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Motivated by the analysis of accelerometer data taken across a popula-
tion of individuals, we introduce a specific finite mixture of hidden Markov
models with particular characteristics that adapt well to the specific nature of
this type of longitudinal data. Our model allows for the computation of statis-
tics that characterize the physical activity of a subject (e.g., the mean time
spent at different activity levels and the probability of the transition between
two activity levels) without specifying the activity levels in advance but by
estimating them from the data. In addition, this approach allows the hetero-
geneity of the population to be taken into account and subpopulations with
homogeneous physical activity behavior to be defined. We prove that, under
mild assumptions, this model implies that the probability of misclassifying a
subject decreases at an exponential decay with the length of its measurement
sequence. Model identifiability is also investigated. We also report a com-
prehensive suite of numerical simulations to support our theoretical findings.
The method is motivated by and applied to the Physical Activity and Transit
Survey.

1. Introduction. Inadequate sleep and physical inactivity affect physical and mental
well being while often exacerbating health problems. They are currently considered major
risk factors for several health conditions (see, for instance, Grandner et al. (2013), Kimm
et al. (2005), Lee et al. (2012), McTiernan (2008), Taheri et al. (2004)). Therefore, appro-
priate assessment of activity and sleep periods is essential in disciplines such as medicine
and epidemiology. The use of accelerometers to evaluate physical activity—by measuring
the acceleration of the part of the body to which they are attached—is a classic method that
has become widespread in public health research. Indeed, since the introduction in 2003 of
the first objective assessment of physical activity using accelerometers, as part of the Na-
tional Health and Nutrition Examination Survey (NHANES), the analysis of actigraphy data
has been the subject of extensive studies over the past two decades. Recently, the New York
City (NYC) Department of Health and Mental Hygiene conducted the 2010–2011 Physical
Activity and Transit (PAT) Survey,1 a random survey of adult New Yorkers that tracked lev-
els of sedentary behavior and physical activity at work, at home and for leisure. A subset
of interviewees was also invited to participate in a follow-up study to measure objectively
their activity level using an accelerometer. One of the objectives of this study is to describe
measured physical activity levels and to compare estimates of adherence to recommended
physical activity levels, as assessed by accelerometer, with those from selfreports. In contrast
to NHANES accelerometer data, PAT data still seem relatively unexplored in the statistical
literature.

This paper is motivated by the analysis of the accelerometer data worn by 133 individ-
uals over 65 years of age who responded to the PAT survey. Our objective is to propose a
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model adapted to the specificities of these data and study its properties (positive and time-
dependent measures, occurrence of missingness, heterogeneous population, need to estimate
activity levels whose the definition is the same for all the individuals). In order to motivate
the development of a new model, we present an overview of the literature on accelerometer
data analysis.

Previous studies for analyzing accelerometer data have focused on automatic detection of
the sleep and wake-up periods (Cole et al. (1992), Pollak et al. (2001), Sadeh, Sharkey and
Carskadon (1994), van Hees et al. (2015)). More recent developments are interested in the
classification of different levels of activity (see Yang and Hsu (2010) for a review). These
methods provide summary statistics like the mean time spent at different activity levels. In
epidemiological studies, time spent by activity level is often used as a covariate in predic-
tive models; see, for instance, the works of Innerd, Harrison and Coulson (2018), Noel et al.
(2010), Palta et al. (2015) where the links between physical activity and obesity are investi-
gated. These statistics can be computed using deterministic cutoff levels (Freedson, Melanson
and Sirard (1998)). However, with such an approach the dependency in time is neglected and
the cutoff levels are prespecified and not estimated from the data.

Accelerometer data are characterized by a time dependency between the different mea-
sures. They can be analyzed by methods developed for functional data or by hidden Markov
models (HMM). Methods for functional data need the observed data to be converted into a
function of time (Gruen et al. (2017), Morris et al. (2006), Xiao et al. (2015)). For instance,
Morris et al. (2006) use wavelet basis for analyzing accelerometer profiles. The use of a ba-
sis function reduces the dimension of the data and, therefore, the computing time. However,
these methods do not define levels of activity and thus cannot directly provide the time spent
at different activity levels.

