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We analyse levels and trends of intergenerational social class mobility
among three postwar birth cohorts in Britain and examine how much of the
observed mobility or immobility in them could be accounted for by exist-
ing differences in educational attainment between people from different class
backgrounds. We propose for this purpose a method which quantifies associ-
ations between categorical variables when we compare groups which differ
only in the distribution of a mediating variable, such as education. This is
analogous to estimation of indirect effects in causal mediation analysis but
is here developed to define and estimate population associations of variables.
We propose estimators for these associations which depend only on fitted val-
ues from models for the mediator and outcome variables, and propose vari-
ance estimators for them. The analysis shows that the part that differences in
education play in intergenerational class mobility is by no means so dominant
as has been supposed and that, while it varies with gender and with particular
mobility transitions, it shows no tendency to change over time.

1. Introduction. In recent years social mobility has become a central political concern
in many societies, and notably so in the U.K. and the U.S. Under conditions of increasing
economic and social inequality, growing attention has centred on rates and trends in mobility
between generations. Economists have typically focused on mobility within the income dis-
tribution and sociologists on mobility between social strata defined in various ways. Of late,
an increasing amount of research has been carried out on mobility between social classes,
defined as collectivities whose members are involved in differing employment relations (see
further Goldthorpe (2007), Chapter 5). In the U.K. this understanding of social class is em-
bodied in the categories of the Office for National Statistics Socio-Economic Classification
(NS-SEC) which is operationalised through employment status and detailed occupational
codes (Rose and Pevalin (2003), Office for National Statistics (2005)). In this article we ex-
amine social class mobility in the U.K. over recent decades, using data from the three British
birth cohort studies of individuals who were born in 1946, 1958 and 1970.

For this approach, analysis starts from a two-way mobility table which cross-classifies
individuals by their class of origin, their parents’ class, and class of destination, their own
class once they have reached mid-life. What is referred to as absolute mobility is defined
simply by percentages of change in this table. The total mobility rate is the proportion of
individuals whose class destination is different from their class origin, and, to the extent
that the classes are ordered, this rate can be decomposed into its “upward” and “downward”
components. Absolute rates will obviously be influenced by the marginal distributions of
origins and destinations which reflect changes in the overall class structure over time.
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In contrast, relative mobility concerns individuals’ mobility chances considered net of such
structural change. This can be summarized by associations between origins and destinations
in the mobility table. They are normally quantified using odds ratios which compare the
conditional probabilities of individuals in one rather than another of two classes of origin
being found in one rather than another of two classes of destination. Because odds ratios
can vary independently of the marginal distributions of origins and destinations, they are
particularly suitable for describing levels of relative mobility. An odds ratio of 1 implies no
association or a situation of “perfect mobility,” while ratios further from 1 indicate greater
inequality in relative mobility chances or lower “fluidity” within the class structure.

Results from a large body of research show that changes in absolute rates of class mobility
within countries and differences between countries—both of which can be substantial—are
overwhelmingly driven by changes in the class structure, whereas relative rates show a high
degree of constancy over time and across countries. Although some variation in these rates oc-
curs, it appears generally slight and unsystematic. In particular, no well-sustained and general
equalisation in relative rates over time is apparent (for Britain, see Bukodi and Goldthorpe
(2018), for the U.S., Mitnik, Cumberworth and Grusky (2016) and for cross-national re-
sults, Erikson and Goldthorpe (1992), Bukodi, Paskov and Nolan (2020), Bukodi and Paskov
(2020), and Breen and Müller (2020)).

Moving beyond bivariate analysis of origins and destinations, an important further ques-
tion is what role is played by education in relative social mobility (see Bukodi and Goldthorpe
(2018)). It is plausible that education could “mediate” lack of mobility, if individuals from
different class origins have different distributions of educational qualifications and education
in turn affects their chances of reaching different classes of destination (see Figure 1, where
the arrows indicate the time order in which these characteristics are realised). In political and
policy circles, education is widely regarded as being key to increasing social mobility. With
educational expansion and reform, it is believed, an “education-based meritocracy” can be
brought into being in which the association between individuals’ social origins and educa-
tional attainment is reduced, by being made more dependent on “merit” than on, say, mere
accidents of birth so that the overall association between origins and destinations will also be
weakened. However, the degree of constancy in rates of relative mobility that has been ob-
served across very different educational settings must call into doubt whether education can
in this way serve as the essential means of breaking the link between inequality of condition
and inequality of opportunity.

To put the matter otherwise, what the belief in education as the key to mobility presumes
is that the overall association between origins and destinations very largely results from the
“indirect” associations existing between origins and education and then between education
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FIG. 1. The setup of basic mediation analysis of three variables. The names of variables in parentheses refer to
the social mobility example considered in the article.
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and destinations (the latter being taken as constant), rather than the “direct” association be-
tween origins and destinations that is created by differences in families’ economic, cultural
and social resources operating in other ways than through education. But how far can ob-
served (im)mobility actually be accounted for in terms of class differences in educational
attainment, and is any change evident in this regard? These are the sociological research
questions that we want to address in this article, for British society over the period which is
spanned by the three birth cohorts. In order to answer these questions, we also need to answer
the methodological research question of how to define and quantify the part that education
does, in fact, play in social mobility, especially where mobility is treated not in terms of a
continuous variable such as income but in terms of social class categories.

In methodological terms this is a problem in mediation analysis or path analysis, where
we are interested in how the variable M in Figure 1 may mediate the relationship between X

and Y . The earliest methods for it were based on combinations of regression models for M

and Y . When these are linear models for continuous variables, methods of path analysis go
back to Wright (1921); other important early contributors include Tukey (1954) and Blalock
(1964), and an influential more recent article is Baron and Kenny (1986); see Wolfle (2003)
and Denis and Legerski (2006) for historical reviews and Bollen (1989) for an overview of
this kind of path analysis. In this simple setting, direct and indirect associations (or “effects”)
can often be expressed and estimated very simply in terms of the coefficients of the models.
They are also special cases of the more general definitions discussed below.

When M or Y are categorical variables, one option for the regression-based approaches,
although only for binary and ordinal variables, is to continue to use linear models (Davis
(1980), Hellevik (1984)) and another is to formulate models in terms of underlying con-
tinuous latent variables and apply linear path analysis to these variables (Heckman (1978),
Winship and Mare (1983), Breen, Karlson and Holm (2013)). Such methods have been ap-
plied also to the analysis of class mobility and education, for example by Duncan and Hodge
(1963) and Blau and Duncan (1967), using linear path analysis, and by Xie (1989) and Breen
and Karlson (2014), using latent-variable formulations. However, these approaches are ulti-
mately unsatisfactory in this application, where latent variables are substantively unappeal-
ing and where the categories of, at least, the class of destination (Y ) should be treated as
unordered.

More general and flexible methods of mediation analysis than the regression approach
have been developed in recent years in the area of formal causal inference (most of it in the
potential outcomes framework, of which Imbens and Rubin (2015) give a thorough descrip-
tion). An authoritative overview of this literature is given by VanderWeele (2015). Crucially,
causal mediation analysis starts from providing clear definitions of what it means by direct
and indirect effects of X on Y (this is typically left undefined in the regression-based meth-
ods). The key definition of “natural effects” was introduced by Robins and Greenland (1992),
Pearl (2001) and Robins (2003); important variants and extensions of it have been proposed
by VanderWeele, Vansteelandt and Robins (2014) and VanderWeele and Robinson (2014)
(outside the potential outcomes framework, comparable quantities were defined by Didelez,
Dawid and Geneletti (2006) and Geneletti (2007)); we will discuss these definitions further in
Section 3. Such effects can be estimated from observable data, if appropriate assumptions are
satisfied. There is now an extensive literature on these assumptions, research designs under
which they are more likely to be satisfied and analysis of the sensitivity of conclusions to
violations of them (see VanderWeele (2015) and references therein; because our focus is not
causal, these assumptions are not directly relevant to our analysis).

We draw on the ideas and definitions of causal mediation analysis but translate them to the
situation where the parameters of interest are not causal effects but comparable associations
in a population. In other words, we want to define and estimate characteristics of a finite
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population of units which can be used to describe the population in informative ways in
terms of the ideas of mediation analysis. These are the relevant and interesting parameters for
some substantive research questions, including our questions on education and class mobility
among the British populations represented by the three birth cohorts. In particular, we can in
this way examine how much of the observed lack of mobility in this period could plausibly
be accounted for by the educational differences between social classes that exist among these
cohorts and thus throw light on why educational expansion and reform have had so little
effect in equalizing relative mobility chances in Britain over the last half-century.

