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Epilepsy is a chronic neurological disorder; it affects more than 50 mil-
lion people globally. An epileptic seizure acts like a temporary shock to the
neuronal system, disrupting normal electrical activity in the brain. Epilepsy is
frequently diagnosed with electroencephalograms (EEGs). Current methods
study only the time-varying spectra and coherence but do not directly model
changes in extreme behavior, neglecting the fact that neuronal oscillations ex-
hibit non-Gaussian heavy-tailed probability distributions. To overcome this
limitation, we propose a new approach to characterize brain connectivity
based on the joint tail (i.e., extreme) behavior of the EEGs. Our proposed
method, the conditional extremal dependence for brain connectivity (Conex–
Connect), is a pioneering approach that links the association between extreme
values of higher oscillations at a reference channel with the other brain net-
work channels. Using the Conex–Connect method, we discover changes in
the extremal dependence driven by the activity at the foci of the epileptic
seizure. Our model-based approach reveals that, preseizure, the dependence
is notably stable for all channels when conditioning on extreme values of the
focal seizure area. By contrast, the dependence between channels is weaker
during the seizure, and dependence patterns are more “chaotic.” Using the
Conex–Connect method, we identified the high-frequency oscillations as the
most relevant features, explaining the conditional extremal dependence of
brain connectivity.

1. Introduction. Electroencephalograms (EEGs) are multidimensional spatiotemporal
signals that measure brain electrical activity from electrodes placed on the scalp. EEGs cap-
ture changes in brain signals, following a shock to the neuronal system, such as an external
stimulus, stroke, or epilepsy. These shocks show a profound impact on the neuronal system,
including changes in frequency content, wave amplitudes, and connectivity structure of the
network of signals. Often, these shocks have an impact on the distributions of the observed
signals (in particular, at the tails). Here, our goal is to develop a new statistical approach for
investigating changes in the extremal dependence structure, that is, the dependence structure
prevailing in the tail of the distribution, between EEG channels during an epileptic seizure.
While classical methods mostly rely on the behavior in the bulk (or around the center) of the
distribution (Acharya et al. (2013)), our proposed extreme-value method is natural and, the-
oretically, justified for modeling extremely large signal amplitudes that are observed during
the onset of an epileptic seizure. Unlike classical methods, our proposed approach is able to
properly quantify whether an extreme shock in a reference channel is likely to further induce
extreme shocks in other channels. Therefore, the proposed method, which provides new in-
sights into “extremal” brain connectivity, may have a potential impact on public health, given
that epilepsy affects nearly 50 million people worldwide (WHO (2019)). The anticipated im-
pact of this method will be a deeper understanding of the etiology of seizures and refined
diagnosis brought about by the potential ability to differentiate between seizure subtypes and
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FIG. 1. Recorded EEG signals during an epileptic seizure (on a 10–20 electrode system) from a female patient
diagnosed with left temporal lobe epilepsy. The seizure onset is roughly at t = 350 seconds on the reference
channel T3 (square), the most likely focal point of seizure discharges for this particular patient. The entire EEG
recording consists of 50,000 time points at a sampling rate of 100 Hz. The central temporal (Fz), central (Cz) and
central parietal (Pz) channels are not displayed in the figure, albeit they are included in the analysis.

hence develop more targeted treatments. Figure 1 displays EEG traces of the left and right
sides of the brain during an epileptic seizure from a patient previously diagnosed with left
temporal lobe epilepsy. In this paper we set the left temporal channel T3 (denoted as the
square) to be the reference channel.

One of the frequently-used measures of dependence is cross-correlation. Consider a bivari-
ate random vector (X,Y )T with joint density f (x, y) having support on the domain D with
marginal means E(X) = E(Y ) = 0 and unit variances var(X) = var(Y ) = 1. Then, the cross-
correlation between X and Y is ρXY = E(XY) = ∫

D xyf (x, y)dx dy, where the integral is
calculated across the entire domain D. Indeed, classical time-domain and frequency-domain
measures of dependence, in multivariate time series, are all derived by some averaging across
the entire domain D. The main limitation of these measures is that they cannot capture local
dependence. It is blind to conflicting variations in the dependence structure across the domain
D. That is, the dependence structure (in a network of channels) at the “center” of the distri-
bution might be different from that at the “tails.” For a general overview of extreme-value
theory, refer to Davison and Huser (2015).

The study of extremal dependence is especially important in analyzing EEGs recorded
during an epileptic seizure when there is an abnormal disruption in electrical activity in the
brain that results in increased amplitude and changes in spectral decomposition at the local-
ized focal region. In this paper we develop a new statistical procedure for studying how an
extreme signal amplitude, caused by an epileptic seizure at the focal region (left temporal
lobe T3), may trigger a change in the signal amplitude of another channel of the brain net-
work. In other words, the proposed method will be utilized to study the conditional extremal
brain connectivity during an epileptic seizure.

Our proposed method, conditional extremal dependence for brain connectivity (Conex–
Connect, in short), jointly utilizes extreme-value theory and spectral analysis to model the
conditional extremal dependence of brain connectivity. Conex–Connect uses an improved
version of the penalized piecewise constant approach (Ross et al. (2018)) of the conditional
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extremes model (Heffernan and Tawn (2004)) for multivariate extremes, applying it to time-
varying brain signals. We further extend this model to the spectral setting, where we study the
impact of extreme amplitudes of oscillations in one channel on the behavior of other channels.
To the best of our knowledge, this is the first paper that examines extremal behavior in the
amplitudes of oscillatory components of a multivariate time series.

Consider a random vector (X,Y )T with marginal cumulative distribution functions (CDFs)
FX and FY , respectively. The Heffernan and Tawn (H&T) model is an asymptotically mo-
tivated model for the conditional distribution of X, given that Y is large, that is, X | Y >

F−1
Y (p), as p ↑ 1. In finite samples we condition on Y being larger than its p-quantile, for

some (fixed) high-nonexceedance probability p ∈ (0,1). The H&T model can capture the two
possible regimes of extremal dependence between X and Y : asymptotic independence, which
arises when χ := limp→1 Pr{X > F−1

X (p) | Y > F−1
Y (p)} = 0, and asymptotic dependence

which arises when χ > 0. The distinction between these two regimes is key for extrapolat-
ing to higher levels of the conditioning variable Y . However, EEGs display sudden bursts
or increases in amplitude at the onset of a seizure which may be expressed at some—but not
all—frequency bands. One limitation of the H&T model is that it is unable to distinguish such
features and hence needs to be adapted accordingly. Our proposed Conex–Connect method
overcomes these limitations: it examines extremal dependence behavior in oscillatory com-
ponents of brain signals for specific frequency bands.

One major novelty in this context is that we apply a conditional multivariate extreme-value
model not only to the original time series (i.e., from a time-domain perspective) but also to the
time series “dissected” into several frequency bands (i.e., from a frequency-domain perspec-
tive). This reveals hidden features of the extremal dependence structure between channels that
only affect certain frequency bands but may not be visible by looking at the entire time series.
Most of the current work on spectral analysis of electrophysiological data focus on the spec-
tral estimation and its association with behavioral measures and brain states. None of these
examine the downstream effect of extremal dependence in a reference channel on the entire
network (e.g., Fiecas and Ombao (2016), Krafty and Collinge (2013), Krafty, Hall and Guo
(2011), Krafty et al. (2017), Ombao et al. (2018), and Scheffler et al. (2020)). Similarly, none
of the work on conditional extreme-value theory (e.g., Heffernan and Tawn (2004), Hilal,
Poon and Tawn (2011), Keef, Papastathopoulos and Tawn (2013), and Ewans and Jonathan
(2014)) examine extremal dependence from a spectral perspective. This paper fills this gap by
developing a novel method for investigating the conditional extremal dependence in a brain
network from a spectral-domain perspective. Our empirical study is a first step that paves the
way toward a deeper understanding of how the extremal behavior of multivariate time series
is related to their frequency content.