When considering a discrete latent variable to model time dependence, HMM are ap-
propriate for adjusting sequence data (Altman (2007), Gassiat, Cleynen and Robin (2016),
Scott, James and Sugar (2005)). Titsias, Holmes and Yau (2016) expand the amount of in-
formation which can be obtained from HMM, including a procedure to find maximum a
posteriori (MAP) of the latent sequences and to compute posterior probabilities of the la-
tent states. HMM are used on activity data for monitoring circadian rythmicity (Huang et al.
(2018)) or, directly, for estimating the sequence of activity levels from accelerometer data
(Witowski et al. (2014)). For simulated data, Witowski et al. (2014) established the supe-
riority of different HMM models, in terms of classification error, over traditional methods
based on a priori fixed thresholds. While the simplicity of implementing threshold-based
methods is an obvious advantage, they have some significant disadvantages compared to the
HMM methods, particularly for real data. Indeed, the variation in counts and the resulting
dispersion is large, leading to considerable misclassification of counts recorded in erroneous
activity ranges. The approach of Witowski et al. (2014) assumes homogeneity of the pop-
ulation and does not consider missingness within the observations. However, heterogeneity
in physical activity behaviors is often present (see, for instance, Geraci (2019)) and the use
of more than one HMM allows it to be taken into account (see, e.g., Van de Pol and Lange-
heine (1990)). Clustering enables the heterogeneity of the population to be addressed by
grouping observations into a few homogeneous classes. Finite mixture models (McLachlan
and Peel (2000), McNicholas (2017)) permit to cluster different types of data like contin-
uous (Banfield and Raftery (1993)), integer (Karlis and Meligkotsidou (2007)), categorical
(Goodman (1974)), mixed (Hunt and Jorgensen (2011), Kosmidis and Karlis (2016)), net-
work (Hoff, Raftery and Handcock (2002), Hunter, Goodreau and Handcock (2008), Matias,
Rebafka and Villers (2018)) and sequence data (Wong and Li (2000)). Recent methods use
clustering for accelerometer data analysis. For instance, Wallace et al. (2018) use a specific fi-
nite mixture to identify novel sleep phenotypes, Huang et al. (2019) perform a matrix-variate-
based clustering on accelerometer data while Lim, Oh and Cheung (2019) use a clustering
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technique designed for functional data. Mixed hidden Markov models (MHMM) are a com-
bination of HMM and generalized linear mixed models (Bartolucci, Farcomeni and Pennoni
(2013), Van de Pol and Langeheine (1990)). These models consider one (or more) random ef-
fect(s) coming from either a continuous distribution (Altman (2007)) or a discrete distribution
(Bartolucci, Pennoni and Vittadini (2011), Maruotti (2011)). Note that a MHMM with a sin-
gle discrete random effect distribution, having a finite number of states, is a finite mixture of
HMM. Such a model allows one to estimate a partition among the population and to consider
the population heterogeneity. The impact of the random effect can be on the measurement
model or on the latent model.

This paper focuses on the analysis of PAT data with a two-fold objective: obtain summary
statistics about physical activity of the subjects without prespecifying cutoff levels, and obtain
a partition which groups subjects into homogeneous classes. We define a class as homoge-
neous if its subjects have similar average times spent in the different activity levels and similar
transition probabilities between activity levels. To achieve this goal, we introduce a specific
finite mixture of HMM for analyzing accelerometer data. This model considers two latent
variables: a categorical variable indicating each subject’s class membership and a sequence
of categorical variables indicating the subject’s level of activity each time its acceleration is
measured. At time t the measure is independent of the class membership conditionally on the
activity level (i.e., the latent state) and follows a zero-inflated distribution—a distribution that
allows for frequent zero-valued observations. The activity level defines the parameter of this
distribution. The use of zero-inflated distribution is quite common for modeling accelerome-
ter data (Bai et al. (2018), Lee and Gill (2018)), as the acceleration is measured every second,
many observations are zero. Note that the definitions of the activity levels are equal among
the mixture components. This is an important point for the use of the summary statistics
(e.g., time spent at different activity levels, probabilities of transition between levels) in a
future statistical study. The model we consider is thus a specific MHMM with a finite-states
random effect that only impacts the distribution of latent physical activity levels. MHMM
with a finite-states random effect have few developments in the literature (Bartolucci, Pen-
noni and Vittadini (2011), Maruotti (2011)), especially when the random effects only impact
the latent model (and not the measurement model). We propose to theoretically study the
model properties by showing that the probability of misclassifying an observation decreases
at an exponential rate. In addition, since the distribution given the latent state is itself a bi-
component mixture (due to the use of zero-inflated distributions), we investigate sufficient
conditions for model identifiability.

In practice, the data collected often include missing intervals due to noncompliance by
participants (e.g., if the accelerometer is removed). Geraci and Farcomeni (2016) propose to
identify different profiles of physical activity behaviors using a principal component analysis
that allows for missing values. The PAT data contain three types of missing values corre-
sponding to periods when the accelerometer is removed, making statistical analysis more
challenging. First, missingness occurs at the beginning and at the end of the measured se-
quences due to the installation and the removing of the accelerometer. Second, subjects are
asked to remove the accelerometer when they sleep at night. Third, missing values appear
during the day (e.g., due to a shower period, nap,. . . ). We remove missing values which oc-
cur at the begin and at the end of the sequence. For missingness caused by night sleep, we
consider that the different sequences describing different days of observations of a subject
are independent and that the starting point (e.g., first observed measure of the accelerometer
of the day) is drawn from the stationary distribution. For missing values measured during the
day, the model and the estimation algorithm can handle these data. Moreover, we propose an
approximation of the distribution that avoids the computation of large powers of the transition
matrices in the algorithm used for parameter inference and thus reduces computation time.
Theoretical guarantees and numerical experiments show the relevance of our proposition.



