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Using aeroelastic stochastic simulations, this study presents an impor-
tance sampling method for assessing wind turbine reliability. As the size
of modern wind turbines gets larger, structural reliability analysis becomes
more important to prevent any catastrophic failures. At the design stage, op-
erational data do not exist or are scarce. Therefore, aeroelastic simulation
is often employed for reliability analysis. Importance sampling is one of
the powerful variance reduction techniques to mitigate computational bur-
den in stochastic simulations. In the literature, wind turbine reliability as-
sessment with importance sampling has been studied with a single variable,
wind speed. However, other atmospheric stability conditions also impose sub-
stantial stress on the turbine structure. Moreover, each environmental factor’s
effect on the turbine’s load response depends on other factors. This study in-
vestigates how multiple environmental factors collectively affect the turbine
reliability. Specifically, we devise a new nonparametric importance sampling
method that can quantify the contributions of each environmental factor and
its interactions with other factors, while avoiding computational problems
and data sparsity issue arising in rare event simulation. Our wind turbine case
study and numerical examples demonstrate the advantage of the proposed
approach.

1. Introduction. Wind energy is one of the largest sources of renewable electricity in
the U.S. (Aziz Ezzat, Jun and Ding (2019)). During the last decade, it contributed to 27% of
new capacity additions in the U.S. (Wiser et al. (2020)). In addition to new installations of
wind power plants, the growing size of utility-scale turbines contributes to the wind energy
penetration in the electricity market. Large blades increase a swept area (i.e., area through
which the blades spin) of the rotor, extracting more energy from wind (Ding (2019)). Thus,
in an effort to achieve economic competitiveness with conventional generators, wind turbine
size has been rapidly growing in the past few decades. The rotor diameter of a commercial
wind turbine was about 30 meters (m) in 1990-1995, whereas today’s modern land-based
turbine’s diameter is about 100 m or even longer (Wiser et al. (2016)). For supersized offshore
turbines, blade rotor diameters are expected to increase up to 190 m in the near future (Wiser
et al. (2016)).

While being more economic, the increasing size, on the other hand, renders the turbine
structure experience escalated stresses (Lee et al. (2013)). To avoid catastrophic structural
damages or failures, the International Electrotechnical Commission (IEC)’s design standards
require turbine manufactures to evaluate the turbine reliability at the design stage. However,
at the design stage operational data is not available oftentimes. Even if field measurement
campaigns can be conducted, they collect data for a short duration, so data obtained is not
sufficient to cover various load conditions (Lee et al. (2013)). Moreover, field campaigns are
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usually conducted only for selected prototype turbines, primarily due to enormous campaign
costs.

Thanks to the advent of computing power and sophisticated computer models, simulation-
based reliability evaluation has gained attention in the wind energy industry (Moriarty
(2008)). The U.S. Department of Energy (DOE)’s National Renewable Energy Laboratory
(NREL) has been developing and maintaining a set of computer models, including TurbSim
(Jonkman (2009)) and FAST (Jonkman and Buhl Jr (2005)), to simulate wind turbine oper-
ations. However, to make computer models closely mimic real systems, each simulation run
becomes computationally expensive which poses challenges to reliability evaluation, even
with advanced computing facilities. Moriarty (2008) used grid computing with 40 desktops
for weeks to simulate a wind turbine’s structural responses to various environmental condi-
tions. Manuel, Nguyen and Barone (2013) further used a Linux computer cluster with 1024
cores at the U.S. Sandia National Laboratory.

Broadly, there are two major approaches for the reliability estimation with stochastic simu-
lation: Monte Carlo sampling (MCS) approach and emulator-based approach. The emulator-
based approach builds a statistical surrogate model for estimating the response surface of the
computer model. Gaussian process (GP) gets popularity for constructing surrogate models
in the recent computer experiment literature. However, the emulator-based approach mainly
focuses on estimating the overall pattern of simulation output over an entire input space.
Cannamela, Garnier and Iooss (2008) discussed that emulators tend to smooth a response
surface and may not provide a good fit for the tail probability estimation. Thus, this study
focuses on the MCS approach.

To relieve the computational burden while improving estimation accuracy (in terms of es-
timation variance), variance reduction techniques can be employed (Cannamela, Garnier and
Iooss (2008)). Importance sampling (IS) is one of the most popular variance reduction tech-
niques to improve simulation efficiency in rare event simulation. Most IS studies consider
deterministic computer models that generate a fixed output at a given input (Dubourg, Su-
dret and Deheeger (2013), Givens and Raftery (1996), Kurtz and Song (2013), Neddermeyer
(2009)). Simulations with deterministic computer models are still called stochastic simula-
tions because inputs are often stochastic.

Unlike deterministic computer models, the NREL computer models (Turbsim/FAST) gen-
erate random load responses, given a fixed wind condition. We call such computer models
stochastic computer models. Further, when a computer model is a black box, it is called a
stochastic black box computer model. Choe, Byon and Chen (2015) derived the optimal IS
density for stochastic black box computer models, referred to as the stochastic IS (shortly,
SIS). However, the optimal density includes an unknown quantity. It is only theoretically op-
timal and cannot be directly implementable in practice. Several approximations have been
discussed in the literature (Cao and Choe (2019), Chen and Choe (2019), Choe, Byon and
Chen (2015)), and they have been applied to wind turbine reliability evaluation with a single
input variable, wind speed (Chen and Choe (2019), Choe, Pan and Byon (2016), Pan et al.
(2020)). A detailed review will be provided in Section 2.

This study is concerned with the wind turbine reliability analysis with multivariate en-
vironmental factors. While wind speed is the most important factor, atmospheric stability
conditions, such as turbulence intensity and wind shear, also substantially affect structural
loads (Gualtieri (2016)). For example, blade tip deflection, one of important load types, tends
to get large when the turbulence intensity or wind shear becomes strong (to be discussed in
detail in Section 3). Further, each variable’s marginal effect on the turbine reliability varies,
depending on other environmental variables, in other words, interaction effects exist.

To capture such complicated characteristics, we propose a nonparametric IS method that
does not require a prespecified density form a priori. Specifically, to handle the interaction
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effects of multivariate environmental factors, we devise a new multivariate kernel method.
Even though multiplicative kernels can handle interaction effects, they often suffer data spar-
sity issue in high-dimensional problems when sufficient data is not collected over the entire
input space. This issue is critical in the reliability assessment (more broadly, rare event sim-
ulations), because the main objective is to reduce simulation repetitions while minimizing
the estimation variance. Moreover, bandwidth selection in the multiplicative kernel becomes
more challenging, as the input dimension increases. To address these issues, our approach
constructs multiple bivariate kernels, each of which consists of two input environmental fac-
tors. Then, to approximate the optimal SIS density we combine the bivariate kernels in an
additive manner. In doing so, we assign different weights to each bivariate kernel to reflect
the contributions of each variable and its interaction effects with other variables on the re-
sponse. The proposed approach is referred to as the weighted additive multiplicative kernel
SIS method (WAMK-SIS) in this study.

