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This paper analyzes breast cancer gene expression across seven stud-
ies to identify genuine and thus replicable gene patterns shared among these
studies. Our premise is that genuine biological signal is more likely to be re-
producibly present in multiple studies than spurious signal. Our analysis uses
a new modeling strategy for the joint analysis of high-throughput biologi-
cal studies which simultaneously identifies shared as well as study-specific
signal. To this end, we generalize the multi-study factor analysis model to
handle high-dimensional data and generalize the sparse Bayesian infinite fac-
tor model to this context. We provide strategies for the identification of the
loading matrices, common and study-specific. Through extensive simulation
analysis, we characterize the performance of the proposed approach in vari-
ous scenarios and show that it outperforms standard factor analysis in identi-
fying replicable signal in all scenarios considered. The analysis of breast can-
cer gene expression studies identifies clear replicable gene patterns. These
patterns are related to well-known biological pathways involved in breast
cancer, such as the ER, cell cycle, immune system, collagen, and metabolic
pathways. Some of these patterns are also associated with existing breast can-
cer subtypes, such as LumA, Her2, and basal subtypes, while other patterns
identify novel pathways active across subtypes and missed by hierarchical
clustering approaches. The R package MSFA implementing the method is
available on GitHub.

1. Introduction. High-throughput molecular assays are now common in biology, result-
ing in a rich, complex, and diverse collection of high-dimensional datasets and transforming
our approach to investigating many diseases, particularly cancer. Breast cancer molecular
subtypes based on gene expression patterns, learned from high-throughput studies, have been
among the most impactful discoveries brought about by this transformation (Perou et al.
(2000)). Breast cancer presents heterogeneity in both clinical and genetic aspects, eluci-
dated by classifying tumors into subtypes and defined by gene expression measurements,
with implications for personalized treatment (Masuda et al. (2013)) and prediction (Parker
et al. (2009)). To improve inference on subtypes, Sørlie et al. (2001) and Planey and Gevaert
(2016), among others, sought to discover gene expression patterns using multiple studies.

Analyses combining high-dimensional biological data from different studies and technolo-
gies are crucial to improving the accuracy of conclusions and producing generalizable knowl-
edge. Measurements from high-throughput experiments display variation arising from both
biological and artifactual sources (Hicks, Teng and Irizarry (2015)). Within a study, effects
driven by a specific laboratory or technology’s experimental conditions can be so large to
surpass the biological signal (Aach, Rindone and Church (2000), Irizarry et al. (2003), Shi
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et al. (2006), Kerr (2007)). In breast cancer gene expression studies, batch-related effects
are also common, and addressing them improves the ability to learn from multiple studies
simultaneously (Larsen et al. (2014)).

A strength of multi-study analyses is that, generally, genuine biological signal is more
likely than spurious signal to be present in multiple studies, when studies are collected from
biologically similar populations. Thus, multi-study analyses offer the opportunity to learn
replicable features shared among multiple studies. Discovering these features is more valu-
able than discovering signal in a single study. Joint analyses of multiple genomic datasets
have begun more than a decade ago, they are now increasingly common and can be highly
successful (Huttenhower et al. (2006), Pharoah et al. (2013), Ciriello et al. (2013), Riester
et al. (2014), Gao et al. (2014)).

An important goal in our breast cancer application, and in high-dimensional data analysis
generally, is the unsupervised identification of latent factors. Despite the importance of this
goal, the development of formal statistical approaches for unsupervised multi-study analy-
ses is relatively unexplored. In applications, joint unsupervised analyses of high-throughput
biological studies often proceed by pooling data from different studies. Despite their utility,
these analyses rely, critically, on simplified methods of analysis to capture common signal
(Meng et al. (2014), Kim et al. (2017)). For example, Wang et al. (2011) and Edefonti et al.
(2012) stack all studies and then perform standard factor analysis (FA). The results capture
some common features, but the information about study-specific components are lost, and
ignoring theses study-specific characteristics can bias or compromise the conclusions about
common signal. Alternatively, it is also common to analyze each study separately and then
heuristically identify common characteristics (Hayes et al. (2006)).

Multiple co-inertia analysis (MCIA) (Meng et al. (2014)) is a generalization of co-inertia
analysis (CIA) (Dray, Chessel and Thioulouse (2003)) to more than two datasets. CIA ex-
plores the common structure of two different sets of variables by first separately performing
dimension reduction on each set to estimate factor scores and then investigating the corre-
lation between these factors. Multiple factor analysis (MFA) (Abdi, Williams and Valentin
(2013)) is an extension of principal component analyses (PCA) which starts with study-
specific PCAs and further combines them. Kim et al. (2017) developed a meta-analytic PCA,
combining separate study-specific principal components by identifying a common linear sub-
space through a squared cosine maximization. Other approaches focus on cluster analysis
techniques considering multiple datasets, such as allocating subjects in different breast can-
cer subtypes (Planey and Gevaert (2016), Huo et al. (2016)).

In this work our aim is to systematically identify gene patterns that are replicable across
multiple breast cancer gene expression studies. We explore if gene patterns common to all
the studies are associate with known, or plausible, sources of biological variation. Then, we
identify patterns specific to each study and explore whether they are likely to be batch effects
A methodological tool for this task is the multi-study factor analysis (MSFA) (De Vito et al.
(2019)), which extends FA to the joint analysis of multiple studies, separately estimating
signal replicably shared across multiple studies from study-specific components arising from
artifactual and population-specific sources of variation. This dual goal clearly sets MSFA
aside from earlier applications of FA to gene expression studies, such as Carvalho et al.
(2008), Blum et al. (2010), or Runcie and Mukherjee (2013).