Our definitions of associations parallel those of causal mediation effects, in essence simply
replacing distributions of potential outcomes with conditional distributions of fixed values of
the variables in a population. This defines distributions which can be interpreted as condi-
tional distributions of Y given X in standardized populations where some distributions are
held constant. An indirect association, which will be our focus, compares groups which have
the distributions of M given X that hold in the real population but share the same reference
distribution of X itself. We quantify indirect associations between X and Y by log odds ra-
tios from these standardized distributions. This is a generalisation of the work by Kuha and
Goldthorpe (2010) who proposed a special case of this definition with a particular choice
of the reference distribution. Outside mediation analysis, the approach is also akin to other
“what-if” statistics which combine true conditional distributions for some variables with ref-
erence distributions for others, such as standardized rates in demography (Wachter (2014)),
population attributable fraction in epidemiology (Rockhill, Newman and Weinberg (1998))
and “marginal effects” for illustration of regression results (StataCorp (2017)).

Given a representative sample of data from the population of interest, these associations
can be estimated by first specifying and estimating models for the distributions of M given X

and of Y given (X,M) and then plugging in fitted values from these distributions in the defi-
nitions of the associations. This is equally applicable to variables with ordered or unordered
categories (and, with straightforward modifications, also to continuous variables). The result-
ing estimates are of the same form as estimates of analogous causal effects and could also
be used for that purpose in applications where that was the goal. If the models for M and Y

were linear, the estimates would also agree with those of classical regression methods of path
analysis. We provide estimates of the standard errors of the estimated associations. When
both X and Y are categorical and unordered, the number of distinct odds ratios between them
can be large, so we also need tools for summarising their values. In our example we do this
by carrying out a second stage of the analysis which describes how the relative sizes of the in-
direct associations vary by characteristics of the cells (social classes) which define each odds
ratio. The methods are described in Section 3 and in the Appendix. Our data are descibed in
Section 2 and the analysis of them in Section 4.

In our application, the indirect associations are on average less than half of the correspond-
ing observed (total) associations between origin and destination classes. In other words, less
than half of the relative class mobility or immobility between generations that has been ob-
served among these birth cohort populations can be accounted for by existing differences in
educational attainment between people from different class backgrounds. This relative contri-
bution of education varies little over time, is slightly larger for women than for men and varies
much more between mobility transitions in different parts of the class structure. It tends to be
larger for mobility which spans long hierarchical distances or involves the professional and
managerial classes. It is smaller for transitions which involve people staying in the same class
as their parents (except for the professional classes), and essentially zero for mobility among
classes comprising lower supervisory and technical, semiroutine and routine occupations.
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2. Data and variables. We use data from three British birth cohort studies, the MRC
National Survey of Health and Development, the National Child Development Study and
the 1970 British Cohort Study. They have followed the life courses of children born in
Britain (England, Scotland and Wales) in one week of 1946, 1958 and 1970, respectively
(see Wadsworth et al. (2006), Power and Elliott (2006), and Elliott and Shepherd (2006)).
For the 1958 and 1970 cohorts, the original intended samples included all such births. The
1946 study drew a sample of single births to married women, stratified by the husband’s em-
ployment; for this cohort our analysis uses survey weights which allow for the stratification.

The analyses are done separately for each combination of birth cohort and respondent’s
gender. They involve three variables: a respondent’s social class origin, education and social
class destination. Our choices and definitions for them follow those of Bukodi et al. (2015)
and Bukodi and Goldthorpe (2016), who provide more detailed motivation and information
about the variables. For women, we consider only those women who have always worked
full time when they have been in employment, thus excluding those who have had periods of
part-time employment; for a discussion of this exclusion, see Bukodi et al. (2017).

Social class is categorized using the NS-SEC classification. We use the same seven-class
version of it for both origins and destinations and with the classes labelled as shown in Ta-
ble 1. Destination is defined as a respondent’s own class position at the age of 38 years (or
when last in employment before then) and origin as the respondent’s father’s class position
when the respondent was aged 10 or 11 (or 15 or 16, if the earlier information is not avail-
able). This classification is generally not regarded as fully ordered in terms of more or less
advantage, and we will treat the classes as unordered categorical variables.

Education is coded in terms of relative education, as defined by Bukodi and Goldthorpe
(2016). This begins with a classification of an individual’s highest level of qualification
achieved by age 37 in eight categories. These are then grouped into four ordered categories,
but in a way which is different in different birth cohorts. The groups correspond roughly to
the quartiles of levels of qualification in the cohort. The purpose of this is to represent educa-
tion as a positional good, that is, that the labour market value of a qualification may depend
on its relative position in the current population distribution of qualifications.

Of the original intended cohorts for 1946, 1958 and 1970, respectively, 84%, 81% and
70% of the respondents have at least one of the variables observed, so cohort attrition is fairly
small. The number of respondents in our data sets varies from 1020 for women in the 1946
cohort to 7219 for men in 1958. Some of them have missing values in some of the variables.
The proportions of missingness are 9–16% for class origin, 0–2% for education and 23–51%
for class destination (40–51% in the 1946 cohort, 23–34% in 1958 and 1970). The missing
values have been multiply imputed to allow for the inclusion of the incomplete observations
in the analysis. The imputation, which is based on MCMC estimation of a saturated model
for the joint distribution of the variables, is described in Appendix A of Bukodi, Goldthorpe
and Kuha (2017). Ten multiply imputed datasets were used for our analyses, as explained
further in Section 3.4.

The estimated marginal distributions of the class variables for men and women in each
cohort are shown in Tables 1 and 2. There have been marked changes in these class distribu-
tions over time, in particular in that the proportions of people in the lower-numbered (“white-
collar” and salaried) classes have increased over time, while those in the higher-numbered
(“blue-collar” and wage-earning) ones have decreased.

Relative class mobility is, however, not described by changes in these univariate marginal
distributions but by associations in the mobility table between individuals’ classes of origin
and destination. Here, this is a 7×7 contingency table for each gender and cohort (an example
is shown in Table 3 in Section 4). As a measure of the associations, we use the log odds ratios
(log ORs) for different 2 × 2 subtables of the mobility table, each defined by the intersection
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TABLE 1
Estimated distributions (in %) of class origins (“Orig.”) and class destinations (“Destin.”) among the members

of the 1946, 1958 and 1970 birth cohorts for men

1946 cohort 1958 cohort 1970 cohort

Class Orig. Destin. Orig. Destin. Orig. Destin.

1: Higher managers and 4.5 11.8 6.7 16.2 11.3 21.4
professionals
2: Lower managers and 9.6 26.1 15.3 20.5 17.4 21.4
professionals
3: Intermediate occupations 9.8 10.1 14.7 9.2 7.4 9.7
4: Small employers and 10.0 10.6 5.7 14.4 14.1 14.4
own account workers
5: Lower supervisory and 12.6 12.5 19.3 11.2 13.9 8.8
technical occupations
6: Semiroutine occupations 16.6 12.8 10.9 12.9 14.0 12.8
7: Routine occupations 37.0 16.2 27.3 15.6 21.7 11.6

Total 100 100 100 100 100 100

n 2394 7219 5979
(nobs) (2078) (1175) (6557) (5582) (5022) (4124)

n denotes the total number of respondents, including those for whom the variable is not observed.
nobs denotes the number of respondents for whom the variable is observed.
The percentages in the table (and the results for all other tables and figures of this paper) were estimated using 10
multiply imputed datasets to allow for the missing data.

of two origin classes (rows) and two destination classes (columns). There are 441 such log
ORs, and we may want to use any of them to summarise different aspects of class mobility.
Their values are mostly different from 1 (and often quite far from it), indicating substantial

TABLE 2
Estimated distributions (in %) of class origins (“Orig.”) and class destinations (“Destin.”) among the members

of the 1946, 1958 and 1970 birth cohorts for women

1946 cohort 1958 cohort 1970 cohort

Class Orig. Destin. Orig. Destin. Orig. Destin.