Our wind turbine case study demonstrates that the proposed approach successfully iden-
tifies influential environmental variables and their interaction effects so that the simulation
process can be intelligently guided toward computational efficiency. As a result, our approach
significantly saves computational resources over the crude Monte Carlo (CMC) sampling and
outperforms alternative methods. We also present numerical examples to highlight the bene-
fits of the proposed approach in various settings.

The organization of the paper is as follows. Existing approaches are reviewed in Sec-
tion 2. Section 3 presents the proposed WAMK-SIS approach. We evaluate the performance
of WAMK-SIS, in comparison with alternatives, with numerical examples and the wind tur-
bine case study in Sections 4 and 5, respectively. Section 6 concludes the paper.

2. Literature review. This section reviews existing IS approaches used for the reliabil-
ity evaluation with computer models. Let X € R? denote a random input vector, following
a known density, f, where d denotes the dimension of X. From the input X a simulator
generates an output, ¥ € R.

We first review the IS approach, called DIS, when the simulator uses a deterministic com-
puter model where the output Y is a deterministic function of X, say, ¥ = g(X). With a black
box computer model, g(-) is not explicitly known but can be evaluated from simulation. In re-
liability analysis a quantity of interest is the failure probability, P(Y > 1) = Ex[I(g(X) > I)],
also known as probability of exceedance (POE), where [ denotes a structure’s resistance level
and I(-) is the indicator function.

The crude Monte Carlo (CMC) method is one of the simplest methods to estimate the
failure probability. In CMC we independently draw X;,i =1, 2, ..., N, from its density, f,
and then unbiasedly estimate the failure probability using the estimator

. 1 M
Peve = — > I(g(Xi) > 1),
Nr 5
where N7 is the total number of simulation replications. When the failure probability is
small, failure events rarely occur, and thus CMC requires a large number of replications until
a failure event is observed. It implies that, with computationally expensive computer models,
extensive computational resources are needed to obtain an accurate estimate.
To save computational budgets in rare event simulation, IS changes the sampling distribu-
tion of X from f(x) to another distribution, g (x), in an attempt to make failure events occur
more frequently with the following estimator:

f( )
(1) Pms——lg1 g(X;) > 1) TX’



NONPARAMETRIC IMPORTANCE SAMPLING 1853

which is an unbiased estimator under the condition that g(x) > 0, whenever I(g(x) >
[) f(x) > 0. The theoretically optimal density that minimizes the variance of Ppis (Rubinstein
and Kroese (2017)) is derived as

I(gx)>Dfx)

gpis(x) = P =1)

In fact, gpis(x) renders Var[ﬁDIs] zero. However, gpis(X) is not practically implementable
since I(g(x) > /) can be evaluated only by running the simulator with the unknown func-
tion g(x) and the denominator is exactly the quantity we want to estimate. Several methods
that approximate gpys(x) have been studied, including parametric approaches, for example,
cross entropy (CE) (de Boer et al. (2005)), metamodel-based (Dubourg, Sudret and Deheeger
(2013)) methods and nonparametric approaches (Givens and Raftery (1996), Neddermeyer
(2009)).

When the computer model is stochastic, unlike the deterministic computer model, the out-
put is random, even at a fixed input X = x. This is because a random vector, €, is embedded
(or hidden) inside the computer model. Therefore, we can express the output as ¥ = g(X, €)
(Choe, Byon and Chen (2015)). Because sampling € is uncontrollable, with a black box com-
puter model one cannot apply the IS approach to €. Instead, one can use IS to bias the density
of X only. Choe, Byon and Chen (2015) proposed an IS method for the stochastic black box
computer model and presented two estimators. The first estimator allows multiple replica-
tions at each sampled input, whereas the second estimator permits only one replication at
each input. Both estimators showed similar estimation performance (Choe, Byon and Chen
(2015)), and some advantages of the second estimator were discussed in Ko and Byon (2021).
Here, we briefly review the second estimator, defined as

; 1 & f(X)
(2) Ps;s=—) LY >1)———,
Nr ; T a(X)
where Y; is an output of X;,i=1,2,..., Nt. Its theoretically optimal IS density minimizing
the variance of Pgis in (2) is given by
1
(3) gsis(x) = C—f (X)v's(x),
q

where s(x) = P(Y > [|X = x) denotes the conditional failure probability or conditional POE
and Cy is the normalizing constant, that is, C;, = [, . f(X)+/s(x)dx (Choe, Byon and Chen
(2015)).

Since the conditional POE is unknown, finding a good estimation of s(x) is essential for
the success of SIS implementation. This is also analogue to the DIS method where finding
a good approximation of I(g(x) > [) in (1) is critical. Metamodel-based regression method
was used in Choe, Byon and Chen (2015), Choe, Pan and Byon (2016). Studies in Choe,
Lam and Byon (2018), Pan, Ko and Byon (2021) further quantified the estimation uncer-
tainties by constructing the confidence intervals. Recently, Pan et al. (2020) used the SIS
approach to efficiently estimate the extreme quantile of the response variable, given the tar-
get failure probability level. In these studies a single dimensional input has been considered.
With multivariate interacting inputs, constructing a high quality metamodel could be chal-
lenging. A poor quality metamodel might miss-specify important input regions, negatively
affecting the simulation efficiency.

To address the challenge in constructing a high-quality metamodel, Cao and Choe (2019)
employed the CE procedure with Gaussian mixture model (GMM), referred to as CE-SIS.
Specifically, they use multiple replications at the same input value, X;, to obtain a rough
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estimate of s(x;) and estimate the GMM parameters with the expectation maximization al-
gorithm. While CE-SIS works well for univariate input problems, its performance gets worse
and even underperforms CMC as the input dimension increases. Chen and Choe (2019) pro-
posed a two-step procedure where the data generated in the first step is used to estimate
the conditional POE, using either parametric or nonparametric regression models. The para-
metric approach has the same limitation in the aforementioned metamodel-based approach.
Their nonparametric approach focused on investigating how the budget allocations between
the two stages affect the overall performance, instead of obtaining a good kernel function to
approximate the optimal SIS density.

This study proposes a new nonparametric method that does not require a pre-specified
form in defining the IS density. In particular, we devise a multivariate kernel approach that
can capture the interaction effects among multiple input variables while taking the scalability
issue into consideration.