Moreover, the H&T model is designed for stationary data with respect to covariates. Thus,
it needs to be adapted to seizure EEG signals which are highly nonstationary—both in their
marginal and cross-dependence behavior. Thus, we use the piecewise version of the H&T
model (Ross et al. (2018)) to flexibly capture the time dynamics of extremal brain connectiv-
ity, further adapting it to handle autocorrelated data. Note that it is quite a standard practice
to either applying a moving window to a nonstationary time series or to segment into quasi-
stationary blocks (see Ombao and Pinto (2021), Ombao, von Sachs and Guo (2005), Ombao
et al. (2016)). Because of our novel use of extreme-value theory in the context of spectral
analysis, we emphasize that it is natural to exploit this rigorous probabilistic framework to
understand brain connectivity in epileptic patients since a seizure event creates a strong abnor-
mal (i.e., extreme) disturbance in brain signals. Moreover, by looking at extreme amplitudes
rather than the mean behavior, we can essentially probabilistically assess whether or not a
shock in a reference channel is likely to create further big shocks in other channels. This
fact cannot be quantified by classical methods that focus on the bulk (typically center of the
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distribution) behavior of the EEG signals. Therefore, our Conex–Connect method, based on
extreme-value theory, is theoretically and practically justified for analyzing epilepsy, and this
paper is a call for further research in this direction.

The remainder of the paper is organized as follows. Section 2 presents the proposed
Conex–Connect extreme-value approach to analyze EEG data. In Section 3 we provide an
in-depth study of the extremal behavior of EEG signals using the Conex–Connect method.
Section 4 concludes and discusses perspectives on future research.

2. Conditional extremal dependence for connectivity (Conex–Connect).

2.1. General setting and method overview. Let Ẏdt be the EEG amplitude, in absolute
value,1 of channel d ∈ {1, . . . ,D} at time t ∈ {1, . . . , T }. Alternatively, it may also represent
the amplitude of filtered signal component at a given frequency band; see Section 2.4 for
more details on spectral decomposition. Figure 1 displays the behavior of these multichan-
nel time series. In a nutshell, our proposed method proceeds as follows. The first step is to
select a reference channel (i.e., the conditioning variable). In our case it is natural to select
the left temporal channel T3 (square; Figure 1) as the reference channel because the neurol-
ogist has determined that to be the focal point of seizure discharges for this patient which
is labeled as Ẏ1 = {Ẏ1t }Tt=1. The remaining channels are defined to be the associated chan-
nels (associated variables) and are labeled as {Ẏd}Dd=2, where Ẏd = {Ẏdt }Tt=1. Next, since the
dependence structure in the brain network is thought to evolve across time, we segment the
multichannel EEG dataset into B (approximately) time-homogeneous blocks (separately for
each pre- and postseizure phase). Following our enhanced version of the piecewise approach
of Ross et al. (2018), we then apply a conditional multivariate extreme-value model to each
phase separately (conditional on T3), each of which being characterized by autocorrelated
nonstationary (but blockwise stationary) data. Observations within the same time block are
assumed to have common extremal characteristics. Finally, we model the changes in both the
marginal and dependence properties. In the Supplementary Material (Guerrero, Huser and
Ombao (2023a)), a sensitivity analysis is presented in which we consider B = 8, 12, and 16
time blocks for the pre- and postseizure phases (modeled separately) and demonstrate that
the results from Conex–Connect are robust concerning the choice of time block sizes. In the
following we consider B = 12 blocks per phase as a good compromise providing a robust
inference scheme that is still able to detect a lot of local detail.

More precisely, for each channel d ∈ {1, . . . ,D} and each pre- and postseizure phase
(modeled separately), we fit a piecewise marginal model by assuming that high-threshold
exceedances follow a generalized Pareto (GP) distribution with a time-varying scale param-
eter νdb > 0, b ∈ {1, . . . ,B}. Using the empirical CDF below the threshold, the data are
transformed from their original scale to a common marginal scale chosen to be the Laplace
distribution, based on the probability integral transform. The original data are denoted by
Ẏd , while the transformed Laplace-scale data are denoted by Yd , d ∈ {1, . . . ,D}. The GP
marginals are transformed to the same standard scale so that they become comparable. More-
over, the Laplace distribution is chosen because the H&T model expressed on this scale yields

1EEGs are often modeled as realizations of zero-mean stochastic processes. Thus, there is no interest in mod-
eling the mean or first moment (E(Xt )). Since EEGs are often characterized as a sum of oscillations at different
frequencies, the interest lies in the (absolute) amplitudes of these various oscillations rather than the “direction”
of the shocks. This is the justification for using absolute values. It is also worth noting that extremes are scarce by
nature, and thus, it is valuable to merge information from both tails which contain the same type of information
about extreme shocks to the brain network. This merger leads to a reduction in uncertainty in the estimators.
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a wide range of extremal dependence structures, from asymptotic independence with nega-
tive association to asymptotic dependence with positive association (Keef, Papastathopoulos
and Tawn (2013)).

To estimate the conditional extremal dependence of Yd , given that Y1 exceeds a high
threshold, we finally fit the H&T model with a time-varying dependence parameter αdb ∈
[−1,1] which captures the evolution (over time) of the strength of the linear dependence in
the joint tails. The specific elements of the H&T model, including the parameter αdb, are
discussed in Section 2.3. The penalized part comes from roughness-penalization parameters
included in the likelihood functions to control the extent of variation of the time-varying
parameter estimates for the marginal and dependence models. We assess the uncertainty of
the estimates through a bootstrap technique that accounts for autocorrelation. The optimal
penalty parameter is obtained using a walk-forward cross-validation procedure (Hyndman
and Athanasopoulos (2019)) and designed to keep the temporal dependence in the data.
The next subsections provide details on the two stages of the Conex–Connect method: the
marginal modeling of EEG channels and their connectivity characterization.

2.2. Marginal model. For each channel Ẏd = {Ẏdt }Tt=1, d ∈ {1, . . . ,D}, each pre- and
postseizure phase, and for some high nonexceedance probability τd ∈ Td ⊂ (0,1), we define
ψdb(τd) as the empirical τd -quantile for the bth time block (b = 1, . . . ,B). Then, motivated
by extreme-value theory, we model the upper tail of Ẏdt using the GP distribution, that is,

FGP

(
ẏdt ; ξd, νdb,ψdb(τd)

) = Pr
{
Ẏdt ≤ ẏdt | Ẏdt > ψdb(τd)

}

= 1 −
[
1 + ξd

νdb

{
ẏdt − ψdb(τd)

}]− 1
ξd

,

for ẏdt ∈ (ψdb(τd), ẏ+
db], where ẏ+

db = ψdb(τd) − νdb/ξd if ξd < 0, and ẏ+
db = ∞, otherwise.

Here, ξd ∈ R is the shape parameter, assumed constant across time blocks, while {νdb}Bb=1 ∈
(0,∞)B are the blockwise (i.e., time-varying) scale parameters. In the above expression it
is implicitly understood that time t is contained within the bth time block, but, in practice,
we need to identify the correct time block for each time point and to assign parameter values
accordingly. For each channel d , the shape parameter ξd controls the heaviness of the tail of
the GP distribution (when compared to the tail of an exponential distribution), and we here
keep it time-constant for reasons of parsimony and because this parameter is usually difficult
to estimate. Note that there is a structural change at the seizure onset, but since we model the
pre- and postseizure phases separately, the shape parameter can indeed be different across
phases. Within each phase, however, the tail behavior is usually more regular, and it makes
sense to keep the shape parameter constant, as commonly done in the extremes literature, to
guarantee a robust and stable marginal model fit. Depending on the value of ξd , there are three
types of upper tail: bounded (ξd < 0), light (ξd = 0), and heavy (ξd > 0). As special cases,
the GP distribution contains the uniform distribution (ξd = −1), the exponential (ξd = 0), and
the (shifted) Pareto (ξd > 0).

Note that each channel has its own nonexceedance probability τd , indicating the flexibility
of the model in capturing the channel-specific extremal characteristics. In addition, despite
τd being invariant over time blocks, it does not imply threshold invariance (over time) since
the τd -quantile is specific to each time block.