MIXTURE OF HMM FOR ACCELEROMETER DATA 1837

The R package MHMM, which implements the method introduced in this paper, is avail-
able on CRAN (Du Roy de Chaumaray, Marbac and Navarro (2020a)). It permits to analyze
other accelerometer data, and, thus, it is complementary to existing packages for MHMM. In-
deed, it takes into account the specificities of accelerometer data (the class membership only
impacts the transition matrices; the emission distributions are zero-inflated gamma (ZIG) dis-
tributions). Among the R packages implementing MHMM methods, one can cite the R pack-
ages LMest (Bartolucci, Pandolfi and Pennoni (2017)) and seqHMM (Helske and Helske
(2019)), which focus on univariate longitudinal categorical data, and the R package mH-
MMbayes (Aarts (2019)) which focuses on multivariate longitudinal categorical data.

This paper is organized as follows. Section 2 presents the PAT data and the context of the
study. Section 3 introduces our specific mixture of HMM and its justification in the context
of accelerometer data analysis. Section 4 presents the model properties (model identifiability,
exponential decay of the probabilities of misclassification and a result for dealing with the
nonwear periods). Section 5 discusses the maximum likelihood inference and Section 6 illus-
trates the model properties on both simulated and real data. Section 7 illustrates the approach
by analyzing a subset of the PAT accelerometer data. Section 8 discusses some future devel-
opments. Proofs and technical lemmas are postponed in Supplementary Material, Du Roy de
Chaumaray, Marbac and Navarro (2020b).

2. PAT data description. We consider a subset of the data from the PAT survey, the
subjects who participated in the follow-up study to measure objectively their activity level
using an accelerometer. A detailed methodological description of the study and an analysis
of the data is provided in Immerwahr et al. (2012). Note that the protocols for accelerome-
ter data for the PAT survey and NHANES were identical. One of the objectives of the PAT
study is to investigate the relationships between selfreported physical activity and physical
activity measured by the accelerometer in order to provide best practice recommendations
for the use of selfreported data Wyker et al. (2013). Indeed, selfreported data may be subject
to overreporting. This is particularly the case among less active people, due in particular to
a social desirability bias or the cognitive challenge associated with estimating the frequency
and duration of daily physical activity (see, e.g., Dyrstad et al. (2014), Lim et al. (2015),
Slootmaker et al. (2009)). The results of Wyker et al. (2013) show that males tend to underre-
port their physical activity, while females and older adults (65 years and older) overreported
(see also Troiano et al. (2008) for a detailed study of the differences between selfreported
physical activity and accelerometer measurements in NHANES 2003–2004). Consequently,
the study of data measured by accelerometer for these specific populations makes it possible
to determine methods for correcting estimates from selfreported data, such as stratification
by gender and/or age when comparing groups.

In this work we are particularly interested in the age category above 65 years old (n = 133).
We present some characteristics related to PAT data and refer to Immerwahr et al. (2012) for
a full description.2 Accelerometers were worn for one week (beginning on Thursday and
ending on Wednesday) and measured the activity minute-by-minute. The trajectory associ-
ated with each subject is therefore of length 10,080. In addition, a participant’s day spans
from 3 a.m.–3 a.m. (and not a calendar day) in order to record late-night activities and tran-
sit and contains missing data sequences of variable length at the beginning and end of the
measurement period (these missing data sequences were excluded from the analysis). This
length varies from one subject to another, and the mean and minimum trajectory length for

2Raw accelerometer data, covariates allowing the selection of the subset of the population as well as a detailed
dictionary are freely accessible here: https://www1.nyc.gov/site/doh/data/data-sets/physical-activity-and-transit-
survey-public-use-data.page.

https://www1.nyc.gov/site/doh/data/data-sets/physical-activity-and-transit-survey-public-use-data.page
https://www1.nyc.gov/site/doh/data/data-sets/physical-activity-and-transit-survey-public-use-data.page
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FIG. 1. Accelerometer data of subject Patcid:1200255 of the PAT study measured for one week (with a zoom
on the afternoon of day 3): observed values (in gray), missing values during a daytime period (in blue), missing
values during a period of night sleep (in red) and missing values at the start and end of the measurement period
(in black). The dashed horizontal lines represent the four levels of physical activity based on the classification
established by the US Department of Health and Human Services (2008).

the population under consideration (after excluding those missing at the edges) are 9474 and
5199, respectively (with a total number of observations equal to 1,259,981). The model of
the accelerometer used is Actigraph GT3X; it is worn on the hips (which results in the fact
that certain activities, such as lifting weights or biking, cannot be measured). In addition, par-
ticipants were also asked to remove it when sleeping, swimming or bathing; hence, the data
contains approximately 44% of missing values that appear mainly in sequence, appearing at
night but also during the day. Figure 1 gives an example of accelerometer data measured on
one subject (i.e., patcid:1200255) for one week where the three types of missing data can
be seen. The four levels of physical activity, based on the classification established by the
US Department of Health and Human Services (2008) in the Physical Activity Guidelines
for Americans (PAGA) report, is also shown in Figure 1. Specifically, the PAT protocol for
accelerometer data has established a classification according to PAGA, characterizing each
minute of activity. Activity minutes with less than 100 activity counts were classified as
“Sedentary,” minutes with 100–2019 counts were classified as “Light,” the class “Moderate”
corresponds to 2020–5998 counts/minute and “Vigorous” 5999 and above counts/minute. A
comparison between our method and this traditional threshold-based approach is provided in
Section 7.3.