1: Higher managers and 3.9 2.3 6.4 7.4 11.6 12.9
professionals
2: Lower managers and 7.8 19.8 17.4 23.5 19.2 27.6
professionals
3: Intermediate occupations 9.0 34.5 14.4 28.0 6.9 28.6
4: Small employers and 8.5 6.7 5.0 6.7 13.0 5.8
own account workers
5: Lower supervisory and 15.3 2.5 18.1 1.5 13.9 1.4
technical occupations
6: Semiroutine occupations 19.7 17.0 9.9 19.0 13.9 16.2
7: Routine occupations 35.8 17.2 28.8 13.9 21.6 7.6

Total 100 100 100 100 100 100

n 1020 3535 2432
(nobs) (913) (614) (3162) (2372) (2035) (1613)

n denotes the total number of respondents, including those for whom the variable is not observed.
nobs denotes the number of respondents for whom the variable is observed.
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immobility (lack of fluidity) of social class between generations among these birth cohorts.
Patterns and trends in these bivariate associations have been analysed in previous literature,
as discussed in Section 1. Our aim in this article is to further examine how they may be
mediated by education. We will return to this analysis for the birth cohort data in Section 4,
after a general method for doing it has been described in Section 3.

3. Mediation analysis for associations.

3.1. Total effects and associations. Consider variables X, M and Y as represented in
Figure 1, where M is a mediator between X and Y . The models may also be conditional on
observed confounders, but these are omitted from the notation here. We take all three vari-
ables to be categorical because this is the situation in our application, but the ideas discussed
here apply also when they are continuous variables (the case where M is continuous is con-
sidered in Appendix A.3). The numbers of distinct values of X, M and Y are denoted by
J , K and L, respectively. Suppose that we are interested in a finite population of N units
and that we observe (Xi,Mi,Yi) for a sample of n ≤ N units i from that population. In our
application, X is an individual’s class of origin, M their relative education and Y their class
of destination, with J = L = 7 and K = 4, and we are interested in six distinct populations of
British adults for men and women in each of the three birth cohorts. Marginal and conditional
distributions of variables in the population are denoted by p(·) and p(·|·), respectively.

Two kinds of estimands could be of interest here: causal effects of X on Y or associations
between X and Y in a population. Our only goal will be to estimate associations. However,
because our definitions are strongly motivated by the causal ones and because the similari-
ties and differences between the two kinds of parameters are illuminating on both of them,
we start by discussing associations and causal effects in parallel. In this section we will of-
ten refer to both of them as “effects.” We discuss first total effects, and then in Section 3.2
the central concept of indirect effects which also involve M (corresponding direct effects
are considered in Section 3.3). We focus first on their definitions and interpretations, before
estimation of the associations is described in Section 3.4 and the Appendix.

The two kinds of target parameters involve different conceptions of what values the “pop-
ulation” consists of. For associations these are (Xi,Mi,Yi), treated as fixed values for each
unit i = 1, . . . ,N . This population could be observed in full if we carried out a census of it.
Causal effects, in contrast, are defined in terms of two kinds of potential outcomes: Mi(x),
the value that M would have for unit i if X was set to the value x for that unit, and Yi(x,m),
the value that Y would have for i if (X,M) were set to (x,m). The population values are then
Mi(x) and Yi(x,m) for all possible values of x and m, for the units i = 1, . . . ,N . Here, this
population of potential outcomes would consist of J sets of values of Mi(x) and J × L sets
of Yi(x,m) for each i. Only one of the Yi(x,m) and one of the Mi(x) can ever be observed
for any i, even for the n units in a sample.

All of the effects are defined in terms of comparisons between two distinct values of X at
a time. We denote them by X = r and X = s. Many different pairs (r, s) may be of interest,
and there need not be any one value of X which is always treated as the reference value. In
our application, where X has seven levels, there are 21 distinct pairs (r, s).

Consider first causal total effects in this context. For a unit i, the effect on Y of X be-
ing set to X = s, rather than X = r , is defined as a comparison between Yi(r,Mi(r)) and
Yi(s,Mi(s)). In this, M is not set independently but assumes the value it will naturally have
when X is set to r or s. This matches the intuitive idea that a total effect should incorpo-
rate all effects of X on Y , including those that arise from the effect of X on any M and the
consequent effect of M on Y . We can then also write Yi(x,Mi(x)) = Yi(x).

Instead of unit-level causal effects, we can only estimate their aggregates in a population
of units. These are defined as comparisons of the distributions p(Yi(r)) and p(Yi(s)) over i =
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1, . . . ,N . Denoting π∗
y (x) = p(Yi(x) = y), different comparisons of these proportions may

be considered as the parameters which quantify a total effect, for example, the differences
π∗

y (s) − π∗
y (r). We focus on the log odds ratios (log ORs)

(1) ψTE
rs.tu = log

π∗
u (s)/π∗

t (s)

π∗
u (r)/π∗

t (r)

for all r �= s = 1, . . . , J and t �= u = 1, . . . ,L. These are the log ORs for the 2 × 2 subtables
in the J × L table which cross-classifies x by Yi(x) for i = 1, . . . ,N (i.e., a table where the
counts on each row sum to N ).

To define associational total effects, we refer instead to the population defined as
(Xi,Mi,Yi) for i = 1, . . . ,N . Consider the cross-tabulation of Xi by Yi in it (i.e., a ta-
ble where the counts over the whole table sum to N ) and the conditional probabilities
πy(x) = p(Yi = y|Xi = x) in this table. The log ORs of interest are then

(2) θTE
rs.tu = log

πu(s)/πt (s)

πu(r)/πt (r)
.

Although the causal effects ψTE
rs.tu and the associations θTE

rs.tu are quite different parameters,
they are estimated by sample quantities of the same kind. Letting π̂y(x) = p̂(Y = y|X =
x), denote estimates of conditional probabilities derived from the observed (Yi,Xi) for i =
1, . . . , n, the estimate is

(3) θ̂TE
rs.tu = log

π̂u(s)/π̂t (s)

π̂u(r)/π̂t (r)

for both parameters, but under different assumptions about the observed data. Estimation of
associations relies on the assumption (call it S) that the observed units are a representative
sample from the units in the population, so that estimates from the sample (possibly with
sampling weights) can be generalised to this population. This assumption is most convinc-
ingly satisfied if the data are a probability sample from the population. For estimation of a
causal effect, we need instead the standard assumptions of causal inference (call them C), the
most prominent of which is that there should be no unmeasured confounding of the effect of
X on Y . This may be thought of as an assumption of representative sampling of the potential
outcomes. It is most convincingly satisfied when the values of X were randomized to the
units in the sample. If assumption C holds, θ̂TE

rs.tu is an estimate of the causal log OR ψTE
rs.tu

among the n units in the sample, and if S also holds, it is also an estimate of ψTE
rs.tu among the

N units in a larger population. If neither assumption holds, θ̂TE
rs.tu is just an estimate of itself,

that is, a descriptive statistic for the sample. If assumption S holds (even if C does not), θ̂TE
rs.tu

is an estimate of the population association θTE
rs.tu. This last case is the goal of our analysis.

3.2. Indirect effects and associations. Definitions of indirect and direct effects break the
link between X and the mediator M and vary only one of them. For example, a unit-level in-
direct causal effect of setting X = r rather than X = s is a comparison between Yi(x

∗,Mi(r))

and Yi(x
∗,Mi(s)), where x∗ is a given fixed value. This captures the idea that an indirect ef-

fect is the change in Y when M changes as if in response to a change in X, but X itself does
not change but remains fixed at x∗.

The parameters that we can aim to estimate are again defined not for individual units but
for distributions over populations of units. We may consider four kinds of distributions:

p
(
Yi

(
x∗,Mi(x)

))
,(4)

∑
m

p
(
Yi

(
x∗,m

))
p

(
Mi(x) = m

)
,(5)
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∑
m

p
(
Yi(m)|Xi = x∗)

p(Mi = m|Xi = x) and(6)

∑
m

p
(
Yi |Xi = x∗,Mi = m

)
p(Mi = m|Xi = x).(7)

For each of them, an indirect effect is defined as a comparison of these quantities with x =
r against x = s for some fixed x∗. The definitions (4), (5) and (6) imply three different
causal indirect effects. We add the population distribution in (7) which leads to the purely
associational definition which will be our focus.