Let θd := ({νdb}Bb=1, ξd)T ∈ � := (0,∞)B ×R be the parameter vector of the marginal GP
model for channel d . Under the working assumption of independence, the likelihood function
is

Lτd
(θd) =

B∏
b=1

∏
t∈Tb

ẏdt>ψdb(τd )

1

νdb

[
1 + ξd

νdb

{
ẏdt − ψdb(τd)

}]− 1
ξd

−1
,
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where Tb is the set of time points within block b and {ẏdt }Tt=1 are the observed data. We
here assume independence between and within time blocks. In the Supplementary Material
(Guerrero, Huser and Ombao (2023a)), we provide tools to verify that the within-block time
dependence is relatively short-range compared to block size.

In order to control the variance of temporal fluctuations in the estimated GP scale param-
eters, νdb, we add a channel-specific roughness-penalization parameter λd > 0. The negative
penalized log-likelihood is


τd ,λd
(θd) = − logLτd

(θd) + λd

{
1

B

B∑
b=1

ν2
db −

(
1

B

B∑
b=1

νdb

)2}
.(1)

Marginal parameter estimates are obtained by minimizing (1), while λd is selected by cross-
validation; see Section 2.5. Note that larger λd values imply an increased smoothness of
estimates of the GP scale parameter νdb across time blocks. Also, given λd , each channel has
a different penalized log-likelihood; that is, each marginal fit has a different set of parameters,
consisting of (B + 1) parameters from the GP fit.

Now, using the probability integral transform, we transform data to the standard Laplace
scale. For observations below the threshold ψdb(τd), we use the empirical CDF, denoted
here by FE(·). First, the raw data, {ẏdt }Tt=1, is transformed to the uniform scale, {udt }Tt=1,
as follows: udt = τdFE(ẏdt ), if ẏdt ≤ ψdb(τd), and udt = τd + (1 − τd)FGP (ẏdt ), if ẏdt >

ψdb(τd). Then, we use the inverse of the standard Laplace CDF, FL(·), that is, ydt =
F−1

L (udt ) = sign(0.5 − udt ) log (2 min {1 − udt , udt }), to obtain common standard Laplace
margins, {ydt }Tt=1.

2.3. Conditional extremal dependence model. After fitting the marginal models for all
D channels and each pre- and postseizure phase, we obtain a standard Laplace-scale sam-
ple {y1t , y2t , . . . , yDt }Tt=1, with y1t representing the transformed time series of the reference
channel (here, T3). Note that the lowercase {y1t , . . . , yDt }Tt=1 denote (transformed) realized
values, while the uppercase {Y1t , . . . , YDt }Tt=1 denote the corresponding random variables.
The next goal is to study, separately for each phase, the conditional dependence of the as-
sociated variables, {Y2t , . . . , YDt }, given that the conditioning variable, {Y1t }, takes on a
large value (in the upper tail of the distribution) since, in terms of EEG analysis, the in-
terest lies in the dependence structure in the network when the signal amplitude at the ref-
erence channel is large. Define τ̃ ∈ T̃ ⊂ (0,1) to be a nonexceedance probability such that
φ(τ̃ ) is the τ̃ -quantile of the standard Laplace distribution for the reference channel Y1. Let
θ̃ = ({αdb}D,B

d=2,b=1, {βd}Dd=2, {μd}Dd=2, {σd}Dd=2)
T ∈ �̃ := [−1,1](D−1)B × (−∞,1](D−1) ×

R
(D−1) × (0,∞)(D−1) be the parameter vector of the H&T model for all channels. Thus,

according to the H&T model, for all t ∈ Tb (within time block b) such that y1t > φ(τ̃ ), con-
ditional on Y1t = y1t , Ydt may be expressed as

Ydt = αdby1t + y
βd

1t Wdt , d = 2, . . . ,D,b = 1, . . . ,B,(2)

where, for model estimation purposes, the components of the random variable Wdt are as-
sumed to be mutually independent and normally distributed with mean μd and standard
deviation σd , both time-constant. In other words, the H&T model is similar to a particular
nonlinear regression model of Ydt onto Y1t = y1t with normal errors.

Note that the dependence threshold, τ̃ , based on the reference channel Y1 on the Laplace
scale, is not necessarily the same as the marginal threshold τ1 on the original scale. The latter
is tuned to provide a good marginal fit, while the former is chosen so that there will be a
sufficient number of exceedances to guarantee a good H&T dependence model fit.
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The parameters {αdb}D,B
d=2,b=1 are the “first-order” dependence parameters, and they cap-

ture the extent of blockwise linear extremal dependence, between channels Yd and large Y1,
which is allowed to change over time (blocks). When αdb is in the interval (0,1], there is
a positive linear association between Yd and large Y1 within time block b. This association
becomes stronger as αdb increases, with (positive) asymptotic dependence corresponding
to αdb = 1 and βd = 0. For αdb ∈ [−1,0), the association is negative linear and becomes
stronger as αdb → −1. As αdb → 0, the linear dependence in (2) weakens. In particular,
when Yd and large Y1 are independent, then αdb = βd = 0. On the other hand, the time-
constant parameters {βd}Dd=2 may be considered as capturing the “second-order” dependence
characteristics since they specify the spread of the data around the linear relationship given
by {αdb} for increasing values of Y1. If βd < 0, the distribution of the data (around the lin-
ear relationship dictated by the α’s) becomes tighter for higher values of the conditioning
variable. If βd > 0, we have the opposite behavior; the distribution of the data has a wider
spread around the linear relationship (given by the α’s) for higher values of the conditioning
variable. Notice that, among all dependence parameters, αdb is the only one that is allowed
to vary across time-blocks b = 1, . . . ,B . The other parameters (βd , μd , σd ) are intentionally
kept constant over time in order to reduce the overall model complexity (and thus, estima-
tion uncertainty) and to avoid interferences with the estimation of αdb which drives the main
dependence feature.

REMARK. The parameters αdb and βd are more informative than classical extremal de-
pendence measures, such as the tail correlation coefficient χ (recall its definition in Sec-
tion 1), and its complementary version, χ̄ (Coles, Heffernan and Tawn (1999)), which is
linked to the coefficient of tail dependence, often denoted by the symbol η (Ledford and Tawn
(1996)). While χ is merely a (limiting) conditional exceedance probability that provides in-
formation in the asymptotic dependence setting and χ̄ summarizes the joint tail decay rate
in the asymptotic independence setting, the parameters αdb and βd describe how a variable
grows and fluctuates with the extremes of a conditioning variable, both in the asymptotic de-
pendence and independence settings. Specifically, these parameters provide detailed informa-
tion about the strength, the “direction” (i.e., positive or negative association), and dispersion
(in terms of the conditioning variable) of tail (in)dependence. The asymptotic dependence
setting actually corresponds to αdb = 1 and βd = 0, whereas the other valid parameter com-
binations lead to various asymptotic independence scenarios, which makes the H&T model
very general and much more informative than tail dependence measures like χ , χ̄ (or η), or
other summary statistics, such as the tail quotient correlation coefficient proposed by Zhang
(2008, 2021) and Zhang, Zhang and Cui (2017).

From (2) we may rewrite the model as

Ydt | Y1t = y1t ∼ N
(
αdby1t + μdy

βd

1t ,
(
σdy

βd

1t

)2)
,(3)

for all t ∈ Tb (within time block b) such that y1t > φ(τ̃ ), d = 2, . . ., D, and b = 1, . . .,
B . The parameters for each channel, and each pre- and postseizure phase, are estimated by
minimizing the negative log-likelihood based on (3), that is,

(4) 
̃τ̃ ,d (θ̃) =
B∑

b=1

∑
t∈Tb

y1t>φ(τ̃ )

{
1

2
log (2π) + log

(
σdy

βd

1t

) + 1

2

(
ydt − (αdby1t + μdy

βd

1t )

σdy
βd

1t

)2}
.