The MSFA methodology in De Vito et al. (2019) is limited to low-dimensional settings,
where enough samples are available in each study and no sparsity is expected or necessary.
This is because model parameters are estimated by maximum likelihood (MLE), and model
selection is performed by standard information criteria. In our breast cancer gene expression
case study, the number of variables exceeds the sample size in all studies, and it is essential
to employ regularization through priors or penalties. To address this challenge, we introduce
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TABLE 1
The seven datasets considered in our case study. N is the total number of samples; N: ER+ is the number of ER

positive patients. 3Q survival is the third quartile of the survival function, in months

Study Adjuvant Therapy N N: ER+ 3Q survival

CAL Chemo, hormonal 118 75 42
MAINZ none 200 162 120
MSK combination 99 57 76
EXPO hormonal 517 325 126
TRANSBIG none 198 134 143
UNT none 133 86 151
VDX none 344 209 44

Bayesian multi-study factor analysis (BMSFA), an extension of MSFA using a Bayesian
approach that imposes sparsity. Bayesian approaches naturally provide helpful regulariza-
tion and offer further advantages, discussed later. We leverage the Bayesian infinite factor
model and generalize the multiplicative gamma prior of Bhattacharya and Dunson (2011) to
the MSFA setting. We then sample from the posterior distribution, via MCMC, without any
ex-ante constraints, such as lower-triangularity (Lopes and West (2004)), on the loading ma-
trices. Although useful inferences can be obtained with careful use of constraints on loading
matrices, removing them makes the application of FA much simpler.

We employ two methods to recover loading matrices. The first is based on a matrix spec-
tral decomposition (SD) and closely resembles principal factor analysis (Darton (1980)),
applied to estimated covariance matrices. The second uses the recently proposed orthogonal
procrustes (OP) method (Aßmann, Boysen-Hogrefe and Pape (2016)), which performs an ex
post recovery of the estimated loadings by processing the MCMC output, after sampling from
the posterior without any restrictions.

The plan of the paper is as follows. Section 2 describes the seven gene expression breast
cancer studies that motivated our model. Section 3 introduces the BMSFA framework, de-
scribes our prior, our procedure for choosing the number of common and study-specific fac-
tors, and methods for estimating the factor loadings. Section 4 presents extensive simulation
studies, providing evidence on the performance of BMSFA and comparing it with other meth-
ods. Section 5 applies BMSFA to the breast cancer data described in Section 2 and discusses
the association between the common pattern we discovered with both biologically relevant
pathway and known subtypes. Section 6 contains a discussion.

2. Breast cancer gene expression studies. We consider the collection of publicly avail-
able breast cancer microarray studies listed in Table 1 which provides an overview of the stud-
ies, the corresponding references, sample sizes, estrogen receptor (ER) status prevalences,
and survival summaries. Additional details about these studies, their preprocessing, normal-
ization, curation, criteria for inclusion, and public availability are described in Haibe-Kains
et al. (2012). In the Affymetrix technology, genes can be represented by multiple probe-sets.
Our analysis considers, for each gene, only the probe-set with maximum mean. As in Bernau
et al. (2014), we only consider genes measured in all seven studies (6358 in total) and focus
on the 50% of genes with the highest variance, computed combining all studies.

Our goal is to identify stable and replicable latent factors by simultaneously modeling both
common components of variability shared across the breast cancer studies and those that are
study-specific. The latter could include artifacts and batch effects not adequately removed by
the initial data preprocessing as well as study-specific biological signal.

A widely used statistical approach for defining breast cancer subtypes is unsupervised
clustering (Sørlie et al. (2001, 2003)). A challenge is to characterize to which extent gene
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expression distributions, and the resulting subtypes are stable across different studies using
different technologies that query the same set of genes (Hayes et al. (2006)). When different
studies are considered together, one is likely to encounter significant and unknown sources
of study-to-study heterogeneity (Bernau et al. (2014), Zhang et al. (2020)). These sources
include differences in design, hidden biases, technologies used for measurements, batch ef-
fects, and also variation in the populations studied, for example, differences in treatment or
disease stage and severity. It is essential to quantify this study-to-study heterogeneity and its
impact on the replicability of single-study analyses.

A typical bioinformatics analysis pipeline would attempt to remove variation attributable
to experimental artifacts before further analysis. For example, Sørlie et al. (2001) use the
SAM (significance analysis of microarrays) algorithm to detect genes not influenced by batch
effects and then use this set of genes to perform unsupervised cluster analysis. In general, it
is challenging to entirely remove artifactual effects (Draghici et al. (2007)).

3. Bayesian multi-study factor analysis. This section provides definitions and algo-
rithms for Bayesian multi-study factor analysis (BMSFA), in five parts: (i) Definition of the
multi-study factor model; (ii) Specification of the prior; (iii) Model identifiability; (iv) Esti-
mation of the number of latent factors; (v) Estimation of the loading matrices.