The causal quantities (4)–(6) reflect the idea of an indirect effect in slightly different ways.
In (4) the crucial feature is that the potential outcomes for M and for Y refer to same unit i,
that is, we consider the value of Y for i if X had been set to x∗ and M had been set to the value
it would have for i if X were set to x. When x∗ = r or x∗ = s, this defines the natural indirect
effect of X on Y . This setting is relaxed in (5), which is the distribution of Yi(x

∗,M) over
i when M is set not to each unit’s own potential outcome Mi(x) but to a value drawn from
the distribution of Mi(x) across all the units. VanderWeele, Vansteelandt and Robins (2014)
call the resulting effects the interventional indirect effects. In (6), furthermore, (Xi,Mi) are
treated as fixed values for the units, but it is also conceived that each unit could have had a
different value of M . The only potential outcomes considered are then Yi(m), given different
settings of M , and (6) is the distribution of Yi(M) for units i for whom Xi = x∗ when M

is drawn from its distribution among the units for whom Xi = x. This kind of effect was
introduced by VanderWeele and Robinson (2014). Finally, (7) involves no potential outcomes
but only distributions of fixed (Xi,Mi,Yi) in the population, as discussed below.

The quantities (4)–(7) can again be estimated under different assumptions and by the same
sample quantity, namely,

∑
m p̂(Y = y|X = x∗,M = m)p̂(M = m|X = x), where the p̂(·|·)

are estimates of these conditional distributions (we will discuss the estimation further in Sec-
tion 3.4). Generalisation to a population of N > n units again requires that the observed units
are a representative sample from this population. Only this assumption is relevant to (7) and
to our analysis. Estimating the causal quantities (4)–(6), on the other hand, again requires
assumptions about representativeness of the potential outcomes that are observed in the sam-
ple, in a form which is decreasingly demanding going from (4) to (6). For (4) we need the
assumption that there is no unmeasured confounding of the effect of X on M and on Y , or
of the effect of M on Y , plus the “cross-world independence assumption” that the poten-
tial outcomes Yi(x

∗,m) and Mi(x
†) are independent for x∗ �= x† (see VanderWeele ((2015),

S. 7.3)). The cross-world independence assumption can be omitted for (5) and (6), and for
(6) the conditions which refer to effects of X can also be omitted.

Having now motivated the associational quantity (7), partly by reference to corresponding
causal quantities, we will from here on focus solely on such associations. Before we do
that, however, we make one further modification to the parameter of interest. This is needed
because (7) is defined with a single value in the role of x∗. This is not ideal in our application,
where no one x∗ is natural for all units and for all the comparisons that we will want to
consider. To allow for this, we take x∗ to be not a single fixed value but drawn from a fixed
distribution p0(X), which we call the reference distribution of X. Averaging (7) over it gives

(8)

π IE
y (x) = ∑

x∗

∑
m

p
(
Y = y|X = x∗,M = m

)
p(M = m|X = x)p0

(
X = x∗)

= ∑
m

p0(Y = y|M = m)p(M = m|X = x),

where p0(Y = y|M = m) = ∑
x∗ p(Y = y|X = x∗,M = m)p0(X = x∗). This would reduce

back to (7) if we chose p0(X = x∗) = 1 for a single value x∗. We then define

(9) θ IE
rs.tu = log

π IE
u (s)/π IE

t (s)

π IE
u (r)/π IE

t (r)
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for any r �= s = 1, . . . , J and t �= u = 1, . . . ,L, and with all four probabilities on the right-
hand side of (9) calculated using the same reference distribution p0(X). The log odds ratios
(9) are the indirect associations, which we will focus on for the rest of this article. They are a
generalisation of a definition first proposed by Kuha and Goldthorpe (2010), who considered
associations which are equal to (8)–(9) for a particular choice of p0(X), as discussed below.

These indirect associations can be interpreted as associations in certain standardized, syn-
thetic populations. To motivate this, consider first the true conditional probabilities of Y ,
which determine the total associations, written in the slightly unusual form

(10)

πy(x) = ∑
m

p(Y = y|X = x,M = m)p(M = m|X = x)

= ∑
x∗

∑
m

p
(
Y = y|X = x∗,M = m

)
p(M = m|X = x)p∗

x

(
X = x∗)

,

where p∗
x(X = x) = 1 denotes a distribution with only one value x. This highlights the fact

that in each of the J groups defined by X = 1, . . . , J = x in the actual population, every
unit has X = x and M follows its conditional distribution, given that X = x. In contrast, in
the probabilities π IE

y (x), as defined in (8), the conditional distributions of Y and M are the
same population distributions as in (10), but the distribution of X is changed from p∗

x(X) to
the reference distribution p0(X). This defines standardized groups which differ from each
other in the distribution of M in the same way as do the groups with different values of
X = x in the real population but which have the same (reference) distribution of X itself.
This captures the basic idea that indirect associations should compare situations where M

varies, as if in response to differences in X, but (the distribution of) X itself is held fixed; the
latter (“direct”) contribution of X can be viewed as representing factors other than M which
are also associated with X and with Y . In our application the indirect log ORs compare the
log odds of different classes of destination (Y ) between hypothetical groups which are like
the actual origin classes (X) in the population in their distributions of educational attainment
(M) but which each have the same distribution p0(X) of other aspects of class of origin which
are associated with social mobility.

The exact values of these associations depend to some extent on the reference distribu-
tion p0(X). How then should it be selected? The simplest choice for a specific log OR θ IE

rs.tu

would be to fix X at r or s for everyone, that is, to choose p0(X = r) = 1 or p0(X = s) = 1.
This is most suitable when there is a natural baseline level for each comparison, for example,
if X is ordinal and we use the lower level as the baseline. If not, an alternative is to give equal
weight to both r and s, that is, p0(X = r) = p0(X = s) = 1/2; this was the reference distri-
bution proposed by Kuha and Goldthorpe (2010). With both of these choices, the reference
distribution for the probabilities π IE

x (y), which define a θ IE
rs.tu, depends on the rows r , s, and

thus each π IE
x (y) will have different values in different log ORs for the same table. This is

a disadvantage, because it compromises the standardization interpretation discussed above.
In particular, it is then not possible to represent the standardized population in the form of a
single contingency table of the π IE

x (y). Our preference is to use instead a reference distribu-
tion p0(X), which is the same for all the θ IE

rs.tu in the same table (an example of a table of
π IE

x (y) from such a distribution is shown in Table 3 in Section 4). A potential disadvantage
of such a choice is that, for a given θ IE

rs.tu, the calculation of π IE
x (y) from (8) will then involve

averaging p(Y |X = x∗,M)—in essence, averaging the “direct effects” of X—also over val-
ues x∗ that are not r or s, which may be substantively less appealing, especially if there are
strong interactions between X and M in this distribution for Y . The reference distribution can
be chosen by the researcher in a way, which is judged to be appropriate for the application.
In our analysis of social mobility, we have set it, for all log ORs, to the estimated marginal
distribution p̂(X) of classes of origin in the population, as discussed further in Section 4. In
that analysis the specific choice of the reference distribution does not have a substantial effect
on the conclusions.
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3.3. Direct effects and effect decompositions. Mirroring the logic of indirect effects, di-
rect effects compare distributions of Y when X assumes different values, but M is not allowed
to change accordingly. Paralleling (8) and (10), we can define

(11) πDE
y (x) = ∑

x∗

∑
m

p
(
Y = y|X = x∗,M = m

)
p0(M = m)p∗

x

(
X = x∗)

,

where, again, p∗
x(X = x) = 1, and p0(M = m) is a reference distribution for M (it could be

derived, e.g., as p0(M = m) = ∑
x† p(M = m|X = x†)p0(X = x†) where p0(X) is a refer-

ence distribution for X). The probabilities πDE
y (x) can be used to define direct associations

as the log odds ratios θDE
rs.tu, analogously with θ IE

rs.tu in (9). They can again be interpreted as
comparisons of the distributions of Y between two standardized groups. These have X = r

for every unit in one group and X = s in the other, as in a total association, but now M has
the same reference distribution p0(M) in both groups. In our analysis this would mean that
we compare the log odds of different classes of destination between groups which are like
classes of origin r and s in other respects but which have the same distribution p0(M) of
educational attainment.