3. Methodology. This section first presents the wind turbine simulator and discusses the
proposed WAMK-SIS approach.

3.1. Wind turbine simulator. A set of NREL computer models, including TurbSim
(Jonkman (2009)) and FAST (Jonkman and Buhl Jr (2005)), have been widely used to simu-
late a wind turbine’s structural load responses (Manuel, Nguyen and Barone (2013), Moriarty
(2008)). Given the input environmental condition (e.g., wind speed, turbulence intensity and
wind shear) during a short specified time interval (e.g., 10 minutes), TurbSim generates
a three-dimensional spatiotemporal wind profile. It uses more than eight million random
variables to generate a stochastic wind profile around a rotor plane and passes it to FAST
(Jonkman (2009)). Thus, TurbSim is the main source of randomness in the wind turbine sim-
ulation. Then, FAST generates load responses during the corresponding time interval. We
consider the blade tip deflection (unit: m) as the output variable, Y, in this study. The tip
deflection is one of the important load types, because catastrophic failures may occur when a
deflected blade hits the tower (Choi et al. (2012), Kong, Bang and Sugiyama (2005)).

In addition to wind speed, V, other environmental factors associated with the atmospheric
stability condition, including the turbulence intensity, /, and wind shear, S, also affect the
load response (Gualtieri (2016)). Therefore, in this study we include them in our analysis and
define the input vector as X = (V, I, S). Following the international standard, [EC61400-1
(International Electrotechnical Commission (2005)), and industry practice, each replication
implies the simulation of wind turbine operation during a 10-minute interval. Then, the three
input variables are defined as follows (Jonkman (2009), Lee et al. (2015)):

e Wind speed, V: 10-minute average wind speed.

e Turbulence intensity, /: Coefficient of variation of wind speeds during a 10 minute inter-
val, that is, [ = %, where o is the standard deviation of wind speeds during a 10-minute
interval.

e Wind shear, S: Let V (h) denote the wind speed measured at height %, and let .t denote
the reference height (typically, a turbine’s hub height). Then, wind shear is defined as
S = InV(h)—InV (hyef)

Inh—Inhpet '

For the turbine model we use the NREL 5.0 MW baseline horizontal-axis wind turbine
with three blades (Jonkman et al. (2005)). Its rotor diameter is 126 m and hub height is 90 m.
Detailed turbine specification is available in Jonkman et al. (2005).

Figure 1 shows scatter plots between each environmental variable and blade tip deflection,
using data generated from the NREL simulators. Here, we use a large number of samples
(15,000 samples) for illustration purpose. In our actual case study we use much fewer sam-
ples in each experiment. The normalized output is obtained by dividing the tip deflection
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FI1G. 1. Scatter plots of the blade tip deflection vs. each environmental factor.

by the maximum value we obtain. All three variables affect the tip deflection, among which
wind speed appears to be the most significant factor, followed by turbulence intensity. The
variability of tip deflection gets larger, as wind speed increases. It implies that, under the
high wind speed regime, the influence of the other two variables may be more substantial,
compared to the low wind speed regime. We also observe similar patterns with the other two
variables, although the patterns are less clear.

Figure 2 further depicts the scatter plots of the tip deflection vs. environmental factors
under specific wind speed or turbulence intensity ranges. Notably, the effect of each envi-
ronmental variable depends on other environmental conditions. On the top panels, under the
high wind speed regime (see the rightmost figure), blade tip deflection rapidly changes as the
turbulence intensity increases, whereas the change is insignificant under the low wind speed
regime (see the leftmost figure). The middle panels show similar patterns; the influence of
wind shear becomes more obvious, as wind speed increases. These patterns explain the high
variability of the tip deflection under high wind speeds, as observed in Figure 1. Lastly, the
bottom panels suggest that the influence of wind shear does not appear to be affected by the
turbulence intensity significantly, although tip deflection tends to slowly grow as wind shear
increases when the turbulence intensity is low (see the leftmost figure).

In summary, the importance of each variable is different. Further, interaction effects exist
among the input variables, and the intensity of interaction effects are different. The interac-
tion effects between wind speed and turbulence intensity and between wind speed and wind
shear are substantial, whereas the pattern between turbulence intensity and wind shear is
less obvious. These aspects call for a new sampling strategy that accounts for the different
importance of each variable and the interactions among multiple environmental variables.

3.2. Weighted additive multivariate kernel method. This section devises a nonparametric
approximation of the SIS optimal density in (3) which enables us to capture the data char-
acteristics in wind turbine discussed in Section 3.1. In estimating gsis, the conditional POE,
s(x), needs to be estimated. Let Z; = [(Y; > [), thatis, Z; = [(g(X;, €) > [). We have

4) Z;|X; =x ~ Bernoulli(s(x)).

It implies that s(x) can be viewed as conditional expectation, E[Z;|X; = x] which allows us
to employ the kernel regression (Chen and Choe (2019), Nadaraya (1964)).
For the univariate input, x, the nonparametric estimator of s(x) becomes

L Y K
S(X) - n x—X; ’
i—1 K(=5)
where (X;, Z;),i =1,2,...,n, are the samples for the kernel regression, K (-) is a univariate

kernel function and /4 is the smoothing bandwidth. If X is a d-dimensional multivariate input
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FI1G. 2. Scatter plots of the blade tip deflection vs. environmental factors under specific wind speed or turbu-
lence intensity. Top panels: 4.1 <V <4.3,11.1 <V < 11.3, 23.1 < V < 23.3. Middle panels: 4.1 <V < 4.3,
11.1 < V < 11.3,23.1 < V <23.3. Bottom panels: 0.097 < I <0.1,0.247 < I <0.25,0.347 < I <0.35.

vector, a multivariate kernel function K;(-) is required. Then, the estimator at a point X =
(x1,...,x4) is defined as

—X; xg—Xid
anl Kd(XI la"'? )Zl
5) S =S
[led( h ) hy )
where (X;1,..., X4, Z;),i=1,2,...,n,1s the ith observation and Ay, ..., hy are the band-

widths for input variables.
The key is how to construct the multivariate kernel function, K;(-). In general, for a d vari-

able kernel regression estimator, the convergence rate will be O (h?) + Op(,/ #) (Fan and

Gijbels (2018), Wasserman (2006)), and under the optimal choice of 4, the rate is Op(n™ T ).
The simplest model for K;(-) in (5) is to use an additive kernel that is an addition of d uni-
variate kernels. The convergence rate of the additive model is fastest when the true model has
no interaction effects. However, it potentially has a large bias because it does not account for
interactions among input variables.
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To capture interaction effects, one can consider the multiplicative kernel (or full model),
a product of d univariate kernels. It will have the least asymptotic bias. However, it has the
slowest convergence rate, resulting in a data sparsity problem when we are unable to get a
sufficiently large amount of data in d dimensions. Noting that the fundamental goal of IS is
to reduce the computational burden, using the pure multiplicative kernel is not aligned well
with our main objective. Moreover, bandwidth selection is very important for the kernel re-
gression, especially when the sample size is small, but this procedure is challenging with the
full multiplicative kernel for large d. For the well-known leave-one-out cross-validation (CV)
method (Li and Racine (2007)), the bandwidth candidate set gets harder to specify properly,
and the set becomes very large, as d increases. Another approach is based on the asymptotic
mean integrated squared error (AMISE) (to be detailed in Section 3.3). But it requires nu-
merical integration over d-dimension, so it is unstable and computationally inefficient when
d is large.