3. Mixture of hidden Markov models for accelerometer data. In this section we
present the proposed model and the application context for which it has been defined.

3.1. The data. Observed data y = (y�
1 , . . . ,y�

n ) are composed of n independent and
identically distributed sequences yi . Each sequence yi = (yi(0), . . . , yi(T )) which contains the
values measured by the accelerometer at times t ∈ {0,1, . . . , T } for subject i, with yi(t) ∈ R

+.
Throughout the paper, index i is related to the label of the subject, and index (t) is related to
the time of measurement.

The model considers M different activity levels (which are unobserved). These levels
impact the distribution of the observed sequences of accelerometer data. The sequence of
the hidden states xi indicates the activity level of subject i at the different times. Thus,
xi = (xi(0), . . . ,xi(T )) ∈ X and the activity level (among the M possible levels) of subject i
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FIG. 2. Generative model of the specific mixture model of HMM used for the accelerometer data: an arrow
between two variables indicates dependency and an absence of arrow indicates conditional independence.

at time t is defined by the binary vector xi(t) = (xi(t)1, . . . , xi(t)M) where xi(t)h = 1 if subject
i is at state h at time t and xi(t)h = 0 otherwise.

The heterogeneity (in the sense of different physical activity behaviors) between the n sub-
jects can be addressed by grouping subjects into K homogeneous classes. This is achieved
by clustering that assesses a partition z = (z1, . . . ,zn) among the n subjects based on their
accelerometer measurements. Thus, the vector zi = (zi1, . . . , ziK) indicates the class mem-
bership of subject i, as zik = 1 if observation i belongs to class k and zik = 0 otherwise.
Throughout the paper, index k refers to the label of a class grouping homogeneous subjects.

Each subject i is described by three random variables: one unobserved categorical variable
zi (defining the membership of the class of homogeneous physical activity behaviors for
subject i), one unobserved categorical longitudinal data xi (a univariate categorical discrete-
time time series which defines the activity level of subject i at each time) and one observed
positive longitudinal data yi (a univariate positive discrete-time time series which contains
the values of the accelerometer measured on subject i at each time).

3.2. Generative model. The model described below considers that the observations are
independent between the subjects and identically distributed. It is defined by the following
generative model and summarized by Figure 2 (note that this figure is similar to Figure 6.2
of Bartolucci, Farcomeni and Pennoni (2013)):

1. Sample class membership zi from a multinomial distribution;
2. Sample the sequence of activity levels xi from a Markov model whose transition matrix

depends on class membership;
3. Sample the accelerometer measurement sequence given the activity levels (each Y i(t)

follows a ZIG distribution whose parameters are defined only by xi(t)).

3.3. Finite mixture model for heterogeneity. The sequence of accelerometer measures
obtained on each subject is assumed to independently arise from a mixture of K parametric
distributions, so that the probability distribution function (pdf) of the sequence yi is

(1) p(yi; θ) =
K∑

k=1

δkp(yi;πk,Ak,λ,ε),

where θ = {λ,ε}∪ {δk,πk,Ak;k = 1, . . . ,K} groups the model parameters, δk is the propor-
tion of components k with δk > 0,

∑K
k=1 δk = 1 and p(·;πk,Ak,λ,ε) is the pdf of component

k parametrized by (πk,Ak,λ,ε) defined below. Thus, δk is the marginal probability that a
subject belongs to class k (i.e., δk = P(Zik = 1)). Moreover, p(·;πk,Ak,λ,ε) defines the
distribution of a sequence of values measured by the accelerometer on a subject belonging to
class k (i.e., p(·;πk,Ak,λ,ε) is the pdf of yi given Zik = 1).
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3.4. Hidden Markov model for activity levels. The model assumes that the distribution
of the hidden state sequence depends on the class membership and that the distribution of
activity measurements depends on the state at time t but not on the component membership
given the state (i.e., Xi �⊥ Zi , Yi(t) �⊥ Xi(t) and Yi(t) ⊥ Zi | Xi(t)). It is crucial that the distri-
bution of Yi(t), given Xi(t), is independent of Zi . Indeed, each activity level is defined by the
distribution of Yi(t) given the state. Therefore, to extract summary statistics on the whole pop-
ulation (as the average time spent by level of activity) the definition of the activity levels (and
the distribution of yi(t) given the state) must be the same among the mixture components.

