = {0,1}. When φ = 1, we also count the rejection rates for the null hypothesis φH0
= 0

Independence (Cα = CInd)

φ = 0 φ = 1

κ0 κ1 κ2 γ ξ φ κ0 κ1 κ2 γ ξ φ φH0

True 5 1.65 0.015 1.2 0.2 0 5 1.65 0.015 1.2 0.2 1 0
Median 4.96 1.64 0.015 1.20 0.19 −0.01 4.97 1.66 0.016 1.2 0.19 1.01
CI0.9 0.12 0.14 0.10 0.08 0.10 0.15 0.12 0.14 0.09 0.09 0.10 0.12 0.99
CI0.95 0.07 0.08 0.04 0.03 0.05 0.06 0.08 0.08 0.04 0.02 0.05 0.06 0.98
CI0.99 0.01 0.03 0.03 0.00 0.01 0.04 0.00 0.02 0.01 0.00 0.01 0.01 0.92

Asymptotic independence (Cα = CGauss
0.5 )

κ0 κ1 κ2 γ ξ φ κ0 κ1 κ2 γ ξ φ φH0

True 5 1.65 0.015 1.2 0.2 0 5 1.65 0.015 1.2 0.2 1 0
Median 4.95 1.58 0.02 1.16 0.19 −0.04 4.82 1.67 0.02 1.16 0.19 1.01
CI0.9 0.08 0.14 0.11 0.25 0.22 0.11 0.08 0.12 0.11 0.24 0.22 0.10 0.56
CI0.95 0.03 0.08 0.06 0.19 0.17 0.08 0.03 0.10 0.06 0.20 0.17 0.06 0.46
CI0.99 0.00 0.03 0.01 0.10 0.08 0.01 0.00 0.04 0.01 0.07 0.08 0.02 0.27

Asymptotic dependence (Cα = CGumbel
2 )

κ0 κ1 κ2 γ ξ φ κ0 κ1 κ2 γ ξ φ φH0

True 5 1.65 0.015 1.2 0.2 0 5 1.65 0.015 1.2 0.2 1 0
Median 5.08 1.64 0.02 1.18 0.2 −0.07 4.88 1.67 0.019 1.18 0.2 0.93
CI0.9 0.09 0.11 0.10 0.18 0.22 0.10 0.14 0.08 0.12 0.18 0.23 0.11 0.45
CI0.95 0.05 0.07 0.06 0.13 0.14 0.07 0.04 0.05 0.05 0.13 0.15 0.05 0.26
CI0.99 0.02 0.02 0.02 0.04 0.05 0.01 0.03 0.02 0.02 0.04 0.05 0.01 0.14
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