A common aim of mediation analysis is to “decompose” a measure of a total effect into
the sum of direct and indirect effects. Deviating for the moment from our focus on log ORs,
suppose that the total association was quantified by the difference πy(s) − πy(r). When
plugged into (8) and (10), some choices of the reference distribution p0(X) yield the exact
decomposition πy(s) − πy(r) = (π IE

y (s) − π IE
y (r)) + (πDE

y (s) − πDE
y (r)). This is achieved

if p0(X = r) = p0(X = s) = 1/2 (as in Kuha and Goldthorpe (2010)), or if p0(X = r) = 1
for π IE

y (r) and π IE
y (s) and p0(X = s) = 1 for πDE

y (r) and πDE
y (s) (or vice versa), thus us-

ing different reference distributions for the two associations; the latter is also the basis of
the corresponding decomposition for the natural causal indirect and direct effects (see, e.g.,
VanderWeele ((2015), A.2.1)). Further instances of decompositions are possible under spe-
cific parametric models for Y and M . For categorical variables these can be obtained by
specifying linear models for them or for hypothetical underlying continuous latent variables
(Winship and Mare (1983), Breen, Karlson and Holm (2013), Breen and Karlson (2014)) or
as approximations for nonlinear models (see VanderWeele (2015)).

We will not, however, make use of such decompositions, because, for our purposes, they
are not necessary or even helpful. This is because the standardized scenarios, which provide
the interpretations of direct and indirect associations, are not inherently paired. Each of these
log ORs implies a comparison of two groups with different joint distributions of X and M .
Given X = r , this distribution is p0(X)p(M|X = r) for the indirect θ IE

rs.tu, p∗
r (X = r)p0(M)

for the direct θDE
rs.tu, and p∗

r (X = r)p(M|X = r) for the total θTE
rs.tu. There is no very convinc-

ing sense in which the first two of these are a matched pair which together match up with the
third, as would be implied by the expectation that the corresponding direct and indirect asso-
ciations should add up to the total one. Instead, we will focus on one kind of association—in
our application, the indirect one—and view the difference between it and the total associa-
tion as a residual of the total, which is not accounted for by the mediator M , rather than as a
specific well-defined direct effect.

We will, nevertheless, want to assess the relative magnitudes of different indirect associa-
tions. We will do this by comparing them to the corresponding total associations, specifically
by considering the ratios θ IE

rs.tu/θ
TE
rs.tu. In our application this can be interpreted as the ratio of

the log OR for an origin-destination association in a standardized population where people
from different classes of origin differ only in their educational attainment (θ IE

rs.tu), against the
log OR in the actual population where they differ not only in education but also in other char-
acterics which are associated with class of destination (θTE

rs.tu). This ratio can also be negative
or greater than one because the indirect association can be stronger, or have a different sign,
than the total association (although this turns out to be rare in our data).



2072 J. KUHA, E. BUKODI AND J. H. GOLDTHORPE

3.4. Estimation of the associations. As can be seen from the definitions of π IE
y (x) and

πDE
y (x) in (8) and (11), these probabilities and so also the log odds ratios θ IE

rs.tu and θDE
rs.tu

are functions of the population probabilities p(M = z|X = x) and p(Y = y|X = x,M = z).
They can be estimated by plugging in sample estimates of these conditional probabilities
(this is also true for πy(x) and the total log ORs θTE

rs.tu, as shown in (10), but they can also
be estimated without involving M). This can be done for all combinations of x, m and y

at once by using matrix formulations, as shown in Appendix A.1. Variance matrices of the
estimated log ORs, and of quantities such as their ratios, can be derived with the delta method,
as described in Appendix A.2. Bootstrap methods of variance estimation could also be used.

All that then remains in any specific application is to estimate the probabilities from models
specified for p(M|X) and p(Y |X,M). In our analysis we have used saturated models for
them. This implies, in particular, that the model for Y includes an interaction between X

and M . An alternative would be to use nonsaturated models, for example, a multinomial
logistic model for Y without the interaction. Howsoever these conditional probabilities are
specified, the rest of the estimation of the associations remains the same.

It is not a new or surprising conclusion that estimation in mediation analysis starts with
estimation of conditional distributions for M and Y . As discussed in Sections 3.1 and 3.2,
estimates of effects in causal mediation analysis are also based on these distributions, al-
though they are then treated as estimates of distributions of potential outcomes (for such
estimates with a causal focus, see, e.g., Pearl (2001), Imai, Keele and Tingley (2010), Loeys
et al. (2013) and other examples in VanderWeele (2015)). This means that our estimates
of indirect and direct associations could also be used to estimate analogous causal effects
in applications where that was the goal. This could be useful, in particular, for the case of
unordered polytomous outcomes Y which has been somewhat less discussed in the causal
mediation literature. Similarly, those estimates in regression-based mediation analysis that
are expressed in terms of regression coefficients can typically also be derived from these gen-
eral expressions of conditional distributions in the very special cases where that is exactly or
approximately possible.

The data in our application had been multiply imputed to allow for missing data. Esti-
mates of the conditional probabilities were first calculated separately for each of the multiply
imputed datasets (in the case of the 1946 cohort, using also the survey weights) and then com-
bined using standard multiple imputation methods to get estimates p̂(Y |X,M) and p̂(M|X)

and their variance matrices. These then served as the starting point for the estimation of the
log ORs, using the calculations described in Appendices A.1 and A.2.

We have assumed that the mediating variable M is categorical, because that is how it is
treated in our application. More generally, M could also be continuous even when X and
Y are categorical (and the associations of interest thus remain log ORs). The sums over M

above then become integrals which need to be evaluated as part of the estimation process. In
Appendix A.3 we sketch one way of doing this, using Monte Carlo integration.

4. Analysis of social class mobility and education. We now return to the analysis of so-
cial class mobility among the British birth cohorts. Here, the variables X, M and Y are a per-
son’s class origin, relative education and class destination, respectively. Our goal is to assess
how much of the total associations between origins and destinations may be accounted for
by differences in educational attainment between people from different class origins and how
this varies between cohorts, between genders and between transitions in different parts of the
class structure. To examine this, we estimated the total and indirect associations, described
in Section 3, for each of the 441 log odds ratios between different origin and destination
classes, for men and for women in each of the 1946, 1958 and 1970 cohorts. A representa-
tive pseudo version of the data are included in the Supplementary Material, together with R
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TABLE 3
Estimated conditional probabilities of destination class (y) given origin class (x), for men in the 1970 birth

cohort. The probabilities on the left are estimates of the actual probabilities πy(x) in the population, and those
on the right are estimates of the ‘indirect’ probabilities π IE

y (x) where origin classes differ only in their
distributions of education

Destination

Total [π̂y(x)] Indirect [π̂ IE
y (x)]

Origin∗ 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 0.42 0.26 0.10 0.09 0.04 0.06 0.03 0.30 0.25 0.10 0.12 0.07 0.09 0.07
2 0.30 0.29 0.11 0.10 0.07 0.09 0.05 0.26 0.23 0.10 0.13 0.08 0.11 0.09
3 0.23 0.24 0.10 0.16 0.06 0.10 0.12 0.22 0.22 0.10 0.14 0.09 0.12 0.10
4 0.17 0.19 0.09 0.23 0.07 0.13 0.12 0.21 0.21 0.10 0.15 0.09 0.13 0.12
5 0.20 0.18 0.09 0.15 0.14 0.15 0.09 0.19 0.21 0.10 0.15 0.09 0.13 0.12
6 0.15 0.19 0.09 0.14 0.11 0.19 0.13 0.18 0.20 0.10 0.15 0.09 0.14 0.13
7 0.11 0.17 0.09 0.15 0.10 0.16 0.22 0.17 0.20 0.10 0.16 0.09 0.15 0.13

∗See Table 1 for the labels of the classes.

functions and code for its analysis (Kuha, Bukodi and Goldthorpe (2021b)). The values of
the estimates from it are similar to the ones for men in the 1970 cohort.

The birth cohort samples were censuses or probability samples of births in a single week,
and we can reasonably treat them as representative also of people born in Britain in those
years. The samples have since been reduced by cohort attrition, but at 20–30% this nonre-
sponse rate is relatively small. Item nonresponse in individual variables has been addressed
through multiple imputation, under the assumption that these data are missing at random.

As the reference distribution p0(X) of class origin, for all log ORs for both men and
women in a given cohort, we use the marginal distribution p̂(X) of origins estimated from
data for all the respondents in that cohort. We have also repeated the analysis using a reference
distribution, which is selected separately for each log OR θ IE

rs.tu to match its origin classes,
with equal probabilities p0(X = r) = p0(X = s) = 1/2. The estimates from this alternative
analysis are shown in the Supplementary Material (Kuha, Bukodi and Goldthorpe (2021a)),
in the same form as Figure 2 and Tables 4 and 5 below (the right-hand side of Table 3 is not
available in this case, as noted in the discussion at the end of Section 3.2). This change of the
reference distribution leaves the results discussed here essentially unchanged.