The pdf of yi for components k (i.e., given Zik = 1) is

(2) p(yi;πk,Ak,λ,ε) = ∑
xi∈X

p(xi;πk,Ak)p(yi | xi;λ,ε).

The Markov assumption implies that

p(xi;πk,Ak) =
M∏

h=1

π
xi(0)h

kh

T∏
t=1

M∏
h=1

M∏
�=1

(
Ak[h, �])xi(t−1)hxi(t)� ,

where πk = (πk1, . . . , πkM) defines the initial probabilities so that πkh = P(Xi(1)h = 1 |
Zik = 1); Ak is the transition matrix so that Ak[h, �] = P(Xi(t)� = 1 | Xi(t−1)h = 1,Zik = 1).
Finally, we have

p(yi | xi;λ,ε) =
T∏

t=0

M∏
h=1

g(yi(t);λh, εh)
xi(t)h,

where g(·;λh, εh) is the pdf of a zero-inflated distribution defined by

g(yi(t);λh, εh) = (1 − εh)gc(yi(t);λh) + εh1{yi(t)=0},

where gc(·;λh) is the density of a distribution defined on a positive space and parametrized
by λh. The choice of considering zero-inflated distributions is motivated by the large number
of zeros in the accelerometer data (see Figure 1). For the application in Section 7, we use a
gamma distribution for gc(·;λh). However, model properties and inference are discussed for
a large family of densities gc(·;λh).

4. Model properties. In this section we present the properties of the mixture of para-
metric HMM. We start with a discussion of three assumptions. Then, model identifiability is
proved. It is shown that the probability of making an error in the partition estimation expo-
nentially decreases with T , when the model parameters are known. Finally, the analysis of
missing data is discussed.

4.1. Assumptions.

ASSUMPTION 1. For each component k, the Markov chain is irreducible. Moreover, we
assume that the sequence is observed at its stationary distribution (i.e., πk is the stationary
distribution so π�

k Ak = π�
k ). Therefore, there exists 0 ≤ ν < 1 such that

∀k ∈ {1, . . . ,K}, ν2(Ak) ≤ ν,

where ν2(Ak) is the second-largest eigenvalue of Ak . Finally, we denote by ν̄2(Ak) =
max(0, ν2(Ak)).
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ASSUMPTION 2. The hidden states define different distributions for the observed se-
quence. Therefore, for h ∈ {1, . . . ,M}, h′ ∈ {1, . . . ,M} \ {h}, we have λh �= λh′ . Moreover,
the parametric family of distributions defining gc(·;λ1), . . . , gc(·;λM) permits to consider an
ordering such that, for a fixed value ρ ∈ R

+ \ {0}, we have

∀h ∈ {1, . . . ,M − 1}, lim
yi(1)→ρ

gc(yi(1);λh+1)

gc(yi(1);λh)
= 0.

ASSUMPTION 3. The transition probabilities are different over the mixture components
and are not zero. Therefore, for k ∈ {1, . . . ,K}, k′ ∈ {1, . . . ,K} \ {k}, we have ∀(h, �),
Ak[h, �] �= Ak′ [h, �]. Moreover, there exists ζ > 0 such that

∀k ∈ {1, . . . ,K},∀k′ ∈ {1, . . . ,K} \ {k},
M∑

h=1

M∑
�=1

πkh log
Ak[h, �]
Ak′ [h, �] > ζ.

Finally, without loss of generality, we assume that Ak[1,1] > Ak+1[1,1].

Assumption 1 states that the state at time 1 is drawn from the stationary distribution of
the component that the observation belongs to. To obtain the model identifiability, we do not
need the assumption that the stationary distribution is different over the mixture components.
As a result, two components having the same stationary distribution but different transition
matrices can be considered. Assumption 2 and Assumption 3 are required to obtain the model
identifiability. Assumption 3 can be interpreted as the Kullback–Leibler divergence between
the distribution of the states under component k and their distribution under component k′.
This constraint is required for model identifiability because it is related to the definition of
the classes. Consequently, the matrices of the transition probability must be different among
components.

4.2. Identifiability. Model identifiability is crucial for interpreting the estimators of the
latent variables and of the parameters. It has been studied for some mixture models (Teicher
(1963, 1967), Allman, Matias and Rhodes (2009), Celisse, Daudin and Pierre (2012)) and
HMM (Gassiat, Cleynen and Robin (2016)) but not for the mixture of HMM. Generic iden-
tifiability (up to switching of the components and of the states) of the model defined in (1)
implies that

∀yi , p(yi; θ) = p(yi; θ̃) ⇒ θ = θ̃ .

The following theorem states this property:

THEOREM 1. If Assumptions 1, 2 and 3 hold, then the model defined in (1) is generically
identifiable (up to switching of the components and of the states) if T > 2K .