To balance scalability and complexity, the additive multivariate kernel (AMK) is proposed

in Lee et al. (2015) where the estimator of the conditional mean function, m(x) := E[Y |X =
x|, defined as
(6) m(x) = %[m(x“)) + -+ (xF)].
Here, 7i(-) denotes the Nadaraya—Watson (N-W) kernel estimator, and xV, ... x®) are
K subdimensional projections of x. For example, for a d-dimensional input vector, x =
(x1,...,x4) (d > 3), we can let x(D = (x1, x2) which is a projection of x on the first two
dimensions. Other x*)’s can be similarly defined with a subset of input variables.

Kernel estimators in AMK are equally weighted. However, as discussed in Section 3.1,
input variables and their interactions affect the output differently. For the blade deflection,
wind speed and turbulence intensity and their interactions appear to be more important than
wind shear and its interaction with other two variables. Noting that more attention needs to
be paid to more influential variables, in order to identify important input area, we propose a
weighted AMK (WAMK) estimator that assigns different weights to each kernel,

() §x) =Y wid(xV),
k

where wy denotes the weight for the kth subkernel, § (x®), such that drwr=1.

In deciding the subkernels, either bivariate or trivariate kernels can be considered. How-
ever, fitting the trivariate subkernel to define the tail probability faces the aforementioned
data sparsity issue and computational problem in the bandwidth selection. Apparently, the
trivariate kernel requires a larger dataset to provide a reasonably good fit for estimating a
tail probability, negating the benefit of IS. In terms of the bandwidth selection, for exam-
ple, let us consider d = 4. With trivariate subkernels there are four subkernels in total; each
has three bandwidths. Optimizing 12 bandwidths is not trivial. Because it requires numerical
integration over triple variables, finding the bandwidths that minimize the AMISE is prac-
tically impossible. Also, applying the CV procedure to 12 bandwidths adds nonnegligible
computational overhead. This problem becomes more challenging, as d gets larger.

Most importantly, three (or higher)-factor interactions are weak in many engineering ap-
plications. Therefore, we assume g(-) has strong two-factor multiplicative interactions among
input variables and weak (or no) higher order interactions and define § (x5 using the bivari-
ate kernel. Our implementation results with numerical examples in Section 4 demonstrate
that our WAMK estimator with the bivariate kernels not only captures two-factor interactions
but also performs well, even when higher-order interactions exist.
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Suppose that x*) consists of two input variables, x,, and x,, that is, xX¥) = (x, x,). Let
5(xp, x4) denote a bivariate N-W estimator, defined as

—Xpi Xq—Xgi
®) 5(xp, xq) = = KZ(xphp = thq “)Zi
prXq) =

Xp—Xpi Xg—Xgi ’
1y Ko (Rt gy
where X ,; and X;, respectively, denote the ith samples of x; and x,. The subscript “2” in
K> (-) implies the bivariate multiplicative kernel, that is,

Ko(xp, xg) = K(xp)K(xg).

We call 5(xp, x4) a subestimator of s(x). In our implementation, K>(x,, x,) is chosen to be
a product of two univariate Gaussian kernels for x, and x;.
Then, the WAMK estimator, §(x), in (7) can be expressed as

©) S0= Y wpgFp, xg),

1<p<q=d

for d > 2, where w), is the weight assigned to the subestimator, §(xp, xg).

Next, we need to decide the weight for each subestimator. Recall that Z; in (4) is a
Bernoulli random variable with the success probability, s(x). To measure the goodness of
5(xp, x4) for s(x), we use the cross-entropy error function which is widely used in binary
classifications (Bishop (2006)). The error function for the subestimator, §(x,, x4), can be
defined as

n
(10) e(p.q) = — I NZiE X pi, Xg1)) + (1 = Z) In(1 = (X pi, Xg1))}-
i=1

Note that the error function, e(p, g), gets smaller as the estimation performance of
5(xp,x4) for Z; gets stronger. Therefore, the smaller the error function of a subestimator,
the greater the weight should be assigned to it. Thus, we propose to define the weight as

_ 1/e(p,q)
Zlfp’<q/§d l/e(p/’ q/)

Admittedly, our choice of weights in (10)—(11) may not provide correct weights (e.g., con-
sistent weights), even when the true s(x) takes the form of ) pg W p.q8(Xp, xg). However,
our choice is based on the “likelihood” of the Bernoulli distribution. The cross-entropy error
e(p, q) in (10) is the negative of log-likelihood for the bivariate case and quantifies the good-
ness of fit of §(x,, x;). Our setting with multiple variables for d > 3 is more complicated
because Z; is a function of all input variables (not only x, and x,). As such, the cross-
entropy error is not exactly the negative log-likelihood. Further, we set w,e < 1/e(p, g) in
(11) which complicates the derivation of theoretical properties of w .. Regardless, it carries
the fundamental idea of likelihood, measuring the fit of each subkernel 5(-).

an Wpe

3.3. Bandwidth selection. Bandwidth selection is critical in the multivariate kernel re-
gression. In our wind turbine case we need to choose six bandwidths with three variables,
(three subestimators, each with two bandwidths). Optimizing six bandwidths is challenging.
The well-known leave-one-out CV approach (Fan and Yim (2004)) is computationally inten-
sive when the candidate set is large. Further, it needs to set a candidate set a priori such that
the candidate set includes good bandwidths. If not, §(x,, x,) would possibly deviate from
true s(xp, x4).

In this study we employ the AMISE-based approach. Noting that each subestima-
tor, $(xp, xy), is an estimator of s(x,,x,) = P(Y > I|X, = x,, X, = x4), we separately
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choose bandwidths for each subestimator by minimizing the corresponding AMISE. With-
out loss of generality, let us consider the general form of s-dimensional multiplicative kernel
Kg(x1,...,xs) =[Ii_; K(x;) for the subestimator, 5(x®)), with x® = (xi, ..., xs); in the
wind turbine case study, K (-) is a bivariate kernel, K> (-). The mean integrated squared error
(MISE) of §(x®) is defined as

MISE(5 (x¥)) = / MSE(5 (x©)) dx®

_ / E[G(x®) — sx®))2]ax®.