3.1. Model specification. We consider S studies, each with the same P variables. Study
s, s = 1, . . . , S, has ns subjects and P -dimensional data vectors xis , i = 1, . . . , ns . In MSFA
(De Vito et al. (2019)) the variables in study s are decomposed into K factors common to all
the studies and Js factors specific to study s, with K + Js � P, s = 1, . . . , S,

xis = �fis + �s lis + eis .(1)

Here, fis ∼ NK(0, IK) are the common latent factors; � is their P × K loading matrix;
lis ∼ NJs (0, IJs ) are the study-specific latent factors, and �s, s = 1, . . . , S are the corre-
sponding P × Js loading matrices; lastly, eis is the p × 1 Gaussian noise with covariance
�s = diag(ψ2

1s, . . . ,ψ
2
ps). The resulting marginal distribution of xis is a multivariate normal

with mean vector 0 and covariance matrix �s = ��� +�s�
�
s +�s . The covariance matrix

of study s can be rewritten as

�s = �� + ��s + �s,(2)

where �� = ��� represents the component of variability common to all studies, while
��s = �s�

�
s is the component of variability attributable to the study-specific factors.

We focus on the estimation of the common term �� as well as the components specific to
each study ��s , extending our previous work to estimate low-rank covariance matrices.

3.2. The multiplicative gamma shrinkage prior. To specify a prior for the entries φpk of
the common factor loading matrix � and for the entries λs

pj of the study-specific factor load-
ing matrices �s , we generalize the multiplicative gamma shrinkage prior from Bhattacharya
and Dunson (2011) to the multi-study setting as follows. The prior for the elements of the
common factor loading matrix � is

φpk | ωpk, τk ∼ N
(
0,ω−1

pk τ−1
k

)
, p = 1, . . . ,P , k = 1, . . . ,∞,

ωpk ∼ 	

(
ν

2
,
ν

2

)
, τk =

k∏
l=1

δl, δ1 ∼ 	(a1,1), δl ∼ 	(a2,1), l ≥ 2,
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where δl (l = 1,2, . . . ) are independent, τk is the global shrinkage parameter for column k,
and ωpk is the local shrinkage parameter for element p in column k. We then replicate this
scheme to specify the prior for the elements of the study-specific factor loading matrix �s ,

λs
pj | ωs

pj , τ
s
j ∼ N

(
0,ωs−1

pj τ s−1

j

)
, p = 1, . . . ,P , j = 1,2, . . . ,∞, and s = 1, . . . , S,

ωs
pj ∼ 	

(
νs

2
,
νs

2

)
, τ s

j =
j∏

l=1

δs
l , δs

1 ∼ 	
(
as

1,1
)
, δs

l ∼ 	
(
as

2,1
)
, l ≥ 2,

where δs
l (l = 1,2, . . . ) are independent, τ s

j is the global shrinkage parameter for column j ,
and ωs

pj is the local shrinkage for the element p in column j .
An important property of these priors is that they result in shrinkage of factor loadings

toward zero in a way that tends to increase with the column index of the factor loading.
For each of the error variances ψps,p = 1, . . . ,P , we assume an inverse gamma prior

ψ−1
ps ∼ 	(aψ, bψ), often used in standard FA (Lopes and West (2004), Bhattacharya and

Dunson (2011), Ročková and George (2016)).

3.3. Model identification and parameter estimation. Sampling from the posterior dis-
tribution of the model parameters is carried out by Markov chain Monte Carlo (MCMC)
simulations, fully described in the Supplementary Material (De Vito et al. (2021), Section
A). In our setting we encounter two identifiability issues: (i) Label switching (switching a
column in any of the factor loading matrices with another) and (ii) Orthogonal rotations of
factor loading matrices. Both of these changes result in the same distribution for the data
but may affect the samples produced by MCMC. Therefore, averaging unprocessed MCMC
posterior samples of the loading matrices is not recommended, as it may lead to mislead-
ing summaries. For this reason, we avoid it and propose instead two different approaches to
recovering loading matrices, described below.

3.4. Choosing the number of latent factors. In applications the number of latent factors
is likely to be small compared to the number of variables P . We need to choose the factor
dimensions to values suitable for the data at hand. We denote our choice the common latent
dimension by K∗ and those for the study-specific dimensions by J ∗

s . An analogous task for
FA is addressed in Bhattacharya and Dunson (2011) with truncation of the number of factors
to a finite value, smaller than P . The fact that the shrinkage progressively increases in later
columns simplifies this task, compared to alternative shrinkage priors such as the spike-and-
slab prior (Carvalho et al. (2008)).

The approach we propose here starts from MCMC simulations from the BMSFA with
large values K init and J init

s . Using these posterior samples, we select K∗ � P and J ∗
s � P

as follows. In the BMSFA model in Section 3.1, the two matrices �� and ��s are singular
with ranks K and Js , respectively. Since these matrices are symmetric semi-definite, they
have K and Js non-null eigenvalues which are not affected by column label switching or
orthogonal rotations. We then compute the estimate the posterior mean of the ordered eigen-
values ν1, . . . , νP of �� and choose K∗ by setting a threshold on the proportion of the total
variance explained, obtained by dividing each eigenvalue by the sum of eigenvalues. In our
data analyses we choose a threshold of 5% of the total variance and retain the K∗ factors
exceeding this threshold. We proceed in the same way for each Js , s = 1, . . . , S. Finally, we
run the MCMC again with latent dimensions K∗ and J ∗

s .

3.5. Recovering loading matrices. We discuss two methods for recovering these matri-
ces: spectral decomposition (SD) and orthogonal procrustes (OP).
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The SD methods follow principal FA (e.g., Darton (1980)), adapting it to the BMSFA
setting. It starts by decomposing the estimated common covariance component as

�̂� = UNU� = (
UN1/2)(

N1/2U
)�

.