Proof of Theorem 1 is given in the Supplementary Material, Du Roy de Chaumaray, Mar-
bac and Navarro (2020b), Section 1. The model defined by the marginal distribution of an
accelerometer measure at a single time t is not identifiable. Indeed, the marginal distribution
of yi(t) is a mixture of zero-inflated distributions, and such mixture is not identifiable (i.e.,
different class proportions and inflation proportions can define the same distribution). It is,
therefore, this dependency over time that makes the proposed mixture generically identifi-
able. Note that such statement has been made by Gassiat, Cleynen and Robin (2016) when
they discuss the case where the emission distribution for an HMM follows a mixture model.
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4.3. Probabilities of misclassification. In this section we examine the probability that
an observation will be misclassified when the model parameters are known. We consider the
ratio between the probability that subject i belongs to class k given yi and the probability that
this subject belongs to its true class, and we quantify the probability of it being greater than
some positive constant a. Let θ0 be the true model parameter and P0 = P(· | Zik0 = 1, θ0)

denote the true conditional distribution (true label of subject i and parameters are known).

THEOREM 2. Assume that Assumptions 1 and 3 hold. If a > 0 is such that Assump-
tion 1 (defined in the Supplementary Material, Du Roy de Chaumaray, Marbac and Navarro
(2020b), Section 2) holds, then, for every k �= k0,

P0

[
P(Zik = 1 | yi )

P(Zik0 = 1 | yi )
> a

]
≤ O

(
e−cT )

,

where c > 0 is a positive constant

Moreover, the exponential bounds of Theorem 2 allows to use the Borel–Cantelli lemma
to obtain the almost sure convergence.

COROLLARY 1. Assume that Assumptions 1 and 3 hold. If yi is generated from compo-
nent k0 (i.e., Zik0 = 1), then, for every k �= k0,

P(Zik = 1 | yi )

P(Zik0 = 1 | yi )

a.s.−→
T →+∞ 0, P(Zik0 = 1 | yi )

a.s.−→
T →+∞ 1 and P(Zik = 1 | yi )

a.s.−→
T →+∞ 0.

Therefore, by considering a = 1, Theorem 2 and Corollary 1 show that the probability
of misclassifying the subject i based on the observation yi , using the maximum a posteriori
rule, tends to zero when T increases, if the model parameters are known. Proof of Theorem 2
and a sufficient condition that allows to consider a = 1 (value of interest when the partition
is given by the MAP rule) are given in the Supplementary Material, Du Roy de Chaumaray,
Marbac and Navarro (2020b), Section 2. It should be noted that it is not so common to have
an exponential rate of convergence for the ratio of the posterior probability of classification.
Similar results are obtained for network clustering using the stochastic block model (Celisse,
Daudin and Pierre (2012)) or for coclustering (Brault and Mariadassou (2015)). For these
two models the marginal distribution of a single variable provides information about the class
membership. For the proposed model, this is the dependency between the different observed
variables which is the crucial point for recovering the true class membership.

4.4. Dealing with missing values. Due to the Markovian character of the states, missing
values can be handled by iterating the transition matrices. In our particular context, missing
values appear when the accelerometer is not worn (see Section 2 for explanations of the
reasons of missingness). We will not observe isolated missing values but rather wide ranges
of missing values. Let d be the number of successive missing values, we thus have to compute
the matrix Ad+1

k to obtain the distribution of the state at time t + d knowing the state at
time t − 1. These powers of transition matrices should be computed many times during the
algorithm used for inference (see Section 5). Moreover, after d + 1 iterations with d large
enough, the transition matrix can be considered sufficiently close to stationarity (e.g., for any
(h, �), Ad+1

k [h, �]  πk�) which has actually been chosen as the initial distribution. Therefore,
for numerical reasons we will avoid computing the powers of the transition matrices, and we
will make the following approximation. An observation yi with Si observed sequences split
with missing value sequences of size at least d are modeled as Si independent observed
sequences with no missing values, all belonging to the same component k. Namely, for each
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individual i, the pdf p(yi;πk,Ak,λ,ε) of component k is approximated by the product of
the pdf of the Si observed sequences yi1,yi2, . . . ,yiSi

,

p(yi;πk,Ak,λ,ε) 
Si∏

s=1

p(yis;πk,Ak,λ,ε),

where, for each s, yis is an observed sequence of length Tis + 1: yis = (yis(0), . . . , yis(Tis))

and p(yis;πk,Ak,λ,ε) is defined as in (2). We note that the observation yi can thus be
rewritten as follows:

yi = (yi1(0), . . . , yi1(Ti1), yi2(0), . . . , yi2(Ti2), . . . , yiSi(0), . . . , yiSi(TiSi
)),

with yi2(0) = yi(Ti1+di1+1) where the di1 values yi(Ti1+1), . . . yi(Ti1+di1) correspond to the
first sequence of missing values and, more generally, for each s = 2, . . . , Si , yis(0) =
y
i(

∑s−1
j=1(Tij+dij+1))

, with dij being the number of missing values between the observed se-

quences yisj
and yisj+1

.
Once the estimation of the parameters has been done, we make sure that this assumption

was justified by verifying that the width of the smallest range dmin = min{di1, . . . , diSi−1}
of missing values is sufficiently large to be greater than the mixing time of the obtained
transition matrix. To do so, we use an upper bound for the mixing time given by Levin and
Peres (2017), Theorem 12.4, p. 155. For each component k, we denote by ν∗

k the second
maximal absolute eigenvalue of Ak . For any positive η, if for each k

dmin ≥ 1

1 − ν∗
k

log
1

η minh πkh

,

then for any integer D ≥ dmin, the maximum distance in total variation satisfies

max
h

∥∥AD
k [h, ·] − πk

∥∥
TV ≤ η.