The starting point of the analysis is the set of estimated probabilities of destinations, given
origins. Table 3 shows them for men in the 1970 cohort, showing estimates of both the actual
population probabilities πy(x) and the indirect probabilities π IE

y (x). The estimated total and
indirect log ORs are calculated from these probabilities. For example, the four cells in the
corners of the table define a 2 × 2 table where the two origin classes and the two destination
classes are both classes 1 and 7. The total log OR for it is 3.29. This indicates substantial
barriers to mobility between these classes, so that when a man’s father was in Class 1 (higher
managers and professionals), the man himself was much more likely to end up in this class
rather than in Class 7 (routine occupations)—and vice versa for men whose fathers were in
Class 7. The indirect log OR for this is 1.22. It shows that some of the total association can
be accounted for by the fact that men from origin Class 1 are relatively more likely than men
from Class 7 to attain those levels of education which are associated with higher probabilities
of ending up in destination Class 1 rather than 7. The ratio of these indirect and total log
ORs, however, is only 0.37, so educational differences alone account for only 37% of the
total association (lack of mobility) between these classes.

Sociologically, there is every reason to expect that the relative contribution of education to
class mobility will be different for different kinds of class transitions. This raises the practical
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FIG. 2. Estimates of diagonal log odds ratios between class of origin and class of destination for men and
women in the three birth cohorts. Here, open symbols denote the indirect log ORs, � for 1946, © for 1958 and
� for 1970, and the filled-in versions of the same symbols denote the corresponding total log ORs. For example,
the diagonal log ORs involving classes 1 and 7 for men in the 1970 cohort, which are discussed in the text for
illustration, are shown in the sixth column (“7 vs. 1”) of the upper plot, the total log OR (3.29) by the filled-in
square and the indirect one (1.22) by the open square.

challenge of how to examine the results across the many log ORs which may be calculated for
the mobility table. Here, we do this, first, by reporting the full results for an interesting subset
of the log ORs. We then analyse a larger subset of them, focusing on the ratios between
indirect and total associations. We first compare the average levels of these ratios between
men and women and between the cohorts, and then also fit descriptive regression models
which reveal how the ratios vary between different kinds of mobility transitions.

Figure 2 shows the estimated total and indirect log ORs for men and women in all three
cohorts, for the 21 “diagonal” log ORs where the two origin classes are the same as the two
destination classes. For example, the two log ORs discussed above for illustration are shown
in the sixth column (“7 vs. 1”) of the upper plot, the total association (3.29) by the filled-
in square and the indirect association (1.22) by the open square. Some regularities may be
observed already here. The total associations are larger when they involve a large hierarchical
distance between the classes (roughly, the difference between their numbers). This is also
true for the indirect associations, in cases which involve the professional and managerial
Classes 1 and 2 (and to a lesser extent the intermediate Class 3). For these transitions the
ratios between indirect and total log ORs are commonly between 0.2 and 0.5. In contrast, for
transitions among Classes 4–7 (the small employers, the self-employed and the “blue-collar”
occupations) the indirect associations (the open symbols) are consistently close to zero, so



ROLE OF EDUCATION IN SOCIAL MOBILITY 2075

educational differences appear to account for very little in these cases (for men in the 1970
cohort this can also be seen in Table 3, where the probabilities π̂ IE

x (y) are very similar in all
of Classes 4–7). There are no obvious regularities in the differences between the cohorts. The
total associations are often somewhat smaller for women than for men, resulting in higher
ratios of indirect to total associations for women.

Here, we could continue with a more comprehensive analysis of the indirect log ORs them-
selves, examining patterns in them across different genders, cohorts and class transitions. This
would mean carrying out the kinds of analysis that, for example, Bukodi et al. (2015, 2017)
did for the total associations but now with the indirect π̂ IE

y (x) as the starting point. However,
the main substantive research question, which is how much of the observed (im)mobility of
social class could be accounted for by class differences in education, directs the focus instead
on the sizes of the indirect associations relative to the corresponding total ones. In the rest of
this section, we examine this for the ratios between the estimated indirect and total log ORs,
using them as a summary of the relative strengths of the indirect ones.

The analysis of these ratios is initially complicated by the cases where the estimated total
log OR is itself very small so that the ratio takes extreme values which obscure any patterns
among the set of ratios as a whole. This may happen when the sampling variation in the es-
timates is high (for less common combinations of origin and destination) or when the total
population association is close to zero. To remove this distraction, we make the purely ad hoc
choice of limiting these summary analyses to those cases where the total association is not
very small and is estimated fairly precisely. As a cutoff we include only those ratios where
the (Wald test) p-value of the total log OR is less than 0.10. We also omit the small number of
cases (at most 18) where the total log OR is negative. For them the indirect association is of-
ten still positive, and the ratio is thus negative, which somewhat obscures the patterns among
the bulk of the ratios which are positive. Many of these log ORs correspond to mobility tran-
sitions where individuals stay in the same class as their fathers and where such “inheritance”
effects work in the opposite direction from differences in education; several of these cases
involve the self-employed Class 4 where inheritance is especially strong. Such cases are best
considered separately.

These exclusions leave us with between 65 (for women in 1946) and 260 (for men in
1958) of the 441 possible ratios. The top part of Table 4 shows summary statistics of them,
separately for each combination of cohort and gender. The average ratios are between 0.30
and 0.49. They are higher for women than for men, but there are no very clear trends across
the cohorts. The bottom part of Table 4 then summarises these ratios separately by cohort and
by gender. For example, the analysis by cohort starts from the 882 = 441+441 ratios for men
and for women in each cohort and then includes the 145 of these where the estimated total
association has p < 0.10 in every cohort. Here, the average ratio is again larger for women
(0.46) than for men (0.36), and the 95% confidence interval for their difference is (0.01; 0.20).
The average decreases over time, but less clearly; the difference between the 1970 and 1946
cohorts is −0.06, with a 95% confidence interval of (−0.26;+0.14).

Finally, in Table 5 we examine how the ratios vary between different kinds of class tran-
sitions. This is described by linear models where the response variable is the estimated ratio
θ̂ IE
rs.tu/θ̂

TE
rs.tu. The sets of ratios, which are used as data for these models, are the same ones

which were included at the top of Table 4. The units of analysis are then, in effect, the 2×2 ta-
bles for which the log ORs are calculated, each of which is defined by two origin classes r < s

and two destination classes t < u. The explanatory variables of the models are characteristics
of these classes or of the log ORs themselves. The same explanatory variables are used in
every cohort-gender model. They were identified through exploratory model selection and
substantive considerations, in particular, by paralleling some of the specifications that were
used by Bukodi, Goldthorpe and Kuha (2017) in their “topological” log-linear models for the
total associations in these same data.
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TABLE 4
Summary statistics of the estimated ratios between indirect and total log odds ratios between origin and

destination classes for subsets of the log ORs among men and women in the three birth cohorts

By combinations of cohort and gender:

1946 cohort 1958 cohort 1970 cohort

Men Women Men Women Men Women

Number of ratios∗ 126 65 260 161 227 122
Mean ratio 0.35 0.43 0.30 0.49 0.31 0.40
(5%-95%)‡ (0.01–0.71) (0.04–0.88) (−0.01–0.58) (0.10–0.95) (0.03–0.58) (0.12–0.74)

Separately by cohort and by gender:

Cohort:

1946 1958 1970 Men Women

Number of ratios† 145 145 145 277 277
Mean ratio 0.42 0.38 0.36 0.36 0.46
(5%-95%)‡ (0.05–0.82) (0.08–0.71) (0.06–0.60) (0.08–0.59) (0.11–0.80)

∗Number of log ORs for which p < 0.10 for the estimated total association.
†Number of log ORs for which p < 0.10 for the estimated total association for all cohorts (145) or for both men
and women (277).
‡The range between 5th and 95th percentiles of the estimated ratios.

The first explanatory variable is the total log OR itself. The second, labelled “White-collar
to/from Other” in Table 5, is 1 if r, t ≤ 3 and s, u > 3 and 0 otherwise. It is an indicator for
associations which correspond to mobility across the boundary between the “white-collar”
classes 1–3 and the other classes, rather than staying within these groups of classes. Next, two
variables describe inheritance effects, arising from cells where a person is in the same class as
his or her father. The first of them is 1 when r = t = 1, so it identifies log ORs which involve
inheritance of Class 1 (higher managers and professionals). The second captures inheritance
effects for all other classes. It is the number of cells where the origin and destination classes
are the same but not equal to Class 1; this can be 0, 1 or 2.