Using this decomposition and for fixed K∗ selected, as described above, the common factor
loading matrix can be estimated as �̂ = UK∗N1/2

K∗ , where UK∗ corresponds to the matrix of
the first K∗ eigenvectors of U and NK corresponds to the diagonal matrix of the first K∗
eigenvalues. We proceed in the same way for the study-specific factor loading matrices.

The OP approach generalizes (Aßmann, Boysen-Hogrefe and Pape (2016)) which ad-
dresses identification by suitably postprocessing samples from the posterior distribution.
We illustrate the idea by considering �, though the same procedure is also applied to �s .
Let �(1), . . . ,�(R) be posterior samples. The summary �̃

∗ is defined by the following con-
strained minimization:

{
�̃

∗
, Q̃(r)} = argmin

�∗,Q(r)

R∑
r=1

tr
{(

�(r)Q(r) − �∗)�(
�(r)Q(r) − �∗)}

,

subject to
(
Q(r))�Q(r) = IK∗,

(3)

for r = 1, . . . ,R. Aßmann, Boysen-Hogrefe and Pape (2016), Proposition 3.1, show that
the minimization of (3) enforces invariance with respect to rotations that may take place
during the MCMC sampling. However, it is possible to multiply both �∗ and Q(r) by any
fixed rotation Q∗ in (3) without changing the value of the loss function. Therefore, �̃

∗ can
be freely rotated post hoc for enhancing interpretation, as commonly done in FA. Aßmann,
Boysen-Hogrefe and Pape (2016) prove that the optimization can be carried out by iterating
the following two steps until convergence:

1. Given the current value of �∗, compute Q̃(r) = UrV�
r , where Ur and Vr are obtained

from the singular value decomposition of Sr = (�(r))��∗.
2. Compute �̃

∗ = 1
R

∑
r �(r)Q̃(r); then, update �∗ by replacing it with �̃

∗.

The method requires an initial choice for �∗. Aßmann, Boysen-Hogrefe and Pape (2016)
suggest that a natural choice is a value from the unconstrained sampler.

4. Simulation results. In this section we use simulation experiments to assess BMSFA’s
ability to recover the shared covariance matrix ��, the common factor loading matrix � via
both the OP and SD procedures, and the number of common latent dimensions K . We further
provide comparisons to standard FA applied to the merged datasets.

We generated 50 collections of datasets for each of the scenarios specified in Table 2 and
Figure 1. We fixed �, �s and �s , for s = 1, . . . , S. We consider four scenarios differing
in the number of studies, sample sizes, and covariance structure (see Figure 1, column 1).
Scenarios 1 and 2 are similar to Zhao et al. (2016): ns is chosen to be smaller than P to
mimic large P and small ns conditions while operating with a manageable set of variables
for visualization and summarization. In Scenario 3 only some of the studies have P � n. In
this scenario, nonzero study-specific factor loadings are randomly set equal to 1 or −1. The
motivation behind this scenario is to investigate if our method recovers large study-specific
components of variability. In Scenario 4 we mimic the case study data, choosing S = 7 and
matching the sample sizes to those of Table 1. In all the scenarios considered, we randomly
allocate the zeros in each column of � and �s (Table 2).

We ran the Gibbs sampler (Supplementary Material, Section A) for 30,000 iterations with
a burn-in of 20,000 iterations. These iterations are sufficient for convergence and good mix-
ing (Supplementary Material, Section B). The hyperparameters are defined in Table 3. Our
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TABLE 2
Distributions used to generate observations in study s, in

simulation experiments

Xs ∼ MVN(0,�s ),
�s = ��� + �s�

�
s + �s ,

�, �s : matrices with ≈ 70 % of zeros with nonzeros elements
generated using uniform densities U(0.6,1) or U(−1,0.6),

�s : diagonal elements drawn once from U(0,1)

TABLE 3
Prior distributions used in the simulation

experiments and real data analysis

Common factor loadings: ωpk ∼ 	( 3
2 , 3

2 ),
Study-Specific factor loadings: ωs

pj ∼ 	( 3
2 , 3

2 ),
δ1 ∼ 	(2.1,1) and δl ∼ 	(3.1,1) with l ≥ 2,
δs

1 ∼ 	(2.1,1) and δs
l ∼ 	(3.1,1) with l ≥ 2,

�−1
s ∼ 	(1,0.3)

FIG. 1. Covariance matrices �� and their Bayesian estimates in four simulation scenarios. The first column
provides the scenarios’ settings. The second column depicts the true �� = ���, with � derived as described
in Table 2. The third column represents the estimates of �� averaged over the 50 simulated datasets. The fourth
column shows the boxplots of RV coefficient replicates between the true and the estimated ��, obtained by both
our BMSFA and the FA after stacking all the studies in one.
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choice is based on guidelines by Bhattacharya and Dunson (2011) and Durante (2017) as
well as numerical experiments exploring the sensitivity of the algorithm for different choices
(Supplementary Material, Section C).

We first evaluate BMSFA’s ability to recover the covariance component �� determined
by the common factors as well as the common factor loadings �. Figure 1 compares the true
and estimated ��. To quantify the similarity between �� and �̂�, we use the RV coefficient
(Robert and Escoufier (1976)) which varies in [0,1]. The closer RV is to 1, the more similar
the two matrices are.