Here, there are (B+3) parameters per channel d and phase. Keef, Papastathopoulos and Tawn
(2013) proposed additional constraints on �̃, leading to a smaller set of feasible parameters
which reduce the variance of the estimators and overcome complications on the modeling
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of negatively associated variables and parameter identifiability. Also, these additional con-
straints avoid drawing conditional inferences inconsistent with the marginal distributions.
Here, we use a pragmatic approach and restrict {βd}Dd=2 to the interval [0,1], to stabilize es-
timation and avoid unrealistic dependence behaviors. This restriction provides a reasonably
constrained yet flexible model, still capturing the most important different types of extremal
dependence (Tawn et al. (2018)). Moreover, note that the choice of a normal distribution
may appear arbitrary, but it was suggested by Heffernan and Tawn (2004) as a convenient
working assumption that ensures valid inference. Indeed, under mild assumptions, even if the
normal distribution is misspecified, the parameters are still guaranteed to be consistent (Das
and Resnick (2011), Heffernan and Resnick (2007)); see also Davison (2003), page 147, who
studies the asymptotic distribution of the maximum likelihood under wrong model assump-
tions. Furthermore, for subasymptotic features of the conditional extremes model, see Lugrin,
Davison and Tawn (2019).

Although the parameters in (2) have their own individual interpretations, sometimes it can
be challenging to draw conclusions on the real behavior of the conditional extremal depen-
dence. Thus, a preferable approach might be to analyze θ̃db = (αdb, βd,μd, σd)T , the set of
blockwise parameters, jointly through a relevant functional, fdb(θ̃db), involving them all to-
gether for d = 2, . . . ,D, and b = 1, . . . ,B . To do so, we exploit the stochastic representation
in (3), but we relax the normal assumption by estimating an upper conditional quantile semi-
parametrically. To be more specific, we here estimate the 0.975-quantile of Ydt , given that Y1t

equals its own 0.975-quantile, by suitably combining the estimated H&T model parameters
with the empirical 0.975-quantile of model residuals (obtained after standardizing the data
by subtracting the fitted mean and dividing by the fitted standard deviation in (3)). The dis-
tribution of this estimated conditional quantile is assessed using a block bootstrap procedure,
detailed below in Section 2.5.

While the parameters may be estimated separately for each channel from (4), it is also pos-
sible to estimate them jointly (yet, still separately for each pre- and postseizure phase), using
a penalized likelihood enforcing a similar degree of smoothness for estimated dependence pa-
rameters αdb across time blocks, which stabilizes their fluctuations and reduces uncertainty.
The joint negative penalized log-likelihood used here is


̃τ̃ ,λ̃(θ̃) =
D∑

d=2


̃τ̃ ,d (θ̃) + λ̃

D∑
d=2

{
1

B

B∑
b=1

α2
db −

(
1

B

B∑
b=1

αdb

)2}
,

where λ̃ > 0 is the overall roughness penalty parameter.
Alternatively, suppose a single (joint) penalization parameter imposes too severe shrinkage

in the extent to which the extremal dependence varies. In this case, one may allow each
channel to have its own roughness penalty parameter, λ̃d , performing D − 1 model fits in
parallel.

2.4. Extremal spectral analysis. EEGs are zero-mean signals that can be expressed as
a mixture of frequencies oscillating at the following standard frequency bands: Delta-band
(�1: 1–4 Hz), Theta-band (�2: 4–8 Hz), Alpha-band (�3: 8–12 Hz), Beta-band (�4: 12–
30 Hz), and Gamma-band (�5: 30–50 Hz), assuming a sampling rate of 100 Hz (Nunez
and Srinivasan (2007), Ombao et al. (2016)). The spectral decomposition of channel T3 is
displayed in Figure 2 for both the pre- and postseizure onset phases.

Following Gao et al. (2020), Ombao and Van Bellegem (2008), and Ombao and Pinto
(2021), two EEG signals, Y1(t) and Y2(t), may be decomposed into the five rhythms as
Y1(t) ≈ ∑5

k=1 Y1,�k
(t) and Y2(t) ≈ ∑5

k=1 Y2,�k
(t), where Yd,�k

(t) denotes the �k-waveform
in channel Yd(t). In practice, these rhythms are obtained by applying a linear filter, such as
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FIG. 2. Spectral decomposition of channel T3 signal during one second of both pre- and postseizure onset
phases from the EEG recording of a patient diagnosed with left temporal lobe epilepsy. The frequency bands are:
Delta-band (�1: 1–4 Hz), Theta-band (�2: 4–8 Hz), Alpha-band (�3: 8–12 Hz), Beta-band (�4: 12–30 Hz), and
Gamma-band (�5: 30–50 Hz).

the Butterworth filter (see Cohen (2013)). One measure of dependence between two channels
is coherence, which is essentially the frequency band-specific squared correlation between a
pair of rhythms, that is,

Coherence�k
(t) = max




∣∣cor
(
Y1,�k

(t), Y2,�k
(t + 
)

)∣∣2.
Another major contribution of this paper is a novel measure of nonlinear cross-depen-

dence to characterize the joint behavior of the oscillations in brain signals, that is, the joint
interpretation of the H&T parameter estimates, obtained from extremal models defined from
both time and frequency domain perspectives. These parameter estimates reveal the impact
of unusually large frequency band amplitudes in the T3 channel (the reference channel pro-
jecting from the seizure foci on the temporal lobe) on the other channels. In order to study
the effect of the extremal behavior in the �k-waveform, k = 1, . . . ,5, of the associated chan-
nel d , we study the conditional distribution of |Yd,�k

(t)|, given |Y1,�i
(t)| > τ , separately

for each i = 1, . . . ,5; remember that Yd represents the associated channel d while Y1 is the
reference channel T3. Our pioneering way of analyzing the spectral decomposition of EEG
signals produces new interesting results that give us deeper insights into the highly nonlinear
interactions and dependence between channels during an epileptic seizure event.

2.5. Cross-validation, bootstrapping, uncertainty and diagnostics. This section gives de-
tails on both the block bootstrap and walk-forward cross-validation procedures, designed to
assess the uncertainty of estimated parameters and to select the optimal roughness penalty
parameters respectively, while handling the autocorrelation of the time series appropriately.

In both the marginal and the H&T models, we need to select the optimal value of the rough-
ness penalty parameter in an objective manner. Note that we have one λd for each margin,
d = 1, . . . ,D, and a single λ̃ > 0 for the extremal dependence model. In both cases, for each
channel, and within each time block, we rely on a 10-fold walk-forward cross-validation pro-
cedure (Hyndman and Athanasopoulos (2019)) since the data are autocorrelated across time.
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FIG. 3. Schematic for a 10-fold walk-forward cross-validation procedure for the autocorrelated data within
time block 1 of the preseizure phase of the EEG application. The darker dots represent the training sets, while the
lighter ones are the test sets.

For this procedure we divide each time block b into k = 10 adjacent nonoverlapping folds.
Then, we consider the first r folds as the training set and the last k − r folds as the test set.
For a grid of λ values and for each split configuration, we then fit the model to the training
set. We use the parameter estimates to obtain the value of the log-likelihood function on the
test set, and we finally add up these log-likelihood values of each split configuration to get an
overall score. The value of λ that maximizes the overall score is taken as the optimal value
for the penalization parameter. Figure 3 shows a schematic illustration of this cross-validation
procedure.

To assess the uncertainty of parameter estimates, we employ a block bootstrap procedure
which preserves local temporal dependence in the data. As described in Lahiri (2003) and
because we assume time blocks to be quasi weakly stationary, we resample entire blocks of
consecutive observations (rather than single observations) keeping the correspondence be-
tween the conditioning variable Y1 and the associated variables Y2, . . . , YD , and then refit the
marginal and H&T dependence models. From the bootstrap samples, we compute confidence
intervals for the parameters that evolve with time and histograms for those that are constant
over time. Notice that the bootstrap blocks differ from the B time blocks used in the penalized
piecewise model formulation. For more details on the performance of the block bootstrap and
other types of bootstrap schemes for data with complex dependence, see Davison and Hinkley
(1997).