Under some regularity conditions the asymptotic distribution of §(x*)) satisfies the following
(Bierens (1987), Hansen (2009), Li and Racine (2007)):

2 (k)
(12) ,/n|H|<§(X(k>)_s(X(k)) MZ(K)ZB (x®)h ) N N(o,a(’f )R(Ks))

= h(x®))

Below, we explain notations in (12). First, |H| =[]}_, h;, and p»(K) = [ x?K (x) dx which
becomes one when K is the Gaussian kernel. Further, we have

o?(x®) = var(z|X® =x®) = 5(xP) (1 — 5(x¥)),
because Z|X® = x® obeys the Bernoulli distribution with probability §(x*)). Moreover,

R(Ky) Z/KS(X(k))ZdX(k),

(3) _105x%) 9h(x®) 19%5(x®)

B;(x¥) = h(x®)

. . 2.2 ¢
0x; 0x; 2 9 X5
where /1(x®) denotes the limiting pdf of f(x®) = -y 1 x® — x®)y) with
*) 1o , k ,
X, being the kth input sample of X®  that is,
~ 1 n ~
14 Fe) = SR RO X)) > )
n
i=1

Here, the first term in B; (x(k)) in (13) is called design bias, implying the bias from the de-
sign/covariates distribution, / should be the true pdf of the covariates and f happens to be a
good kernel density estimator.

From (12), as n increases, the MSE of §(x*)) becomes

2x)R(Ky)
MSE (5 (x® K 2B;x9)) + o (XTI R(K)

S (S ) ¢ TR

which leads to the AMISE of 5(x®), as follows:
AMISE(5(x®))
(15) s 2 R(Ky) [ o2(x®)
~ 11y (K)2 / B (xM)n2) ax® + s i ax®
MQ( ) (]2 j( ) J ”Hle hi h(x(k))
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Algorithm 1 Bandwidth selection for the subestimator §(x, x,)

1: (Initialization) Initialize the bandwidth for each variable by considering a univariate
kernel regression with the corresponding variable.
while Convergence condition is not met do
Use the current bandwidths to get § (x%)).
Update B;(x®) in (13) with §(x¥)) and estimate o2(x®) with §(x®) (1 — §(x®)).
Optimize AMISE in (16) to obtain new bandwidths.
Set the new bandwidths as current bandwidths
end while
: Output: /1, hy

e AN i

For the bivariate kernel, AMISE(5(x*))) becomes
AMISE(5(x©))
RK) [ o?x®) g
nhihs h(X(k))
R(Ky) (51 =561 g
nhihs h(x®)

ne [ BICER + B YRR ax®

= [ (BIx®)iE + Ba(x)i3) ax) +

Then, the bandwidths can be determined by minimizing AMISE(§(x¥)). Here, because
ft(x(k)) is unknown, we replace it with the sampling density, f (x®)), defined in (14), in our
implementation.

If §(x®) is a univariate kernel estimator, its bandwidth can be chosen by directly minimiz-
ing AMISE, using existing numerical optimization methods. However, for bivariate cases, it
takes significant time to get the optimal bandwidths with existing optimization solvers. We
note that AMISE(S(x®)) in (16) (or (15) for general multivarite kernels) involves § (x®))
(B; (x®)), defined in (13), also requires §(x)). If §(x*)) is known, & and A, can be ob-
tained by minimizing AMISE in (16). But § (x%)) is unknown. In fact, to define §(x©), we
also need the bandwidths.

To address these difficulties, we choose bandwidths using an iterative algorithm. The idea
is to estimate §(x)) with the current incumbent bandwidth values and solve (16) to get new
hy and hy. Then, we update s (X(k)) with new A and h,. We iterate this procedure until the
change of 21 and /7 in consecutive iterations becomes insignificant. To initialize the iteration,
we obtain the initial bandwidths by considering the univariate kernel regression with each
variable. In our implementation, we observe that a couple of iterations is enough; we repeat
the iteration three times. Algorithm 1 describes the bandwidth selection procedure for the
bivariate subestimator §(x®)) with x®) = (x psXg)-

We illustrate the proposed bandwidth selection result using the numerical example pre-
sented in Section 4.1. To show how the errors change as a function of two bandwidths,
we set X3 = 0. Thus, we have Y ~ N(u1(X1, X2,0), 1), and the true conditional failure
probability becomes a function of X| and X5, where p(-) is defined in (21). To construct
the bivariate kernel, we get 1000 samples of X; and X; from U (-5, 5) and then gener-
ate corresponding response. Then we evaluate each pair of bandwidths (41, hy) using the
average of the squared errors at multiple grid points. Specifically, we compute MSE be-
tween the kernel estimate and the true conditional failure probability at 10,000 points of
(x1,x2) € {(—4.9,—-4.8,—4.7,...,5) x (—4.9,—-4.8,—-4.7,...,5)}. Figure 3 depicts con-
tour plots of MSE vs. (h1, hy) from the proposed AMISE-based procedure. The left panel is
the case where the initial bandwidth is obtained from the kernel regression with each variable,
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F1G. 3. Contour plots of MSE vs. bandwidths (hy, hy). On the left panel the initial bandwidths are selected with
the univariate AMISE. On the right panel the initial bandwidths are chosen arbitrarily at (1.5, 1.5). The line with
black solid circles in each figure shows the trajectory of the bandwidths using Algorithm 1.

while the right panel shows the trajectory from an arbitrarily selected, somewhat bad, initial
point. In both cases the bandwidths converge well within a small number of iterations.
While our procedure does not guarantee the optimal bandwidth choice, it appears to gen-
erate a sufficiently good one. Unlike CV, our AMISE-based procedure provides a solution
directly without defining candidate sets. It converges to reasonably good choices in a small
number of iterations in most cases, and thus it is computationally more efficient than CV.

3.4. Sampling from IS density. Once the bandwidths are determined, we get the WAMK
estimator, §(x), in (9). We replace s(x) with §(x) to approximate the optimal SIS density
gsis(x) in (3). The resulting nonparametric SIS density, denoted by g;sis, 1S

1
amn dnsis(X) = = (X) $(x),
q

where C (’1 is a normalizing constant. This nonparametric SIS density provides unbiased esti-
mation, because ¢,s1s(x) > 0 whenever f(x)s(x) > 0.

To sample the input from the nonparametric SIS density, we use the acceptance-rejection
algorithm, which can be implemented without knowing the normalizing constant, C/,, in (17)
(Choe, Byon and Chen (2015)). Since f(x)/§(X) < f(x), we simply use f(x) as the pro-
posal density. The algorithm is described in Algorithm 2. We repeat this procedure until a
prespecified number of samples are accepted.