Next, we compare BMSFA to Bayesian FA, adopting the same prior (Bhattacharya and
Dunson (2011)) for each study. For Bayesian FA we combined all studies into a single dataset,
ignoring study labels. The RV coefficients for BMSFA (Figure 1, fourth column) are system-
atically greater than for FA (Figure 1, fourth column), demonstrating that our BMSFA recov-
ers common factors better than a merged analysis. In Scenario 3 the gap is more pronounced,
as study-specific factor loadings are large, and BMSFA can isolate them. Also, the distribu-
tion of BMSFA’s RV coefficient is less dispersed than FA’s. This comparison illustrates that
BMSFA identifies the shared signal across the studies and improves its estimation compared
to standard Bayesian FA.

Figure 2 presents a similar analysis comparing the true to the estimated factor loadings
when using the SD (second column) and the OP procedure (third column). The matrices
depicted in Figure 2 are obtained averaging the results of 50 simulations after performing
each procedure. For both the SD and OP methods, we applied the varimax rotation to obtain
a better defined and more interpretable loading structure.

Both the OP and SD procedures capture the true common factor loading matrix. Figure 2
also shows boxplots of the RV coefficient to quantify the similarity between � and its es-
timates, obtained by both SD and OP. The RV coefficient for factor matrices is invariant to
rotations, resulting in identical RV coefficients whether we consider the factor loading ma-
trices or their rotations. The RV coefficients are generally high, suggesting that our sampling
approaches are appropriate. In our simulation scenarios the performance of SD is at least as
good, and sometimes better, than that of OP in recovering the factor loadings. The boxplots
of the RV coefficients for the estimates obtained by the SD approach are generally located at
higher values than the boxplots of the RV coefficients for the estimates obtained with the OP
approach. The SD is also straightforward to compute and interpretable. In our case study we
will present results with the SD approach. The OP estimates would lead to the same biological
conclusions.

So far, we took K , the number of common factors, to be known. We next focus on de-
termining K via SD of the common covariance component �̂�. We use a 5% threshold for
the variance component explained by each reported factor relative to the total variability cap-
tured by �̂�. A threshold of 10% led to the selection of the same number of factors in our
simulation settings. As a general rule, we prefer to adopt lower thresholds, as we are more
concerned with losing important shared biological factors than with including slightly redun-
dant shared factors. Table 4 shows the results in the four scenarios considered previously.
Our method consistently selects the correct dimension for the common factors. Results for
the study-specific dimension choices are reported in the Supplementary Material (Section
C.2).

5. Breast cancer case study. Our analysis includes five parts: (i) Exploration of the
common covariance matrix ��, (ii) Analysis of the common factor loadings �, (iii) In-
terpretation of � in terms of breast cancer subtypes, (iv) Exploration of the study-specific
components, ��s ; and (v) Illustration of regularization properties.

Covariance Structure. We start by identifying the common covariance structure across the
S = 7 breast cancer studies of Table 1. We use the prior of Table 3. We visualize the shared
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FIG. 2. Heatmap of the true (first column) and average estimates, across 50 collections per scenario, both
via SD (second column) and via OP (third column), of the common factor loadings �. In Scenario 4 we only
show common factor loadings ≥ 0.6, in absolute value. The right column displays boxplots of the RV coefficients
between the true and estimated � via OP and via SD over 50 datasets for each scenario.

TABLE 4
The number of reported common factors K . We report on 50

independent datasets using the same simulation scenarios described
in Figure 1: K = 3 for Scenario 1, K = 3 for Scenario 2, K = 5 for
Scenario 3, and K = 8 for Scenario 4. We proceed by selecting the

number of common factors as described in Section 3.4

Simulation Scenario Number of simulations in which the
reported number of common factors

and true value of K are identical

1 48
2 50
3 49
4 49
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FIG. 3. Shared gene coexpression network based on �̂� across the seven studies (Table 1) obtained using
Gephi (Bastian, Heymann and Jacomy (2009)). We include edges between two genes if the corresponding element
in the shared covariance matrix �̂� is greater than 0.5 in absolute value. We do not graph the 15% of the genes
which have no surviving edges. Numbers refer to clusters identified by the ForceAtlas2 algorithm (Jacomy et al.,
2014).

coexpression relations via a network built using �̂� and thus representative of all studies
(Figure 3). A gene coexpression network is an undirected graph. Nodes represent genes,
and edges represent the degree of coexpression for pairs of genes. The size of each node is
proportional to the number of connections between the corresponding gene and others within
the same cluster.

The five clusters of genes displayed in Figure 3 are all associated with important biolog-
ical processes. Cluster 1 includes the estrogen receptor (ESR1) which has an important role
in the biology and treatment of breast cancer (Sørlie et al. (2001)). This cluster captures a
large transcriptional program. Important transcription factors and activators in this cluster in-
clude GATA3, XBP1, and FOXA1, upon which we return later. In breast cancer a strong and
positive coexpression of GATA3, XBP1, and FOXA1 with ESR1 is noted in luminal A breast
tumors (Sørlie et al. (2003)). Cluster 2 appears to be related to the cell cycle. One of the most
connected genes in this cluster is CCNB1 which encodes cyclin B. Cyclins are prime cell
cycle regulators. In particular, mitotic cyclins A and B and their dependent kinase are over-
expressed in breast cancer (Basso et al. (2002)). Two other notable genes in this cluster are
CDK1, a kinase which depends on cyclins, and CDC20, a gene related to the metaphase and
anaphase of the cell cycle. Most genes in cluster 3 are related to the regulation of the immune
response, as exemplified by the prominence of CD and HLA genes which are essential for the
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FIG. 4. (a) Heatmap of �̂ obtained with BMSFA across all studies. We only show common factor loadings
greater than 0.6 in absolute value. The factor loadings are ordered by the variance explained. Overall, the eight
common factors explain 83% of the total common variance. (b) Boxplots of the estimated common factor score
for Factor 1, associated to the ER pathway. The boxplot on the right (left) corresponds to ER negative (positive)
samples.