Specifically, we split each of these B time blocks into C nonoverlapping (sub)blocks,
of size s, which are resampled with replacement to generate M bootstrap samples. The
block size s is determined with the aid of the sample (partial) autocorrelation function and
extremograms (i.e., the extreme-value analog of the autocorrelation function) (Davis and
Mikosch (2009), Davis, Mikosch and Cribben (2012)) to make sure it is large enough to
keep the overall temporal dependence structure; see the Supplementary Material (Guerrero,
Huser and Ombao (2023a)) for details.

Simultaneously, for each bootstrap sample, the nonexceedance probability for both mar-
ginal and H&T models is also randomly sampled from a uniform distribution given a range of
reasonable values to account for thresholding uncertainty: τd ∈ Td ⊂ (0,1), d ∈ {1, . . . ,D},
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and τ̃ ∈ T̃ =⊂ (0,1). In this way, one may produce diagnostic plots, such as parameter sta-
bility plots, to select the best threshold for each channel. Also, from the bootstrap samples,
quantile-quantile (Q-Q) plots and residual plots can be drawn to evaluate the goodness-of-
fit. For the original fit, that is, not the bootstrapped ones, the medians of the nonexceedance
probability intervals are used.

3. Extremal spectral analysis of seizure EEG data.

3.1. Application of the Conex–Connect model. We examine the changes in connectivity
(or dependence between channels) using the proposed Conex–Connect method. In this paper
the scalp EEG recording is from a female patient diagnosed with left temporal lobe epilepsy.
The EEG data are recorded from a 10–20 system, and D = 19 channels are available for
analysis. Figure 1 shows the electrode placement and EEG traces for some channels. In this
specific case the physician knew in advance that the seizure onset would be on the left tempo-
ral lobe region which would be captured by the recording at the T3 channel (d = 1). Thus, T3
is set to be the reference channel (i.e., the conditioning variable). The remaining 18 channels
are treated as the associated variables (d = 2, . . . ,19). The record has a duration of 500 sec-
onds collected at the sampling rate of 100 Hz; thus, there are 50,000 time points per channel.
Furthermore, remember that in our analysis, we consistently use absolute values of the EEG
signals or their (spectrally decomposed) waveforms.

The first stage of the Conex–Connect method is to model the marginal extremes for each
channel d independently. Each channel d is split into pre- and postseizure onset phases at
time t = 350 seconds, and thus, T = 15,000 points for each of the postseizure onset and pre-
seizure phase. Note that we analyze the pre- and postseizure phases independently because of
the sharp, nonsmooth transition around the seizure onset. Moreover, we split the data at this
specific time point based on the neurologist’s analysis of the EEG record which is corrobo-
rated by change point detection methods previously applied to the same dataset (Ombao, von
Sachs and Guo (2005), Schröder and Ombao (2019)). Each phase is segmented into B = 12
time blocks of 1250 data points each. With this setup, the GP distribution is fitted jointly for
all time blocks, specifying block-specific scale parameters and a constant shape parameter, as
indicated in Section 2.2, and the fitted model is then used to transform the data to the standard
Laplace scale. Moreover, to assess estimation uncertainty, M = 500 block bootstrap samples
are generated within each time block b = 1, . . . ,B = 12, with bootstrap block size s = 25
data points. For all channels d = 1, . . . ,D, a common nonexceedance probability interval,
Td = (0.90,0.95), is used. We chose this common interval because it is simpler than choos-
ing d different intervals, while it guarantees a good model fit for all marginals. The results
and diagnostics of this marginal estimation stage are provided in the Supplementary Material
(Guerrero, Huser and Ombao (2023a)).

The second stage of the Conex–Connect method is to model the conditional extremal
dependence of brain connectivity. The strength of the relationship between the associated
variables and large values of the conditioning variable, T3, is estimated. After transforming
the data from all channels into the standard Laplace scale, we choose the nonexceedance
probability interval for the reference channel to be T̃ = (0.88,0.92), both for the pre- and
postseizure onset phases. Here, we use a smaller threshold to ensure enough data points for
all associated channels while conditioning on the reference channel. Estimation, uncertainty
assessment, and goodness-of-fit details are thoroughly reported in the Supplementary Ma-
terial (Guerrero, Huser and Ombao (2023a)). For the sake of brevity, we here only present
and discuss the results from the associated frontal channels, namely, the left frontal F7 and
right frontal F8 (see Section 3.2), while dashboards for the other channels can be found in the
Supplementary Material (Guerrero, Huser and Ombao (2023a)) for completeness.



CONEX–CONNECT 189

It is noteworthy that previous works analyzing this dataset (Ombao, von Sachs and Guo
(2005), Ombao et al. (2001), Schröder and Ombao (2019)) concentrate on signal represen-
tation, spectral estimation, change-point detection, and dimensionality reduction, identifying
the most relevant channels during the epileptic event. By contrast, the current EEG analysis,
which is an application of the Conex–Connect method, focuses on modeling the entire brain
network from an extreme-value perspective, contrasting it with widespread nonextreme-value
models in the EEG literature (e.g., Acharya et al. (2013) and Bowyer (2016)).

Regarding computational cost, approximately 40 minutes were needed to complete a full
analysis for all channels, pre- and postseizure phases, using an iMac with four cores (Intel i5,
3 GHz) and 16 GB of memory.

3.2. Results and discussion. Figure 4 displays a dashboard with the results of the Conex–
Connect method for channel F7, given high values of the reference channel T3, both for pre-
and postseizure onset phases. Panel I provides the individual behavior of the parameter es-
timates {α̂2,b}Bb=1, β̂2, μ̂2, and σ̂2 in the time-domain. Here, the subscript d = 2 refers to
channel F7, and b ∈ {1, . . . ,24} denotes the time block index. The 95% confidence bands
for α̂2,b and the histograms for β̂2, μ̂2, and σ̂2 are drawn out from the block bootstrap pro-
cedure; see Section 2.5. In the preseizure phase the estimates of the first-order dependence
parameter, α̂2,b, b = 1, . . . ,12, are very high and stable (close to 1). This indicates a strong
positive linear relationship between F7 and large values of T3. This result from the Conex–
Connect method makes sense because both channels F7 and T3 are located on the same side
of the scalp topography (left hemisphere). Moreover, since T3 (more than any other chan-
nel) captures the abnormal behavior on the seizure foci, which then spreads to neighboring
channels, this result from the Conex–Connect analysis confirms this extremal dependence
between the T3 and F7 channels, that is, abnormally large fluctuations in the left temporal
T3 are also accompanied by abnormally large fluctuations in nearby channels, such as F7.
Note that the confidence bands are narrow, suggesting a high level of certainty concerning
this dependence structure. The histogram of β̂2 for the preseizure phase is centered around
0.4 with practically no values close to 0, indicating asymptotic independence yet with strong
subasymptotic dependence (i.e., at finite levels). In the postseizure onset moment, we can see
a sudden change immediately after the seizure, with α̂2,13 being much smaller than α̂2,12,
indicating weaker extremal dependence. Furthermore, this reduction in the extremal depen-
dence is observed throughout the entire postseizure phase, indicating that after the seizure
onset, abnormally large fluctuations of T3 tend to be unaccompanied by abnormally large
fluctuations of F7. Also, the behavior of α̂2,b, b = 13, . . . ,24, are much more erratic with
wider confidence bands, suggesting a higher level of uncertainty after the seizure onset. This
is interesting because it reveals the more chaotic nature of the seizure process. For some
blocks the estimates are close to 0.2. Thus, there is a weakening in the linear relationship
between F7 and large values of T3, though it still remains positive. In terms of β2, there is
a shift to the left in the histogram with a high concentration around 0, pointing to a possible
change toward independence. In the Supplementary Material (Guerrero, Huser and Ombao
(2023a)), we present similar dashboards for the tail correlation coefficient, χ , where some
of its limitations are evident. In the case of this data analysis, χ dashboards present wider
confidence intervals, most of the time containing zero. On the other hand, the first-order de-
pendence parameter of Conex–Connect can capture the underlying behavior of χ throughout
the time blocks but with tighter confidence intervals that do not contain zero. Also, jointly
with the second-order dependence parameter, they can easily distinguish between asymptotic
independence and dependence.