5. Maximum likelihood inference. This section presents the methodology used to esti-
mate the model parameters.

5.1. Inference. We proposed to estimate the model parameters by maximizing the log-
likelihood function where missing values are managed as in Section 4.4, and we recall that the
log-likelihood is also approximated for numerical reasons to avoid computing large powers
of the transition matrices. We want to find θ̂ which maximizes the following approximated
log-likelihood function:

�K(θ;y) =
n∑

i=1

log

(
K∑

k=1

δk

Si∏
s=1

p(yis;πk,Ak,λ,ε)

)
.

This maximization is achieved via an EM algorithm (Dempster, Laird and Rubin (1977))
which considers the complete-data log-likelihood defined by

�K(θ;y,z) =
n∑

i=1

K∑
k=1

zik log δk +
n∑

i=1

K∑
k=1

zik

(
Si∑

s=1

logp(yis;πk,Ak,λ,ε)

)
.
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5.2. Conditional probabilities. Let αikhs(t)(θ) be the probability of the partial sequence
yis(0), . . . , yis(t) that ends up in state h at time t under component k. Moreover, let βikhs(t)(θ)

be the probability of the ending partial sequence yis(t+1), . . . , yis(Tis) given a start in state
h at time t under component k. These probabilities can be easily obtained by the for-
ward/backward algorithm (see the Supplementary Material, Du Roy de Chaumaray, Marbac
and Navarro (2020b), Section 3). We deduce that the probability γikhs(t)(θ) of being in state
h at time t ∈ {0, . . . , Tis} for yi under component k is

γikhs(t)(θ) = P(Xis(t) = h | yis,Zik = 1; θ) = αikhs(t)(θ)βikhs(t)(θ)∑M
�=1 αik�s(t)(θ)βik�s(t)(θ)

.

The probability ξikh�s(t)(θ) of being in state � at time t ∈ �i and in state h at time t − 1 for
observation yi under component k is

ξikh�s(t)(θ) = P(Xis(t) = �,Xis(t−1) = h | yis ,Zik = 1; θ)

= αikhs(t)(θ)Ak[h, �]g(yis(t);λ�, ε�)βik�s(t)(θ)∑M
h′=1

∑M
�′=1 αikh′s(t)(θ)Ak[h′, �′]g(yis(t);λ�′, ε�′)βik�′s(t)(θ)

.

The probability τik that one observation arises from component k is

τik(θ) = P(Zik = 1 | yi , θ) =
∏Si

s=1
∑M

h=1 αikhs(Tis)(θ)∑K
k′=1

∏Si

s=1
∑M

h=1 αik′hs(Tis)(θ)
.

The probability ηihs(t) that observation i is at state h at time t of sequence s is

ηihs(t)(θ) = P(Xis(t) = h | yi , θ) =
K∑

k=1

τik(θ)γikhs(t)(θ).

5.3. EM algorithm. The EM algorithm is an iterative algorithm randomly initialized at
the model parameter θ [0]. It alternates between two steps: the expectation step (E-step) con-
sisting in computing the expectation of the complete-data likelihood under the current pa-
rameters and the maximization step (M-step) consisting in maximizing this expectation over
the model parameters. Iteration [r] of the algorithm is defined by

E-step conditional probability computation, updating of

τik

(
θ [r−1]), γikhs(t)

(
θ [r−1]), ηihs(t)(θ

[r−1] and ξikh�s(t)

(
θ [r−1]).

M-step parameter updating

δ
[r]
k = nk(θ

[r−1])
n

, π
[r]
kh = nkh(0)(θ

[r−1])
nk(θ

[r−1])
,

Ak[h, �][r] = nkh�(θ
[r−1])

nkh(θ
[r−1])

, ε
[r]
h = wh(θ

[r−1])
nkh(θ

[r−1])
and

λ
[r]
h = argmax

λh

n∑
i=1

Si∑
s=1

Tis∑
t=0

ηihs(t)

(
θ [r−1])gc(yis(t);λh),

where

nk(θ) =
n∑

i=1

τik(θ), nkh(θ) =
n∑

i=1

Si∑
s=1

Tis∑
t=0

τik(θ)γikhs(t),

nkh(0)(θ) =
n∑

i=1

Si∑
s=1

τik(θ)γikhs(0)(θ),
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nkh�(θ) =
n∑

i=1

Si∑
s=1

Tis∑
t=1

τik(θ)ξikh�s(t)(θ) and wh(θ) =
n∑

i=1

Si∑
s=1

Tis∑
t=0

ηihs(t)(θ)1{yis(t)=0}.