immune system function. Cluster 4 includes several genes expressed by the connective tissue,
such as collagen genes. Finally, Cluster 5 is largely composed of the RP genes codifying the
ribosome which synthesizes proteins. Dysregulation of ribosome function is related to tumor
progression in breast cancer (Belin et al. (2009)).

Shared Factor Loadings. We then estimate the common factor loadings using the SD of
�̂� (Figure 4(a)). Our method chooses K = 8 through the eigenvalue analysis of �̂�. We
further elucidate the relation of common factor loadings with biological pathways through
a gene set enrichment analysis (GSEA) (Mootha et al. (2003)), investigating whether gene
sets capturing pathway memberships are enriched among the loadings in the sense of having
larger loadings than a random set of that size. The sets capturing biological pathways are
from reactome.org. We use the package RTopper in R in Bioconductor, following
the method of Tyekucheva et al. (2011). Five common factor loadings out of eight are signif-
icantly enriched in specific biological pathways, while the remaining three relate to multiple
pathways. These five are more straightforward to interpret and map nicely to the clusters of
Figure 3 though not in the same order. Factors 1, 2, 3, 5, and 7 are significantly enriched,
respectively, for gene sets related to ER, cell cycle, immune system, collagen, and metabolic
pathways (Supplementary Material E.1).

The first common factor, �1, is enriched for the ER pathway, which is expressed in 70%
of breast cancers (Reinert et al. (2017)), and it is essential for both the classification of tu-
mors into subtypes and therapeutic strategies (Reinert et al. (2017)). We explore whether ER
positive tumors (ER+) are projected in distinct regions of the latent space, compared to ER
negative tumors (ER-). Figure 4(b) displays the estimated Factor 1 scores. As expected, the
distributions of scores for the ER+ and ER- samples differ markedly (Figure 4(b)).

Subtypes. Following early gene expression clustering efforts (Sørlie et al. (2001, 2003)),
breast cancer is often categorized molecularly into four subtypes: basal-like, luminal A
(LumA), luminal B (LumB), and human epidermal growth factor receptor 2 (HER2)-
enriched. These subtypes present differences in clinical outcome and prognosis. Next, we
describe the association between the common factor scores we identified and these subtypes.
We first classify patients into subtypes, following the hierarchical clustering approach Sørlie
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FIG. 5. Distributions of common factor scores for breast cancer molecular subtypes: Basal, Her2, Luminal A,
and Luminal B.

et al. (2001). Then, we illustrate the distribution of the factor scores in these four subtypes
(Figure 5). Sørlie et al. (2001) also suggest the presence of a so-called “normal-like” subtype
to which 28 out of our 1445 patients are assigned. Unfortunately, 17 of these 28 patients are
concentrating on study VDX. As a result, this subtype is highly confounded with study. In-
clusion of this confounded subtype is likely to impair the interpretation of both common and
study-specific effects. Therefore, these 28 patients were excluded.

For each common factor a boxplot in Figure 5 summarizes its distribution within a specific
subtype. Distributions of Factors 1, 4, and 7 differ in exactly one subtype, while the box-
plots of all the other factors are similar across subtypes. Factor 1 presents higher scores for
patients classified in the breast cancer LumA subtype, compared to all the others. Factor 1
has the highest factor loadings (≥ 0.8) in the ESR1, GATA3, and XBP1 genes. Sørlie et al.
(2003) shows that these three genes (among nine) are highly expressed in luminal subtype
A tumors. Factor 4 presents lower scores for patients classified in the Her2 subtype. This
factor is enriched for metabolic pathways, regulation of actin cytoskeleton, and MAPK sig-
naling. These three pathways have been found to be associated with HER2 subtype breast
cancer (Yang et al. (2016)). Factor 7 presents higher scores for patients classified in the basal
subtype, compared to patients classified in the luminal subtypes (LumA, LumB). Factor 7 is
enriched in metabolic pathways, such as glycolysis and oxidative phosphorylation. These two
metabolic pathways reveal an opposite association with the basal and the luminal subtypes.
In particular, glycolysis is lower in the luminal subtypes and higher in the basal subtype
(Tyanova et al. (2016)). On the contrary, the oxidative phosphorylation is higher in the lu-
minal subtypes and lower in the basal subtype (Tyanova et al. (2016)). Effects of the same
direction are observed in our analysis.
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The remaining five common factors (2, 3, 5, 6, 8) do not show any differences in scores
across breast cancer subtypes. These are interpretable in terms of enrichment for pathways
essential to all subtypes. In our opinion this reveals the power of our multi-study method to
detect a biological signal that is important, but not captured with cluster-based breast can-
cer subtype analysis, because it is shared by multiple subtypes. In particular, Factor 2 is
significantly enriched for the cell cycle, DNA replication, and cell proliferation pathways.
The replication rate does not vary significantly, on average, across breast cancer subtypes
but does across tumors. Factor 2 likely captures this variation. Factor 3 is associated with
immune system activity. Similarly, immune regulation of the tumor microenvironment can
be relevant within each of the subtypes. Factor 5 is related to collagen accumulation which
is increased by insulin and insulin-like growth factor I. The insulin-like growth factor-I is
present in all breast cancer subtypes (Law et al. (2008)). Factor 6 presents negative and large
(≤ −0.7) loadings in the IRF8, CD53, and CD48 genes. These three genes with other 19
genes compose the T-cell metagene and are involved in multiple biological functions. For ex-
ample, T-cell metagene expression is associated with a reduced risk of distant metastases in
all cancer subtypes, possibly explaining the absence of variability of this factor across breast
cancer subtypes. Finally, Factor 8 has high (≥ 0.7) positive loading in CLK2. This gene is
amplified and overexpressed in a significant fraction of breast tumor (Yoshida et al. (2015)).