By contrasting the findings above to Panel I of Figure 5, it is clear that a different story pre-
vails on the right side of the brain. For the right frontal channel F8 (d = 3), given high values
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FIG. 4. A dashboard with results of the Conex–Connect method for pre- and postseizure onset phases. Channel
F7 (darker circle) given high values of T3 (square) are highlighted in the EEG scalp cartoon. Panel I) In the
first line, the evolution of the estimated first-order dependence parameter αdb (solid line) through time with
its bootstrap mean (dashed gray line) and 95% confidence bands (dash-dotted lines). In the second line, the
histograms of the bootstrap estimates for scale exponent parameter βd and for residual mean μd and scale σd .
Panel II) Bootstrap violin plots for the 0.975-quantile of the conditional distribution of F7, given that T3 reaches
its own 0.975-quantile. Different colors represent estimates of the conditional quantile for different lag values of
the associate channel F7. Panel III) Effect of the different frequency bands (�1: 1–4, �2: 4–8, �3: 8–12, �4:
12–30, and �5: 30–50 Hz) on the first-order dependence parameter. Darker pixels indicate higher dependence.
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of the reference channel T3, it appears that seizure does not affect the extremal dependence
structure as much, since there is practically no discernible change in the estimates α̂3,b before
and after the seizure. Also, in the preseizure phase, the linear relationship between F8 and
large values of T3 is weaker when compared to F7. This is partly because F7 is closer to the
seizure focus location which is around the reference channel T3. In addition, the histograms
for β̂3, μ̂3, and σ̂3, both for pre- and postseizure onset phases, are relatively stable, indicating
the absence of changes in the second-order extremal dependence characteristics.

Back to Figure 4, Panel II displays, in the time-domain, the time evolution of the con-
ditional distribution of the conditional 0.975-quantile in (3), given that T3 reaches its own
0.975-quantile, estimated semiparametrically, as explained in Section 2.3. In this plot we can
jointly analyze the model parameters. Also, with the different violin plots, we investigate
how the effect of large values of T3 at time t impacts channel F7 at time t + 
, for time
lags 
 = 0, 0.10, 0.25, and 0.50 seconds. The Conex–Connect method shows that the ex-
tremal dependence is stronger at lag 
 = 0 and weakens for other lags, indicating a stronger
contemporaneous extremal dependence than lagged extremal dependence. Moreover, when
contrasting lag 
 = 0 to the other lags, the discrepancy between the violins, both in terms of
medians and shapes, is more pronounced after the seizure onset. This suggests that seizure
has an impact on the conditional extremal dependence of the brain network. The same panel
of Figure 5, in the case of channel F8, the opposite side from the seizure focus, shows that
the extremal dependence structure at lag 
 = 0 is indistinguishable from those of higher lags,
and at a lower level overall than for channel F7. This denotes less synchrony (in the extremal
dependence) between the channel corresponding to the seizure foci (reference channel) and
the channel on the contra-lateral side of the foci.

The Conex–Connect method produces interesting results regarding how the extreme values
of the different oscillations of the reference channel T3 impact brain connectivity. Henceforth,
working in the frequency domain, Figure 4, Panel III, shows the estimated first-order depen-
dence coefficient α̂2,b (b = 1, . . . ,B) between the (absolute) �k-waveform in channel F7
given high (absolute) amplitudes of the same waveform in channel T3. Values of α̂2,b closer
to 1 are darker. In the preseizure phase the extreme values in the high-frequency Gamma-
band exhibit the lowest level of extremal dependence. This seems to be consistent across the
entire preseizure phase. However, the dependence pattern changes in the postseizure phase.
First, the extremes of Gamma-band from T3 shows the highest level of extremal dependence
with the Gamma-band from F7. This is quite interesting because sudden outbursts of high-
frequency oscillations typically characterize seizure onset, as shown by Medvedev, Murro
and Meador (2011). Moreover, since the postseizure onset is typically nonstationary, we see
that this dependence structure also evolves over time blocks. In the right side of the brain,
Figure 5, Panel III shows that prior to seizure onset, the higher values of the low-frequency
Delta-band lead the changes in the extremal dependence structure. In the postseizure phase
we notice that, immediately after the seizure onset, the high-frequency Gamma-band becomes
more prominent, similar to the left side of the brain (channel F7), the same side as T3.

Figure 6 presents a dashboard with the results of classical methods, based on cross-
correlation and cross-coherence for comparison. The left column shows the results for F7,
while the right column shows the results for F8. In all panels we display both pre- and post-
seizure onset phases. Panel I displays the evolution of the cross-correlation over time blocks
in the time-domain. Panel II shows how the cross-correlation between T3 at time t evolves
when computed for future values of channel F7 and F8 at time t + 
, for time lags 
 = 0,
0.10, 0.25, and 0.50 seconds; here, again, in the time-domain. Finally, Panel III, now in the
frequency-domain, exhibits the impact of high values of the different frequency bands of T3
in its cross-coherence with F7 and F8.

To contrast the results of our method Conex–Connect, based on extreme-value theory with
classical results, we notice that the first-order dependence parameters of Conex–Connect have
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FIG. 5. A dashboard with results of the Conex–Connect method for pre- and postseizure onset phases. Channel
F8 (darker circle) given high values of T3 (square) are highlighted in the EEG scalp cartoon. Panel I) In the
first line, the evolution of the estimated first-order dependence parameter αdb (solid line) through time with
its bootstrap mean (dashed gray line) and 95% confidence bands (dash-dotted lines). In the second line, the
histograms of the bootstrap estimates for scale exponent parameter βd and for residual mean μd and scale σd .
Panel II) Bootstrap violin plots for the 0.975-quantile of the conditional distribution of F8 given that T3 reaches
its own 0.975-quantile. Different colors represent estimates of the conditional quantile for different lag values of
the associate channel F8. Panel III) Effect of the different frequency bands (�1: 1–4, �2: 4–8, �3: 8–12, �4:
12–30, and �5: 30–50 Hz) on the first-order dependence parameter. Darker pixels indicate higher dependence.
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FIG. 6. A dashboard with results of the classical analysis for pre- and postseizure onset phases. Left column
displays results for channel F7 (brain left size) while the right column show the results for F8 (brain right side).
Panel I) Evolution of the cross-correlation estimates (solid line), along with its confidence bands (dash-dotted
lines), between channels F7 and T3 (reference channel) and between channels F8 and T3. Panel II) Violin plots
to access the changes in the distribution of the cross-correlation both over time and for different lag values of
the associated channels. Panel III) Effect of the different frequency bands on the cross-coherence. Darker pixels
indicates higher values of cross-coherence. For all panels, uncertainty is obtained trough 500 bootstrap samples.

a similar overall temporal pattern as that of the classical cross-correlation, both for F7 and F8,
pre- and postseizure, as can be seen when comparing Figures 4, 5, and 6. In addition, com-
paring the changes in the conditional 0.975-quantile with the changes in the cross-correlation
(Panel II, Figure 6), a similar pattern is observed across time blocks both for pre- and post-
seizure onset phases. However, regarding correlation, we notice a more striking discrepancy
between contemporaneous dependence (lag 
 = 0) against other higher lags. These similari-
ties suggest either (a.) that the conditional extremal dependence dominates the global depen-
dence (as measured by correlation) or (b.) that the phenomenon that we see in the joint tail is
similar to other less extreme quantiles of the distribution. Regarding the spectral decompo-
sition, our method shows that, for both sides of the brain, immediately after the seizure, the
high-frequency Gamma-band becomes the most relevant frequency in explaining the con-
ditional extremal dependence. This finding does not agree with the results in terms of the
classical coherence; see Figure 6, Panel III.