Finally, the model includes four hierarchy variables which capture effects of different
“distances” of mobility in terms of a hierarchical ordering of the classes. Here, Classes
3, 4 and 5 are taken to be on the same level, according to standard practice, so classes
c = {1,2,3,4,5,6,7} map onto hierarchical positions hc = {1,2,3,3,3,4,5}. The variables
are defined as |Iδ(r, t) − Iδ(r, u) − Iδ(s, t) + Iδ(s, u)|, where Iδ(o, d) is an indicator func-
tion for a cell defined by origin o and destination d such that it is 1 if |ho − hd | ≥ δ, with
δ = 1,2,3,4. This is the net count of how many cells in a 2 × 2 table satisfy the distance
condition Iδ , with instances where Iδ holds for both cells of a row or column cancelling out;
its possible values are 0, 1 and 2.

The estimated coefficients of the models are shown in Table 5. The results are consistent
across cohorts and genders: the strongest explanatory variables are mostly the same in all the
models, and each coefficient has the same sign whenever it is firmly determined (with p <

0.05; standard errors of the estimated coefficients were evaluated using bootstrap resampling
of the original individual-level data). The coefficients show that the ratio between indirect and
total associations tends to be lower when the total log OR is large. This suggests that there
is a limit to how much of the strongest associations can be accounted for by even the largest
differences in education between classes of origin. Considering mobility in different parts
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TABLE 5
Estimated coefficients of linear models for the estimated ratios of indirect to total log odds ratios between origin
and destination classes, fitted separately for men and women in each birth cohort; see the text for an explanation

of the explanatory variables

Explanatory
variable

1946 cohort 1958 cohort 1970 cohort

Men Women Men Women Men Women

(Constant) 0.390∗∗∗ 0.630∗∗∗ 0.281∗∗∗ 0.499∗∗∗ 0.309∗∗∗ 0.445∗∗∗
Total log-OR −0.208∗∗∗ −0.194∗∗ −0.232∗∗∗ −0.308∗∗∗ −0.295∗∗∗ −0.225∗∗∗
White-collar 0.147∗∗ 0.175∗ 0.288∗∗∗ 0.236∗∗∗ 0.219∗∗∗ 0.096∗
to/from Other

Inheritance:
Class 1 0.075 −0.093 0.064∗∗ 0.014 0.113∗∗∗ −0.083
Others −0.110∗∗ −0.122 −0.114∗∗∗ −0.118∗∗ −0.168∗∗∗ −0.092∗
Hierarchy
(distance δ):
1 −0.049 0.090 0.030∗∗ 0.050 0.022∗ 0.112∗
2 0.098∗∗∗ 0.055 0.077∗∗∗ 0.093∗∗∗ 0.089∗∗∗ 0.122∗∗∗
3 0.155∗∗∗ 0.153∗ 0.078∗∗∗ 0.128∗∗ 0.122∗∗∗ 0.051
4 0.082∗ 0.038 0.108∗∗∗ 0.251∗∗∗ 0.104∗∗∗ 0.091∗

R2 0.63 0.52 0.58 0.55 0.59 0.33
m† 126 65 260 161 227 122

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Standard errors of the coefficients were calculated using 1000 bootstrap
samples of the individual-level data from which the log ORs and their ratios are calculated.
†: The number of ratios used to fit the model. These are the same as in the top part of Table 4.

of the class structure, the ratios are higher for mobility transitions between white-collar and
other classes, for mobility over longer hierarchical distances and (for men) for comparisons
which involve individuals staying in Class 1. The other inheritance effect is negative so that
when a log OR involves one or more cells where a person stays in one of Classes 2–7, the
indirect association tends to be smaller than we would otherwise expect.

There are no comparable previous analyses of these data, but two papers have used data
from the General Household Survey which represent roughly the same populations, although
with different coding of class and education. Kuha and Goldthorpe (2010) used essentially the
same method as the one used here but with the reference distribution p0(X = r) = p0(X =
s) = 1/2 and with just three social classes. They did not examine changes over time, but they
too found that the indirect associations were relatively higher for women than for men. Breen
and Karlson (2014) considered six classes, using a method based on a latent-variable formu-
lation which estimates different associations from the ones considered here. They considered
only men but compared different birth cohorts; they too concluded that relative strengths of
indirect associations had changed little over time.

Our main findings and their sociological implications may be summarised as follows. First,
the ratios between indirect and total log ORs that we have estimated predominantly fall be-
low 0.5, indicating that the part that is played by educational attainment in mediating the
association between individuals’ class of origin and their class of destination is, at most, one
of only moderate rather than dominant importance. Other factors that, in total, have, at least,
as great an effect as education must be seen as involved in inequalities of relative mobility
chances. Second, the average ratios show no tendency to change across the three birth co-
horts that we consider. In other words, there is no evidence that the educational expansion
and reform that took place in Britain over this historical period significantly enhanced the
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role of education in promoting intergenerational class mobility. No movement is apparent
toward an education-based meritocracy. Third, the mediating role of education is, however,
consistently more important for women than for men, suggesting that in women’s working
lives more meritocratic processes of social selection are in operation. Fourth, the role of edu-
cation varies quite markedly in different mobility transitions. In the case of mobility between
Classes 5, 6 and 7—the largely blue-collar, wage-earning classes at the base of the class
structure—the role of education is especially limited; this is also the case with mobility be-
tween them and Class 4, small employers and the self-employed, as earlier research has also
indicated (Ishida, Müller and Ridge (1995)). With longer-range mobility, which entails cross-
ing the white-collar/blue-collar divide and other hierarchical levels within the class structure,
the mediating role of education becomes of generally greater importance, as might sociolog-
ically be expected. But it also emerges that, where relative mobility chances are especially
unequal, there appears to be a limit to the extent to which such inequalities can be accounted
for by the existing differences in educational attainment associated with class origins; other
factors, inconsistent with the idea of an education-based meritocracy, clearly supervene.

5. Conclusions. In this paper we have considered the problem of why in Britain the
widely held expectation in political and policy circles that educational expansion and reform
should increase social mobility has not been realised—these chances having remained essen-
tially unaltered across birth cohorts spanning a quarter of a century. We have found that the
extent to which differences in distributions of educational attainment associated with class
origins could account for observed class mobility or immobility between generations is by
no means so dominant as has been proposed and, most importantly, that, while varying with
gender and with particular mobility transitions, it shows no tendency to change over time.

Methodologically, this required a method for conducting mediation analysis for population
associations between categorical variables. Its ideas and definitions parallel those of causal
mediation analysis, essentially just replacing distributions of potential outcomes with condi-
tional distributions of fixed values of variables in a population. The associations thus defined
are finite-population parameters which can be interpreted as associations of variables in a
suitably standardised population. Estimates of these associations are straightforward and of a
form which could also be used to estimate analogous causal effects in other applications.

These methods could be extended in different ways. For different types of variables, we
have considered in Appendix A.3 the case where the mediator M is continuous. If the out-
come Y is continuous, the probabilities p(Y |X,M) in Section 3 would be replaced by ex-
pected values E(Y |X,M) from a model for Y (and if the models for M and Y are both linear,
our definitions become equal to those of classical linear path analysis). Another extension
would be to have multiple mediating variables. If these are treated on an equal footing so that
we want to estimate the indirect association via all of them jointly, the conditional distribu-
tion of M in the results above is simply replaced with the joint conditional distribution of
the mediators. The situation would be more complex if the mediators were treated as being
in order and we wanted to define and estimate associations corresponding to some of the
distinct indirect paths that this creates. Indirect associations could, in principle, be defined
analogously by standardising all conditional distributions which are not on the desired path.
Such associations, however, remain to be investigated.

APPENDIX: ESTIMATION OF THE ASSOCIATIONS AND STANDARD ERRORS

A.1. Matrix expressions of the point estimates. Matrix expressions facilitate the calcu-
lation of the log ORs, discussed in Section 3, for all values of the variables at once. Recalling
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that the values of X, M and Y are denoted by j = 1, . . . , J , k = 1, . . . ,K and l = 1, . . . ,L,
respectively, define the matrix

(12) A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(Y = 1|X = 1,M = 1) . . . p(Y = 1|X = 1,M = K)
...