These analyses indicate that the BMSFA is able to capture biological signal shared across
all studies and also to reveal new insight into breast cancer subtype analysis, compared to
other unsupervised analyses based on hierarchical clustering.

Study-specific factor loadings. Next, we focus on the study-specific loadings. We compare
two studies from Table 1: the CAL study (Figure 6(a)), which includes patients whose cancer
has reached the axillary lymph nodes (positive nodal status) and not (negative nodal status),
and the MAINZ study (Figure 6(b)) which includes only patients with negative nodal status.
Nodal status is associated with cancer ability to spread (Carter, Allen and Henson (1989)),
is part of clinical staging, and is pivotal for treatment decisions in breast cancer. In the CAL
study, 54% of the patients presents a high histological grade, while in the MAINZ study only
17% do.

We first perform GSEA for the study-specific factor loadings. The CAL study-specific
factors are significantly enriched with “Downregulation of TGF-β receptor signaling”, a
pathway related to an increase of lymph node metastasis and to a more aggressive clinical
behavior, including shorter survival. This pathway defines a dimension likely to discriminate
between node-positive and node-negative tumors. The gene network (Figure 6(a)) supports
these results: one crucial gene in this network is PCBP1, previously found to have a role in
cancer progression in conjunction with TGF-β (Ooshima, Park and Kim (2019)).

In contrast, the TGF-β pathway is not significantly enriched in the MAINZ study’s fac-
tors, in line with survival and histological differences between the two studies. In the MAINZ
study the loadings are associated with two pathways: “Cytokine signaling in immune system”
and “Cell communications”. These pathways, previously found in lymph node-negative pa-
tients, are associated with antitumor response (Chatterjee et al. (2018)). The gene network for
the MAINZ study (Figure 6(b)) also emphasizes these pathways, for example, via the role of
CD46 and CAPRIN1, which are involved in the immune system and the cell cycle pathway,
repectively.

Regularization. An essential feature of BMSFA is the regularization of the common factor
loadings. To illustrate this in more detail, we compare BMSFA to MSFA which uses MLE for
parameter estimation. Because MSFA cannot deal with p > n, we focus on the 63 genes in
the immune system pathway whose loadings are compared in Figure 7. BMSFA regularizes
common factor loadings by shrinking small and moderate MLE loadings to zero (Figure 7,
left panel). In this regard the action of the prior is similar to that of a factor rotation. To
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FIG. 6. Study-specific gene coexpression network based on �̂�s
of both the CAL (a) and MAINZ (b) study

obtained using Gephi. We include edges between two genes if the corresponding element in the study-specific
covariance matrix �̂�s

is greater than 0.5 in absolute value.

further illustrate this point, we rotate the loadings obtained with the MLE using the varimax
rotation (Kaiser (1958)), and we compare it with the BMSFA (Figure 7 right panel). The
BMSFA loadings in the low range are far more similar to the MLE estimates rotated by
varimax, although the overall correlations only differ modestly as a result of in influence of
large factors.

We performed additional simulations (Supplementary Material, Section D.2) that support
these results, as does earlier research where penalty functions, based on the varimax criterion,
were used for estimating rotated principal components (Park (2005)).

6. Discussion. In this article we seek to identify patterns of transcriptional variation in
breast tumors that are replicable across multiple published studies. We are able to identify
latent factors that recapitulate known breast cancer subtypes as well as novel latent factors.
Some of these represent essential biological functions across tumors and may be important
in identifying shared vulnerabilities across subtypes. Others are unique to individual studies,
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FIG. 7. Comparisons between common factor 1 loadings obtained both via MLE (horizontal) and BMSFA (ver-
tical). On the left are the original loadings while on the right the MLE loadings have been rotated using varimax.

and in some cases can be interpreted based on sources of biological variation unique to the
study’s design.

To achieve these results, we proposed and implemented a novel and general Bayesian
framework for the unsupervised analysis of high-dimensional biological data across multiple
studies. We address the broader unmet need to rigorously model replicable signal across stud-
ies while at the same time capturing study-specific variation. Our approach is not limited by
P � n and shows considerable promise in modeling sparsity and enhancing interpretability
via shrinkage. Systematic collections of gene expression data similar to those considered in
our case study are widely available. These are obtained with technologies and study designs
that evolved over time, emphasizing the importance of cross-study variation. Beyond gene
expression the BMSFA method may have broad applicability in a wide variety of studies, in-
cluding genome-wide association studies, metabolomics, electronic medical record (EMR),
and high dimensional epidemiological data.