We further investigate the conditional extremal dependence in terms of frequency oscil-
lations by decomposing the associated channels in their canonical frequency bands. We refit
the model for all pairs of �k-waveforms. Figure 7 displays the impact of extreme values of
the different frequency bands of the reference channel T3 on the different frequency bands of
the associated channels F7 and F8. Note that the heatmaps in Panel III of Figures 4 and 5 cor-
respond to the diagonals of Figure 7. Here, beyond the previous findings in terms of seizure
phases and sides of the brain, we notice that the medium-frequency bands, Beta and Alpha,
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FIG. 7. Effect of the different frequency bands of the reference channel T3 on the different frequency bands of
the associated channels, F7 and F8, pre- and postseizure onset phases. The solid lines represents the evolution of
the estimated first-order dependence parameter α through time with its bootstrap 95% confidence bands (shaded
area). The vertical solid line is the seizure onset. The frequency bands are: Delta-band (�1: 1–4 Hz), Theta-band
(�2: 4–8 Hz), Alpha-band (�3: 8–12 Hz), Beta-band (�4: 12–30 Hz), and Gamma-band (�5: 30–50 Hz).

of the reference channel T3, impact the first-order dependence parameter estimates, mainly
on the Gamma-band of the associated channels. This may indicate that the Gamma-band can
be used for feature engineering to improve the performance of machine learning algorithms
for epilepsy detection.

Finally, Figure 8 presents the results of a first attempt to analyze how the extreme signal
amplitudes triggered in channel T3 propagate through the brain (i.e., in space and time) after
the seizure onset. These results are obtained using the following procedure. As usual, for the
first time block we condition on T3 and identify the channel with the highest α estimate; in
this case, F7. Then, for the second block, we refit the model, conditioning on F7, and we
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FIG. 8. Results of a first attempt to study the “spatial propagation” of extreme signal amplitudes over different
time blocks after the seizure onset, based on the conditional extremes model. The darker the arrow, the stronger
the conditional extremal dependence captured by the first-order dependence parameter of the Conex–Connect
method. For this specific analysis, we considered eight time blocks.

identify the channel with highest α̂ and so forth. In this way we can draw a possible path
of channels that may trigger further successive extreme values within the brain network. In
Panel 1 of Figure 8, we refit the model excluding all previously identified conditioning chan-
nels, while, in Panel 2, we always use all available 19 channels. In both panels we can see that,
just after the seizure onset, the conditional extremal dependence is stronger in neighboring
areas of T3 on the left side of the brain and that it then jumps to the occipital region, where
stronger dependence prevails. Also, when not excluding the previous conditioning channels,
the path ends in channels O1 and O2. In the Supplementary Material (Guerrero, Huser and
Ombao (2023a)), we present the same analyses but within each time block.

4. Conclusion. This paper presents the novel Conex–Connect method, the first extreme-
value model-based approach for learning patterns in the extremal dependence during periods
of high volatility in brain signals. The method extends the conditional multivariate extremes
model (Heffernan and Tawn (2004), Ross et al. (2018)) to capture time-varying extremal
dependence features, both from time-domain and frequency-domain perspectives, while ad-
equately assessing estimation uncertainty using a block bootstrap procedure accounting for
the autocorrelation in the data. We here give a full characterization of the conditional ex-
tremal dependence of brain connectivity, shedding light on how the brain network responds
to an epileptic seizure event. We also study the extremal brain connectivity based on the
spectral decomposition of the different channels. To the best of our knowledge, our method
is a pioneer in linking the association between extreme values of frequency oscillations in a
reference channel with oscillations in other channels of the brain network, and we foresee
further research in this direction because of the mathematically elegant and natural use of
extreme-value theory in this context.

Essentially, our methodology relies on “dissecting” the original brain signal into various
components at different frequency bands and studying the extremal dependence structure
of each frequency component separately, based on distinct conditional extreme-value mod-
els. While our statistical analysis is motivated by a very concrete applied problem and our



196 M. B. GUERRERO, R. HUSER AND H. OMBAO

empirical results reveal salient features of brain connectivity during an epileptic seizure, it
would also be interesting in future research to further investigate the theoretical link between
the (conditional) extremal dependence structure of each frequency component to that of the
overall signal. Specifically, we expect that the frequency component with the strongest tail
dependence would dominate the overall tail dependence structure and dictate the occurrence
of joint extremes in the original time series. However, this conjecture still needs to be rigor-
ously validated and mathematically formalized. Conversely, the overall extremal dependence
structure imposes certain constraints on the joint behavior of each frequency component, and
it would be interesting to study this in more detail.

Our proposed approach demonstrates changes in the conditional extremal dependence of
brain connectivity between pre- and postseizure onset phases. In general, before the seizure,
the dependence is notably stable for all channels (conditioning on extreme values of the T3).
On the other hand, during the postseizure phase (a period of very high volatility at T3), the
dependence between channels is weaker. In general, the strength of dependence decreases at
large lagged values of the associated channels when T3 is kept fixed. Also, after the seizure,
the high values of the high-frequency Gamma-band are the most relevant features to explain
the conditional extremal dependence of brain connectivity. Furthermore, our approach can
be easily generalized to a multivariate setup where one may study the dependence between
pairs (or groups) of relevant channels, conditional on the extremal behavior of the reference
channel. We plan to investigate this aspect in future research.

The current state of the Conex–Connect method does not incorporate the underlying spatial
structure of brain activity; in Figure 8 we present a first attempt to estimate a possible path of
channels that may trigger successive extreme signal amplitudes throughout the brain network,
based on the proposed (bivariate) conditional extremes model, but it would be interesting in
future research to conduct a proper space–time (potentially causal) analysis combining all
channels in a single joint model. This is a complex topic because the usual Euclidean dis-
tance is not adequate to characterize spatial dependence between brain signals at different
channels. Hence, in a future research goal we aim to develop extreme-value-based models
to deal not only with the time-varying features of brain connectivity but also with its spa-
tiotemporal characteristics. A possibility would be to adapt the multivariate version of the
H&T model, or the conditional spatial extremes model of Wadsworth and Tawn (2019), or
a combination thereof, to the time-varying framework of brain signals, combined with an
appropriate distance metric.

For reproducibility purposes and to boost the application of our proposed methodology in
other contexts, we provide a minimal reproducible version of our R code as well as a working
example on a subset of the EEG data from three different channels as Supplementary Material
(Guerrero, Huser and Ombao (2023b)) of this paper. The code can also be accessed from the
first author’s GitHub account, that is, https://github.com/matheusguerrero/conex-connect.
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SUPPLEMENTARY MATERIAL

Supplement to “Conex–Connect: Learning patterns in extremal brain connectivity
from multi-channel EEG data” (DOI: 10.1214/22-AOAS1621SUPPA; .pdf). We provide
further details for each stage of the Conex–Connect method to model the conditional extremal
dependence on brain connectivity. In this supplement, we discuss the model fitting and the
goodness-of-fit of our method; we provide sensitivity analysis on the size of the temporal
blocks and their independence; we study the extremal features of the data within each time
block; and we also give extra details on the data application.

R code for “Conex–Connect: Learning patterns in extremal brain connectivity from
multi-channel EEG data” (DOI: 10.1214/22-AOAS1621SUPPB; .zip). We provide the R
code to apply the full Conex–Connect workflow to a subset of the EEG data from three
different channels, namely, T3 (reference channel), F7 and F8.

REFERENCES

ACHARYA, U. R., VINITHA SREE, S., SWAPNA, G., MARTIS, R. J. and SURI, J. S. (2013). Automated EEG
analysis of epilepsy: A review. Knowl.-Based Syst. 45 147–165.

BOWYER, S. M. (2016). Coherence a measure of the brain networks: Past and present. Neuropsychiatr. Electro-
physiol. 2 1.

COHEN, M. X. (2014). Analyzing Neural Time Series Data. MIT Press, USA.
COLES, S. G., HEFFERNAN, J. and TAWN, J. A. (1999). Dependence measures for extreme value analyses.