. . .
...

p(Y = L|X = 1,M = 1) . . . p(Y = L|X = 1,M = K)

p(Y = 1|X = 2,M = 1) . . . p(Y = 1|X = 2,M = K)
...

. . .
...

p(Y = L|X = J,M = 1) . . . p(Y = L|X = J,M = K)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where p(Y = l|X = j,M = k) is in the kth column of the [(j − 1)L + l]th row and

(13) B =
⎡
⎢⎣

p(M = 1|X = 1) . . . p(M = 1|X = J )
...

. . .
...

p(M = K|X = 1) . . . p(M = K|X = J )

⎤
⎥⎦ .

Let C = vec(AB) where vec(·) is the vectorization operator which creates a column vector
by stacking the columns of a matrix. Defining the function c(l, j, j ′) = (j ′ − 1)JL + (j −
1)L + l, C is a J 2L × 1 vector whose c(l, j, j ′)th element is C[c(l, j, j ′)] = ∑K

k=1 p(Y =
l|X = j,M = k)p(M = k|X = j ′). Let GI , GD and GT be JL × J 2L matrices, de-
fined in such a way that the [(l − 1)J + j ]th row of the matrix (for j = 1, . . . , J , l =
1, . . . ,L) has the values p0(X = r) in its c(l, r, j)th columns (for r = 1, . . . , J ) and 0
elsewhere for GI , p0(X = r) in its c(l, j, r)th columns (for r = 1, . . . , J ) and 0 else-
where for GD and the value 1 in its c(l, j, j)th column and 0 elsewhere for GT . Let
G = [G′

I ,G′
DG′

T ]′, and define the 3JL × 1 vector E = GC = (π IE′,πDE′,π ′)′. Here,
π IE = (π IE

1 (1), . . . , π IE
1 (J ),π IE

2 (1), . . . , π IE
2 (J ), . . . , π IE

L (1), . . . , π IE
L (J ))′ is the vector of all

the distinct probabilities π IE
y (x), and πDE and π are similar vectors of all the πDE

y (x) and
πy(x). Let F = log(E), where the logarithm is applied elementwise to E.

The log odds ratios are functions of the elements of F. Consider any θ IE
rs.tu and θTE

rs.tu

where s > r and u > t . Let P be a 2 × 3JL matrix which has values (1,−1,−1,1) in the
columns v = ((t − 1)J + r, (t − 1)J + s, (u − 1)J + r, (u − 1)J + s) of its first row and in
the columns 2JL + v of its second row. Then, PF = (θ IE

rs.tu, θ
TE
rs.tu)

′ and the ratio θ IE
rs.tu/θ

TE
rs.tu

can be calculated from these. Finally, point estimates of these quantities are obtained by
substituting estimates for the probabilities in A and B to obtain estimates Â and B̂.

A.2. Standard errors of the effects and their ratios. Suppose that the estimated proba-
bilities in Â and B̂ are asymptotically normally distributed and that estimates of their asymp-
totic variance matrices are available. Variance matrices of Ĉ = vec(ÂB̂) and functions of it
are then obtained through repeated application of the multivariate delta method (see, e.g.,
Agresti ((2013), Chapter 16)). This gives, first,

(14) var(Ĉ) = [
B′ ⊗ IJL

]
var

[
vec(Â)

][
B′ ⊗ IJL

]′ + [IJ ⊗ A]var
[
vec(B̂)

][IJ ⊗ A]′,
where ⊗ denotes the Kronecker product and Id is the d × d identity matrix (obtaining this
requires partial derivatives of vec(ÂB̂); see, e.g., Lütkepohl (1996)). Note that (14) assumes
that cov[vec(Â),vec(B̂)] = 0 which is satisfied here. For Ê = GĈ, we then have var(Ê) =
G var(Ĉ)G′, treating the reference probabilities p0(X = x) (which are included in G) as fixed
quantities. Next, var(F̂) = Ŝ−1/2 var(Ê)Ŝ−1/2, where Ŝ = diag(Ê), and the variance matrix
of the estimate of any (θ IE

rs.tu, θ
TE
rs.tu)

′ is V = P var(F̂)P′ where P is as defined above, and
var(θ̂ IE

rs.tu/θ̂
TE
rs.tu) = d′Vd where d = (1/θ̂TE

rs.tu,−θ̂ IE
rs.tu/(θ̂

TE
rs.tu)

2)′. Further applications of the
delta method can be used if we need covariances of log ORs or their ratios across different
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values of r , s, t , u. Finally, estimates of these variances and covariances are obtained by
plugging in estimates for the conditional probabilities in A and B.

The specific forms of var[vec(Â)] and var[vec(B̂)] in (14) depend on how the con-
ditional probabilities p(Y |X,M) and p(M|X) are estimated. For example, suppose that
p(M = k|X = j) ≡ γjk is estimated from a saturated model with γ̂jk = njk/nj ·, where
njk is the number of sample observations with (X = j,M = k) and nj · = ∑

k njk . Then,
vec(B̂) = (γ̂ ′

1, . . . , γ̂
′
J )′, where γ̂ j = (γ̂j1, . . . , γ̂jK)′ and var[vec(B̂)] is block-diagonal with

diagonal blocks var(γ̂ j ) = n−1
j · [diag(γ̂ j ) − γ̂ j γ̂

′
j ], j = 1, . . . , J . In our analysis in Sec-

tion 4, where we use a saturated model for both p(Y |X,M) and p(M|X), var[vec(B̂)] and
var[vec(Â)] are both of this form for the 1958 and 1970 cohorts, whereas for the 1946 cohort
they also allow for the fact that the probabilities are estimated using survey weights. If, on the
other hand, either of these sets of conditional probabilities are specified using a nonsaturated
model, which depends on some estimated parameters φ̂, the variance matrices are obtained
by a further application of the delta method, treating the probabilities as functions of φ̂.

A.3. Estimation when the mediator is continuous. Here, we sketch one way of esti-
mating the associations and their standard errors when the mediating variable M is continu-
ous. The discussion is brief because we do not consider this case in our application. In this
situation the sums over M in expressions like (5)–(8) and (10)–(11) are replaced by integrals.
In the notation of Appendix A.1, we then have

(15) C
[
c
(
l, j, j ′)] =

∫
p(Y = l|X = j,M)p

(
M|X = j ′)dM.

Everything that uses C remains unchanged so that π IE
y (x) = ∑

x∗ C[c(y, x∗, x)]p0(X = x∗),
as in (8), for example, and the indirect log OR is still given by (9), using these π IE

y (x).
Models need to be specified for the conditional distributions, and estimates p̂(M|X) and

p̂(Y |M,X) are obtained by plugging in estimates of their parameters. To estimate the inte-
grals, we propose to use simple Monte Carlo integration, which approximates (15) by

(16) Ĉ
[
c
(
l, j, j ′)] = Q−1

Q∑
q=1

p̂(Y = l|X = j,Mq)

for each j, j ′ = 1, . . . , J and l = 1, . . . ,L, where Mq , q = 1, . . . ,Q, are independent random
draws from p̂(M|X = j ′).

The general form of the variance matrix of Ĉ, defined by (16), is described in Appendix A
of Kuha and Goldthorpe (2010), who also give specific formulas for the case where p(M|X)

is specified by a linear model and p(Y |M,X) by a multinomial logistic model. This involves
uncertainty both from the estimated model parameters and the Monte Carlo integration; the
latter can be made small by increasing Q (in Kuha and Goldthorpe (2010), this means omit-
ting all but the last term on the right-hand side of their equation (20)).

More generally, simulation of values from the estimated conditional distributions provides
a very flexible way of estimating quantities like these. For example, Imai, Keele and Tin-
gley (2010) propose such an approach for comparable estimation of causal mediation effects
(combined with parametric or nonparametric bootstrap estimation of standard errors).
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SUPPLEMENTARY MATERIAL

Supplement to “Path analysis for discrete variables: The role of education in social
mobility” (DOI: 10.1214/21-AOAS1467SUPPA; .pdf). Results of the analysis of the data
obtained with a different choice of the reference distribution p0(X), as discussed in Section 4.

Computer code and pseudodata for “Path analysis for discrete variables: The role of
education in social mobility” (DOI: 10.1214/21-AOAS1467SUPPB; .zip). A representative
pseudo version of the data, and R functions and code for its analysis. The values of the
estimates from it are similar to the ones for men in the 1970 cohort.
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