Open Access
September 2022 High-resolution Bayesian mapping of landslide hazard with unobserved trigger event
Thomas Opitz, Haakon Bakka, Raphaël Huser, Luigi Lombardo
Author Affiliations +
Ann. Appl. Stat. 16(3): 1653-1675 (September 2022). DOI: 10.1214/21-AOAS1561


Statistical models for landslide hazard enable mapping of risk factors and landslide occurrence intensity by using geomorphological covariates available at high spatial resolution. However, the spatial distribution of the triggering event (e.g., precipitation or earthquakes) is often not directly observed. In this paper we develop Bayesian spatial hierarchical models for point patterns of landslide occurrences using different types of log-Gaussian Cox processes. Starting from a competitive baseline model that captures the unobserved precipitation trigger through a spatial random effect at slope unit resolution, we explore novel complex model structures that take clusters of events arising at small spatial scales into account as well as nonlinear or spatially-varying covariate effects. For a 2009 event of around 5000 precipitation-triggered landslides in Sicily, Italy, we show how to fit our proposed models efficiently, using the integrated nested Laplace approximation (INLA), and rigorously compare the performance of our models both from a statistical and applied perspective. In this context we argue that model comparison should not be based on a single criterion and that different models of various complexity may provide insights into complementary aspects of the same applied problem. In our application our models are found to have mostly the same spatial predictive performance, implying that key to successful prediction is the inclusion of a slope-unit resolved random effect capturing the precipitation trigger. Interestingly, a parsimonious formulation of space-varying slope effects reflects a physical interpretation of the precipitation trigger: in subareas with weak trigger, the slope steepness is shown to be mostly irrelevant.


The authors would like to thank two referees, an Associate Editor and the Editor for many valuable comments that helped improve the quality of the manuscript during the review process.


Download Citation

Thomas Opitz. Haakon Bakka. Raphaël Huser. Luigi Lombardo. "High-resolution Bayesian mapping of landslide hazard with unobserved trigger event." Ann. Appl. Stat. 16 (3) 1653 - 1675, September 2022.


Received: 1 June 2020; Revised: 1 October 2021; Published: September 2022
First available in Project Euclid: 19 July 2022

MathSciNet: MR4455895
zbMATH: 1498.62289
Digital Object Identifier: 10.1214/21-AOAS1561

Keywords: integrated nested Laplace approximation (INLA) , landslide , log-Gaussian Cox process , model complexity , space-varying regression , triggering event

Rights: Copyright © 2022 Institute of Mathematical Statistics

Vol.16 • No. 3 • September 2022
Back to Top