3.5. Sequential procedure and implementation guideline. To fully utilize samples, we
take a sequential procedure in implementing WAMK-SIS. That is, after we get new samples
at each iteration, we update the kernel estimator, §(x), using the samples obtained up to the
current iteration to better estimate s(x) and use it at the next iteration. Let §)(x) denote the
WAMK estimator used at the zth iteration. From (17) the nonparametric SIS density at the

Algorithm 2 Sampling from IS density
1: Sample x from the input density, f.
2: Sample u from the uniform distribution U (0, f(x)).
3: u < f(x)v/$(x), accept x as a sample. Otherwise, reject the value of x.
4: Output: x
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Algorithm 3 WAMK-SIS procedure

1: Input: Set the iteration number m, sample size N fort =0,...,m, ¢@, where N©
and ¢© (e.g., uniform distribution) denote the sample size and sampling density of initial
samples, respectively.

2: (Initialization) Sample input value X l.(o) from density ¢®, and run simulation to get
output value Yi(o), i=1,...,NO Setr=1.

3: while r <m do

Update bandwidths for subestimators using Algorithm 1 with the aggregated data sam-

pled up to the previous iteration.

Obtain each subestimator defined in (8) with the aggregated data.

Obtain the weight for each subestimator using (10)—(11).

Obtain the conditional POE estimator in (7), and set it as § (x).

Obtain anIS (x) in (18).

Sample input value X l( ) from density qr(fs)ls (x) using Algorithm 2, and run simulation

R A

to get output value Yl-(t), i=1,...,NO,
10: Ift <m,sett =t+ 1; otherwise, estimate the POE using the estimator in (19) or (20).
11: end while
12: Output: Pgg or ﬁs(?s)

tth iteration becomes

1
(18) 451530 = 5 LRS00,
q

Then, the failure probability can be estimated by

m 1 N® f(X(t))
()
Pus= 3 LS sy LA
miZ NO = r(ztS)IS(X(Z))

19
( ) 1 N® C(y)

c o)
!
E 0 Iy, > 1)

1

— l Sl B

mio NS VEOX")

where m is the number of iterations, N*) is the sample size for iteration  and (X () Yi(t)), i =

1,...,N® denote the samples drawn at iteration ¢. The total sample size is Ny = /L N ®,

With the multivariate input the normalizing constant Cg) in (19) is often numerically un-
stable, in particular, when the input dimension, d, is 3 or higher. In such cases we can instead

use the selfnormalized estimator (Owen (2013)), ﬁs(?s)’ defined as

)
(20) P _ 156%{@“ >0 f X /aO X"
SIS - (1)
m SIS N &g 0
In our implementation we use the selfnormalized estimator in (20). We summarize the
WAMK-SIS procedure in Algorithm 3.

4. Numerical examples. We evaluate the performance of WAMK-SIS using three nu-
merical examples with different features. We also compare its performance with alternative
approaches. First, we consider CE-SIS where GMM is employed to approximate the optimal
SIS density (Cao and Choe (2019)). Additionally, to investigate how much weighted kernels
contribute to the efficiency, we compare the performance of WAMK-SIS with its unweighted
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version, called AMK-SIS. The AMK-SIS uses equal weights in all subestimators for defining
the conditional POE estimator in (7).

4.1. Example 1: Three-dimensional input with weak high-order interaction effect. We
slightly modify the example presented in Cao and Choe (2019), Ackley (2012) and consider
the following data-generating structure:

X~ N(O,1),Y X~ N(uX),1),

where X = (X1.X3, X3) is a three-dimensional input variable and

X? 4 X2
1 (X) = 65 — 40exp(—o.2,/ %) —20exp(—0.2|X 1)
X2+ X2
1) - 5exp<—0.2,/ %) — Y explcos@nX; X))

1<i<j<3
— exp(cos(2 X1 X2X3)).

With [ = 17.90, we obtain the target failure probability, P, = 0.01, with a large-scale
Monte Carlo simulation with 107 runs. We evaluate the performance of each method using
relative ratio (RR), defined as RR = N7 /Ncwmc, where Neoyc is the number of CMC simu-
lation replications required to achieve the same standard error (SE) of each method (Choe,
Byon and Chen (2015)), defined as
P (- P)

SE?

We first examine the effectiveness of WAMK among different choices of kernel regression.
Because (21) includes the three-factor interaction, the simplest additive model has a large
bias in estimating s(x). The full multiplicative model with the trivariate kernel has the least
asymptotic bias but has the slow convergence rate. The proposed WAMK is an intermediate
version of these two extreme cases.

Table 1 compares the results with three different kernels, including SIS with weighted
additive model (WAK-SIS), three-factor multiplicative model (MK-SIS) and WAMK-SIS. In
WAK-SIS the weights for individual univariate kernels are decided using the cross-entropy
error functions, similar to (10)—(11). In all cases, Gaussian kernel is employed. We conduct
experiments with different computational budgets, shown in the second column. We setm =5
at each experiment. The sample size in the second column is the total number of simulation
runs in the five iterations. When the sample size is small, MK-SIS generates poor results. It
even generates a biased POE estimation with 500 sample size, because §(x) becomes zero
(or close to zero) for some input regions and MK-SIS possibly misses some important areas.
Its sample errors and RR are also higher than WAMK-SIS when the sample size is 250 and
1000, implying that the full model is unstable. With larger sample sizes, the performance of
MK-SIS becomes better than WAMK-SIS.

On the other hand, WAK-SIS consistently produces worse results than WAMK-SIS, due
to its large bias in estimating s(x). Interestingly, despite its biased estimation of s(x), the
sample mean from the additive model, shown in the third column of Table 1, is always around
the true failure probability, 0.01, so it appears to provide an unbiased POE estimation. It
implies that the support of WAK-SIS density covers the support of p(x)s(x). Overall, the
results demonstrate that WAMK-SIS balances between the full model and additive model. Its
performance is the most stable among the three kernel choices.

Finally, we compare our approach with AMK-SIS and CE-SIS. We use N = 1000 and
N® =1000, r = 1,...,5. Table 2 summarizes the results from 100 experiments of each

Neme =
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TABLE 1
Comparison results between different kernel regressions for Example 1

Kernel type Sample Size Mean SE RR

MK-SIS 250 0.013445 0.008979 203.69%
WAMK-SIS 250 0.009927 0.003828 37.00%
WAK-SIS 250 0.010853 0.005336 71.89%
MK-SIS 1000 0.010609 0.001794 32.52%
WAMK-SIS 1000 0.010039 0.001657 27.73%
WAK-SIS 1000 0.010035 0.002511 63.69%
MK-SIS 2500 0.010028 0.000857 18.56%
WAMK-SIS 2500 0.009797 0.001074 29.73%
WAK-SIS 2500 0.009772 0.001467 54.36%
MK-SIS 5000 0.010142 0.000617 19.24%
WAMK-SIS 5000 0.010025 0.000769 29.86%
WAK-SIS 5000 0.010075 0.000982 48.67%

method. All of the three IS methods show variance reduction results over CMC. Among
them, WAMK-SIS achieves the smallest SE and RR. By allowing different weights for the
three subestimators, WAMK-SIS outperforms AMK-SIS. The CE-SIS method determines
weights for mixture densities, depending on the importance of component densities, but it
does not show strong estimation performance. Interestingly, even AMK-SIS, which uses the
equal weight, produces lower SE and RR than CE-SIS.