To characterize the common signal, we focus on both �� and �. MCMC samples of ��

can be used to construct gene relevance networks (Butte et al. (2000)) as well as graphical
model for gene association networks (Ni et al. (2018)). The matrix � is particularly useful
when one is interested in associating a phenotype label to the factors. For example, in dietary
analyses we used the MSFA to derive common (�) and study-specific (�s ) factors in seven
studies and then investigated their association with cancer (De Vito et al. (2019)).

We also developed two ways to recover the factor loading matrix. The SD approach is
simple and straightforward and, as noted by Darton (1980), only requires estimating the �s

matrices, and fixing the latent factor dimensions. The OP approach, in contrast, requires the
entire MCMC output. A potential limitation arises in scenarios with large factor loadings,
present only in the first few loading matrix columns. We evaluated this limitation in simu-
lations (Supplementary Material, Section D.1) and observe a moderate deterioration, despite
which the method was still able to produce good estimates. Moreover, post hoc application
of the varimax rotation improved the results, though those for the SD method remained more
accurate. More generally, the SD method outperformed the OP method across the scenarios
we considered. The computational time for SD was consistently less than for OP (see Section
B, Table S2). In summary, both the theoretical properties and the simulation results support
our preference for SD in the data analysis.
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FIG. 8. Heatmap of the true common loading matrix, � (first column). Heatmap of the estimated � (mean of
50 simulations) via BMSFA after generating the data with a factors partially shared by two studies over four
(second column) and by three studies over four (third column). The right column displays three boxplots showing,
respectively, the RV between the estimated � and the true factors partially shared by two studies, the RV between
the estimated � and the true factors partially shared by three studies, and, finally, the RV between the estimated
� and the true common factors shared by all the studies over 50 datasets in Scenario 1.

Recently, Roy et al. (2019) introduced perturbed factor analysis (PFA), a method that
shares BMSFA’s goal to improve replicability across studies. In summary, PFA introduces
a matrix Q of perturbations across different groups/studies. PFA has the advantage of esti-
mating a smaller number of parameters; hence, it can be particularly helpful when the aim is
to directly estimate the common factor loading matrix. On the other hand, BMSFA relies on
explicit estimation of the study-specific factor loadings, achieved directly in the Gibbs sam-
pling algorithm. BMSFA estimates both the study-specific loadings and the study-specific
covariance matrix while PFA quantifies the magnitude of the perturbation in each study with
calculation and derivation of the Frobenius norm. Additionally, PFA controls the level of per-
turbation across groups via a hyperparameter. As a result, PFA requires proper tuning in order
to precisely estimate the study-specific loading matrix, hence the requirement for a cross val-
idation analysis. BMSFA and PFA are complementary methods addressing related, but not
identical, challenges.

The BMSFA methodology shrinks the latent factor loadings and provides a strategy to deal
with high-dimensional data. However, the performance may be sensitive to several choices
of prior hyperparameters. We recommend sensitivity analyses, such as those presented here,
which provide a practical strategy to study the shrinkage behavior in a multi-study setting.

We also explored the robustness of BMSFA, assuming that in the data generation some
factors are not common to all the studies but instead are only common to a subset of studies.
We evaluated the sensitivity of the estimates in two scenarios, the first with three common
factors partially shared by two studies out of four and the second with three common factors
partially shared by three studies out of four. The simulation settings of these two scenarios
were the same as for Scenario 1. In Figure 8 we examine data generated by three factors
partially shared by two studies out of four and by three factors partially shared by three stud-
ies out of four. The common signal is still captured, though it is also apparent that a higher
number of shared factors leads to clearer signal. When the true factors are partially shared
by three studies, the estimated common factors are more precise than when the true factors
partially shared by two studies. To further corroborate this observation, we also computed
the RV coefficients (Figure 8, column 4). The RV coefficient decreases from 0.9 to 0.8 on
the average, although it remains high enough to suggest that BMSFA still captures the signal.
This is an interesting setting that needs further explorations and analyses. Partially shared fac-
tors may be common, especially in the presence of different platforms, study design, and/or
different treatments. Thus, it could be useful to develop an approach to estimate common,
study-specific partially shared factors.

In summary, we found BMSFA to be effective in our application, and we hope that it will
encourage joint analyses of multiple high-throughput studies in biology and contribute to
alleviating the current challenges in replicability of unsupervised analyses in this field and
across data science.
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SUPPLEMENTARY MATERIAL

Supplement 1 (DOI: 10.1214/21-AOAS1456SUPPA; .zip). Supplement 1 includes all the
codes to generate the simulation and the data analyses presented in the manuscript. It includes
the data files used in the paper, and the simulations for the different scenarios considered. It
also includes the R folder with the functions used for the Gibbs sampling algorithm.

Supplement 2 (DOI: 10.1214/21-AOAS1456SUPPB; .pdf). Supplement 2 is a folder con-
taining the pdf file with further simulations and analyses. In particular, the file includes (A)
explicit expression for the steps of the Gibbs sampling algorithm; (B) additional details on
computational efficiency and convergence of the MCMC; (C) an examination of sensitivity
to the choice of hyperparameters; (D) additional simulation settings that could not be covered
in the main text and (E) Further analysis of breast cancer case study.
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