Extremes 2 339–365.
DAS, B. and RESNICK, S. I. (2011). Conditioning on an extreme component: Model consistency with regular

variation on cones. Bernoulli 17 226–252. MR2797990 https://doi.org/10.3150/10-BEJ271
DAVIS, R. A. and MIKOSCH, T. (2009). The extremogram: A correlogram for extreme events. Bernoulli 15

977–1009. MR2597580 https://doi.org/10.3150/09-BEJ213
DAVIS, R. A., MIKOSCH, T. and CRIBBEN, I. (2012). Towards estimating extremal serial dependence via the

bootstrapped extremogram. J. Econometrics 170 142–152. MR2955945 https://doi.org/10.1016/j.jeconom.
2012.04.003

DAVISON, A. C. (2003). Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics 11.
Cambridge Univ. Press, Cambridge. MR1998913 https://doi.org/10.1017/CBO9780511815850

DAVISON, A. C. and HINKLEY, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Se-
ries in Statistical and Probabilistic Mathematics 1. Cambridge Univ. Press, Cambridge. MR1478673
https://doi.org/10.1017/CBO9780511802843

DAVISON, A. C. and HUSER, R. (2015). Statistics of extremes. Annu. Rev. Stat. Appl. 2 203–235.
EWANS, K. and JONATHAN, P. (2014). Evaluating environmental joint extremes for the offshore industry using

the conditional extremes model. J. Mar. Syst. 130 124–130.
FIECAS, M. and OMBAO, H. (2016). Modeling the evolution of dynamic brain processes during an associative

learning experiment. J. Amer. Statist. Assoc. 111 1440–1453. MR3601700 https://doi.org/10.1080/01621459.
2016.1165683

GAO, X., SHEN, W., SHAHBABA, B., FORTIN, N. J. and OMBAO, H. (2020). Evolutionary state-space model and
its application to time-frequency analysis of local field potentials. Statist. Sinica 30 1561–1582. MR4257545
https://doi.org/10.5705/ss.202017.0420

GUERRERO, M. B., HUSER, R. and OMBAO, H. (2023a). Supplement to “Conex–Connect: Learning patterns in
extremal brain connectivity from multichannel EEG data.” https://doi.org/10.1214/22-AOAS1621SUPPA

GUERRERO, M. B., HUSER, R. and OMBAO, H. (2023b). R code for “Conex–Connect: Learning patterns in
extremal brain connectivity from multichannel EEG data.” https://doi.org/10.1214/22-AOAS1621SUPPB

HEFFERNAN, J. E. and RESNICK, S. I. (2007). Limit laws for random vectors with an extreme component. Ann.
Appl. Probab. 17 537–571. MR2308335 https://doi.org/10.1214/105051606000000835

HEFFERNAN, J. E. and TAWN, J. A. (2004). A conditional approach for multivariate extreme values. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 66 497–546. MR2088289 https://doi.org/10.1111/j.1467-9868.2004.02050.x

HILAL, S., POON, S. H. and TAWN, J. (2011). Hedging the black swan: Conditional heteroskedasticity and tail
dependence in S&P500 and VIX. J. Bank. Financ. 35 2374–2387.

HYNDMAN, R. J. and ATHANASOPOULOS, G. (2019). Forecasting: Principles and Practice, 3rd ed. OTexts,
Australia. Available at https://OTexts.com/fpp3. Accessed on 08/20/2020.

https://doi.org/10.1214/22-AOAS1621SUPPA
https://doi.org/10.1214/22-AOAS1621SUPPB
http://www.ams.org/mathscinet-getitem?mr=2797990
https://doi.org/10.3150/10-BEJ271
http://www.ams.org/mathscinet-getitem?mr=2597580
https://doi.org/10.3150/09-BEJ213
http://www.ams.org/mathscinet-getitem?mr=2955945
https://doi.org/10.1016/j.jeconom.2012.04.003
http://www.ams.org/mathscinet-getitem?mr=1998913
https://doi.org/10.1017/CBO9780511815850
http://www.ams.org/mathscinet-getitem?mr=1478673
https://doi.org/10.1017/CBO9780511802843
http://www.ams.org/mathscinet-getitem?mr=3601700
https://doi.org/10.1080/01621459.2016.1165683
http://www.ams.org/mathscinet-getitem?mr=4257545
https://doi.org/10.5705/ss.202017.0420
https://doi.org/10.1214/22-AOAS1621SUPPA
https://doi.org/10.1214/22-AOAS1621SUPPB
http://www.ams.org/mathscinet-getitem?mr=2308335
https://doi.org/10.1214/105051606000000835
http://www.ams.org/mathscinet-getitem?mr=2088289
https://doi.org/10.1111/j.1467-9868.2004.02050.x
https://OTexts.com/fpp3
https://doi.org/10.1016/j.jeconom.2012.04.003
https://doi.org/10.1080/01621459.2016.1165683


198 M. B. GUERRERO, R. HUSER AND H. OMBAO

KEEF, C., PAPASTATHOPOULOS, I. and TAWN, J. A. (2013). Estimation of the conditional distribution of a
multivariate variable given that one of its components is large: Additional constraints for the Heffernan and
Tawn model. J. Multivariate Anal. 115 396–404. MR3004566 https://doi.org/10.1016/j.jmva.2012.10.012

KRAFTY, R. T. and COLLINGE, W. O. (2013). Penalized multivariate Whittle likelihood for power spectrum
estimation. Biometrika 100 447–458. MR3068445 https://doi.org/10.1093/biomet/ass088

KRAFTY, R. T., HALL, M. and GUO, W. (2011). Functional mixed effects spectral analysis. Biometrika 98 583–
598. MR2836408 https://doi.org/10.1093/biomet/asr032

KRAFTY, R. T., ROSEN, O., STOFFER, D. S., BUYSSE, D. J. and HALL, M. H. (2017). Conditional spectral
analysis of replicated multiple time series with application to nocturnal physiology. J. Amer. Statist. Assoc.
112 1405–1416. MR3750864 https://doi.org/10.1080/01621459.2017.1281811

LAHIRI, S. N. (2003). Resampling Methods for Dependent Data. Springer Series in Statistics. Springer, New
York. MR2001447 https://doi.org/10.1007/978-1-4757-3803-2

LEDFORD, A. W. and TAWN, J. A. (1996). Statistics for near independence in multivariate extreme values.
Biometrika 83 169–187. MR1399163 https://doi.org/10.1093/biomet/83.1.169

LUGRIN, T., DAVISON, A. C. and TAWN, J. A. (2019). Penultimate analysis of the conditional multivariate
extremes tail model. Available at arXiv:1902.06972.

MEDVEDEV, A. V., MURRO, A. M. and MEADOR, K. J. (2011). Abnormal interictal gamma activity may man-
ifest a seizure onset zone in temporal lobe epilepsy. Int. J. Neural Syst. 21 103–114.

NUNEZ, P. L. and SRINIVASAN, R. (2007). Electroencephalogram. Scholarpedia 2 1348.
OMBAO, H. and PINTO, M. (2021). Spectral dependence. Available at arXiv:2103.17240.
OMBAO, H. and VAN BELLEGEM, S. (2008). Evolutionary coherence of nonstationary signals. IEEE Trans.

Signal Process. 56 2259–2266. MR2516630 https://doi.org/10.1109/TSP.2007.914341
OMBAO, H., VON SACHS, R. and GUO, W. (2005). SLEX analysis of multivariate nonstationary time series.

J. Amer. Statist. Assoc. 100 519–531. MR2160556 https://doi.org/10.1198/016214504000001448
OMBAO, H. C., RAZ, J. A., VON SACHS, R. and MALOW, B. A. (2001). Automatic statistical analysis of

bivariate nonstationary time series. J. Amer. Statist. Assoc. 96 543–560. MR1946424 https://doi.org/10.1198/
016214501753168244

OMBAO, H., LINDQUIST, M., THOMPSON, W. and ASTON, J. (2016). Handbook of Neuroimaging Data Analy-
sis. CRC Press/CRC, USA.

OMBAO, H., FIECAS, M., TING, C.-M. and LOW, Y. F. (2018). Statistical models for brain signals with proper-
ties that evolve across trials. NeuroImage 180 609–618. https://doi.org/10.1016/j.neuroimage.2017.11.061

ROSS, E., SAM, S., RANDELL, D., FELD, G. and JONATHAN, P. (2018). Estimating surge in extreme North Sea
storms. Ocean Engineering 154 430–444.

SCHEFFLER, A. W., DICKINSON, A., DISTEFANO, C., JESTE, S. and ŞENTÜRK, D. (2020). Covariate-
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