As a remark, recall that we discuss the limitation of the emulator-based approach for the
tail probability estimation in Section 1. Another caveat in the emulator-based approach with
multivariate input vectors is the difficulty in integrating the conditional probability. Suppose
we obtain an emulator, say, ﬁ(Y > [|X), for the conditional failure probability. To estimate
P(Y > 1), we need to integrate the estimated conditional density over X. However, numerical
integration over three or higher dimensional input variables is unstable and takes a significant
amount of time. We fit the GP in this example with the same sample size and numerically
integrate it to calculate the tail probability. However, the resulting value was not even close
to the target tail probability, 0.01. It indicates that the tail probability estimation is sensitive
to the emulator quality and the accuracy of multidimensional numerical integration.

4.2. Example 2: Four-dimensional input with weak high-order interaction effect. 'We fur-
ther consider a problem with four-dimensional input and three-way interaction effects,

(22) X~ N(@O,I), YIX~ N(u2X), 1),

TABLE 2
Comparison results from 100 experiments for Example 1

Method Mean SE RR
WAMK-SIS 0.010025 0.000769 29.86%
AMK-SIS 0.010032 0.000898 40.74%

CE-SIS 0.009925 0.001251 78.99%




NONPARAMETRIC IMPORTANCE SAMPLING 1865

TABLE 3
Comparison results from 100 experiments for Example 2

Method Mean SE RR

WAMK-SIS 0.009940 0.000791 31.64%
AMK-SIS 0.010085 0.000929 43.56%
CE-SIS 0.009802 0.002867 415.07%

where X = (X1.X>7, X3, X4) is a four-dimensional input variable and

X? 4+ x2
1 (X) =65 — 40exp<—0.2,/ %) —20exp(—0.2|X1])
[X2 4+ X2 + X2
- 56Xp<—0.2 %) - Z exp(cos(2r X; X j)).

1<i<j<3

(23)

We set | = 18.99, corresponding to the failure probability P, = 0.01. We use the same setting
as in Section 4.1. In this example, three-way interaction exists among X7, X3 and X4 in
addition to the two-factor interactions characterized by the first and last terms in w7 (X).

Table 3 shows that WAMK-SIS provides the lowest SE and RR among the three methods,
demonstrating that it handles higher-order interaction effects well. CE-SIS performs poorly
and even underperforms CMC. This agrees with the results presented in Cao and Choe (2019)
where the performance of CE-SIS gets quickly deteriorated, as the input dimension increases.

Figure 4 depicts the trajectories of weights for the subestimators in WAMK-SIS. From the
data generating structure in (22)—(23), the interaction effects between X and X» are the most
significant, and X1 appears to be the most influential input variable. Accordingly, the bivariate
subestimator with X; and X7, §(x1, x2), gets the highest weight throughout iterations. The
reason the two subestimators, §(x, x3) and s(xq, x4), get nonnegligible weights is due to
the importance of X;. The other three subestimators get quite small weights. This result
demonstrates that WAMK-SIS successfully captures the importance of each variable and
intensity of interaction effects.

4.3. Example 3: Four-dimensional input with strong high-order interaction effect. Next,
let us consider the example that exhibits strong interaction effects among four-dimensional

1.004
Kernel
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— 1and 3
<

% 0.50 1 -=- 1and 4
= —+= 2and3
2and 4
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[ SO A S P [ - 3and 4
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FIG. 4. Example of weight trajectories of six subestimators in Example 2.
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TABLE 4
Comparison results from 100 experiments for Example 3

Method Mean SE RR

WAMK-SIS 0.010113 0.001083 59.29%
AMK-SIS 0.010000 0.001075 58.38%
CE-SIS 0.010089 0.001827 168.67%

input variables with the following complicated structure (Cao and Choe (2019)):
X~ N(,I), YIX~ N(u3X), 1),

where X = (X.X>, X3, X4) is a four-dimensional input and

13(X) =20(1—exp<—02 lIIXIIZ))—i- exp(l) —exp lX“:cos(2nX-)
V4 4= 1)

We set the threshold at [ = 8.70, corresponding to the failure probability P; = 0.01. We use
the same setup as in Examples 1 and 2.

In Table 4, WAMK-SIS still significantly outperforms CE-SIS in this example. WAMK-
SIS and AMK-SIS provide comparable computational gains. This is because the conditional
density of the response variable is symmetric, and all input variables equally affect the re-
sponse. As a result, the weights assigned to all bivariate kernels in WAMK-SIS are almost
equal. In this four-dimensional case, CE-SIS presents a worse performance than CMC. Over-
all, these results demonstrate the promising performance of WAMK-SIS in the presence of
high-order (more than two) interaction effects.

5. Wind turbine case study.

5.1. Problem setting. As discussed in Section 3.1, we use wind speed, V, turbulence in-
tensity, / and wind shear, S, as input variables, and the 10-minute maximum tip deflection,
generated by the NREL simulators, as an output variable, Y. Specifically, we use TurbSim
(version 1.50) (Jonkman (2009)) and FAST (version 7.01.00a-bjj) (Jonkman and Buhl Jr
(2005)). To evaluate the wind turbine reliability, we are interested in estimating the probabil-
ity of blade tip deflection exceeding a prespecified threshold /. We set [ = 2.06 (corresponding
to 25.4 % in the normalized value in Figures 1 and 2).

For the wind speed density, denoted as fy (x1), we employ a truncated Rayleigh distribu-
tion on the interval [3, 25] (m/s) with the scale parameter, 10./2 /7, as suggested in Moriarty
(2008). Here, 3 m/s is the smallest wind speed at which a turbine starts operation, whereas a
turbine stops when wind speed exceeds 25 m/s to protect the turbine structure under strong
gust. For turbulence intensity, /, TurbSim user’s guide (Jonkman (2009)) provides several
turbulence models describing the relationship between V and /. In our study we use Normal
Turbulence Model (NTM) Class B, one of the most popular turbulence models. In this model
the turbulence intensity is formulated as a function of wind speed. Specifically, we consider
the conditional mean and variance of I, given V, as

wr (V)£ E[IV]=0.14(0.75V +5.6)/ V,

(24) .
oy =SD[I|V]=0.05.
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FI1G. 5. Example of weight trajectories of three subestimators in the wind turbine case study.

Because [ is positive, I conditioning on V is assumed to obey the log-normal distribution.
From (24) the conditional distribution, f7v (x2), of turbulence intensity, given V, becomes

2 2
Vv
11V ~ Lognormal(log(M) 10g<1 + 0_1>)

J3(V) +o? ui(v)

Lastly, the density of wind shear also depends on the wind speed. TurbSim user guide
does not provide the wind shear model. Thus, we use observational data from an actual wind
turbine, available at Advance Metrology Lab (2020). We fit a linear regression model using
the ordinary least squares method and get

us(V) 2 E[S|V]=2.63 x 107*V3 = 1.09 x 1072V?
+1.285x107'v —1.32 x 1071,
os(V)2 SD[S|V]=7.767 x 107°V3 —3.43 x 1073V?
+34x1072V +13x 107

Then, the conditional distribution of wind shear, S, given V, with density fgjv(x3), is as-
sumed to be the normal distribution as

S|V ~ N(us(V), 05(V)).
Thus, we obtain the joint probability density function of three environmental variables as
Sv.r,s(x1, x2,x3) = fv(x1) friv(x2) fs)1,v (x3)

= fv(x1) friv (x2) fsjv (x3).

5.2. Implementation results. We use N© =600 and N =200, ¢t =1, ..., 10. We first
investigate the importance of each bivariate kernel in WAMK-SIS. Recall that among the
three variables, wind speed appears to be the most influential factor (see Figure 1). Further,
as observed in Figure 2, the interaction effects between wind speed and turbulence intensity
(the top panel) are the most strong, followed by the interaction between wind speed and
wind shear (the middle panel). The weight trajectories from WAMK-SIS, shown in Figure 5,
reflect such different importance of each subestimator. The subestimator with wind speed
and turbulence intensity gets the largest weight at around 50%, whereas the smallest weight
is assigned to the subestimator with the turbulence intensity and wind shear.

Another interesting point is that, as iterations proceed and more data is collected, WAMK-
SIS fine-tunes the weights so that the subestimator with (V, I') gets more weights, whereas the
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FiG. 6. s(V,I),s(V,S)and5(1,S) in wind turbine case study.

weight for the (V, S) subestimator gets slightly decreasing. This is somewhat different from
Figure 4 of Example 2, where the weight trajectories do not exhibit any changing patterns.
We believe the difference is because we use a larger sample size, 1000, at each iteration in
the numerical example, so WAMK-SIS quickly learns the importance structure, even in early
iterations. In the wind turbine case study, due to the computational burden in running the wind
turbine simulator, we use a smaller sample size, 200, so WAMK-SIS learns proper weights
slower than it does in the numerical example case. However, even in this case study, we can
see that the weight allocation does not change substantially over iterations. It indicates that
WAMK-SIS captures the importance of each variable and its interaction effects quickly from
early iterations.

Figure 6 further depicts the three subestimators, each with two environmental conditions.
The darker color is, the higher subestimator value is. It clearly demonstrates how the regres-
sion function s(x,, x4) looks in each component and helps understand where failure events
likely happen. This is a salient feature of the proposed approach with bivariate subkernels
which cannot be achieved with the full three-factor multiplicative kernel. Note that the fig-
ures echo the results in Figure 5 and agree with our observations in Figure 2. We can see
substantial interaction effects in (V, I) and (V, S) pairs. The leftmost figure for 5(V, I') sug-
gests that, at mid speed range (e.g., at V = 15), the conditional POE becomes larger when
the turbulence intensity gets higher, whereas at the low or high speed (e.g., at V =5 or 25),
the effect of turbulence intensity is almost negligible, and only wind speed largely affects the
conditional POE.

A similar pattern is observed in §(V, S) in Figure 6, when wind shear, S, is positive.
Interestingly, s(V, S) tends to increase when wind speed gets large and wind shear becomes
smaller below 0. Note that wind shear measures the wind stability in the vertical direction.
Typically, wind speed increases at a higher location. The negative value of wind shear means
that wind speed at a higher location is smaller than that at a lower location (see its definition
in Section 3.1). Such negative wind shear happens at very unstable wind conditions and
negatively affects the turbine reliability. Lastly, s(/, S) tends to slightly increase as either
I or |S]| gets larger. Unlike the other two pairs, the interaction between turbulence intensity
and wind shear appears to be insignificant which explains the small weight for 5(/, S) in
Figure 5.

Table 5 compares the results based on 25 repetitions of each method. All methods use the
same computational budgets, that is, N © =600 and N =200, =1,...,10. WAMK-SIS
provides the best results in terms of SE and RR. It turns out that CE-SIS does not provide
computational advantage over CMC.

6. Conclusion. This study proposes a nonparametric IS method with multiple interact-
ing input variables. Our method can automatically approximate the unknown conditional
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TABLE 5
Comparison results from 25 experiments for the wind turbine case study

Method Mean SE RR

WAMK-SIS 0.049218 0.003413 49.05%
AMK-SIS 0.048078 0.004514 85.81%
CE-SIS 0.050101 0.013824 804.65%

POE, s(x), appearing in the optimal SIS density for stochastic computer models. Motivated
from the wind energy application, our approach is designed to estimate the conditional POE
with a multidimensional input vector and to capture the interaction effects without causing
computational or data sparsity problems. It also accounts for the contribution of each input
variable on the output of interests by assigning different weights to subestimators.

The numerical studies in a wide range of settings and the wind turbine case study evalu-
ate the WAMK-SIS performance in comparison with the alternative approaches. The results
show that WAMK-SIS considerably outperforms CE-SIS when input dimension gets larger.
WAMK-SIS also makes notable improvements over AMK-SIS, when the effects of input vari-
ables are different. While our approach primarily aims to capture two-factor multiplicative
interactions, it appears to perform well when weak higher-order interactions exist.

In the future we plan to extend the analysis with more input variables. For an offshore wind
turbine, additional environmental variables, such as wave height, should be considered. With
a higher dimensional input vector, we plan to devise a subestimator selection procedure which
could be similar to the variable selection in general regression problems. In the subestimator
selection procedure, some negligible subestimators, to which small weights are assigned, can
be dropped during the iterative process which may help avoid an overfitting issue and prevent
an unnecessarily complicated form for defining the IS density.

The feasibility of using the proposed method would depend on the simulation run time
and available computational resources. In our case study each run takes about one minute,
and we use a server with 25 cores. If each run needs more time, for example, hours, and/or
computational resource is limited, we may reduce the sample size at the expense of deteri-
orated estimation accuracy. For extremely complex simulations that require several days or
even weeks for each run, our approach may not be a feasible option. Reliability analysis with
complex simulators that require long run times is another subject of our future study.
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