6. Numerical illustrations. This section aims to highlight the main properties of the
model on numerical experiments. First, simulated data are used to illustrate the exponential
decay of the probabilities of misclassification (given by Theorem 2), the convergence of esti-
mators and the robustness of the approach to missingness. Second, our approach is applied to
the data from the PAT study. All the experiments are conducted with the R package MHMM
available on CRAN.

6.1. Simulated data.

Simulation design. All the simulations are performed according to the same model. This
model is a bicomponents mixture of HMM with two states (i.e., K = M = 2) and equal
proportions (i.e., δ1 = δ2 = 1/2). The distribution of Yi(t), conditionally on the state h, is a
ZIG distribution. We have

ε1 = ε2 = 0.1, a1 = 1, b1 = b2 = 1,

A1 =
[

e 1 − e

1 − e e

]
and A2 =

[
1 − e e

e 1 − e

]
.

The parameter a2 > 1 controls the separation of the distribution of Yi(t) given the state. The
parameter e controls the separation of the distribution of X given the class (when e increases,
the constant c in Theorem 2 increases). We consider four cases: hard (e = 0.75 and a2 = 3),
hard-medium (e = 0.90 and a2 = 3), medium-easy (e = 0.75 and a2 = 5) and easy (e = 0.90
and a2 = 5).

Illustrating the exponential rate of the probabilities of misclassification. Theorem 2 states
that the probabilities of misclassification decrease at an exponential rate with T . To illustrate
this property, 1000 sequences are generated for T = 1, . . . ,100 and the four cases. For each
sequence yi , we compute log(P(Zik = 1 | yi )/P(Zik0 = 1 | yi )) when k0 is the true class, k

the alternative and the true model parameters are used. Figure 3(a) shows the behavior of
log(P(Zik = 1 | yi )/P(Zik0 = 1 | yi )) (the median of this log ratio is plotted in plain, and a
90% confidence interval is plotted in gray). Note that this log ratio of probabilities linearly
decreases with T which illustrates the exponential decay of the probabilities of misclassi-
fication. Moreover, Figure 3(b) presents the empirical probabilities of misclassification and
thus also illustrates Theorem 2. As expected, this shows that the decay of the probabilities of
misclassification is faster as the overlaps between class decrease.

Illustrating the convergence of the estimators. We illustrate the convergence of the estima-
tors (partition, latent states and parameters) when the model parameters are estimated by
maximum likelihood (see Section 5). We compute the mean square error (MSE) between the
model parameters and their estimators. Moreover, we compute the adjusted Rand index (ARI;
Hubert and Arabie (1985)) between the true partition and the partition given by the maximum
a posteriori probability (MAP) rule and between the true state sequences and the estimated
state sequences given by the MAP rule (obtained with the Viterbi algorithm (Viterbi (1967))).
Table 1 shows the results obtained with two different sample sizes n and two different lengths
of sequences T , considering the case hard-medium. It can be seen that the partition and the
model parameters are well estimated. Indeed, the MLE converge to the true parameters as
T or n increases, except for the proportion of each component δk . The convergence of the
estimator of the proportions depends mainly on the sample size n. We notice that the parti-
tion obtained by our estimation procedure corresponds to the true partition (for n and T large
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FIG. 3. Results obtained on 1000 observations for the hard (orange), hard-medium (green), medium-easy (blue)
and easy (purple) cases.

enough), even if we are not under the true parameters but under the MLE, which is not an im-
mediate consequence of Theorem 2. On the contrary, we do not find the true state sequences
a.s., as the number of states to be estimated is also growing with n and T . This result was
expected because the number of latent states increases with T and n while the number of
parameters and the dimension of the partition do not increase with T . Results obtained for
the three other cases are similar and are presented in the Supplementary Material, Du Roy de
Chaumaray, Marbac and Navarro (2020b), Section 4.1.

Illustrating the robustness to missingness. We now investigate the robustness of the pro-
posed method with missingness. We compare the accuracy of the estimators (ARI for the
latent variables and MSE for the parameters) obtained on samples without missingness to
the accuracy of the estimators obtained when missingness is added to the samples. Three
situations of missingness are considered: missing completely at random-1 (MCAR-1) (i.e.,
one sequence of 10 missing values is added to each sequence yi , the location of the se-
quence follows a uniform distribution), MCAR-2 (i.e., two sequences of 20 missing values
are added for each sequence yi , the location of the sequences follows a uniform distribution)
and missing not at random (MNAR) (i.e., the probability to observe the value yi(t) is equal to
eyi(t)/(1 + eyi(t) )). Note that the last situation adds many missing values when the true value of
yi(t) is close to zero, so the occurrence of missing values depends on the latent states. Table 2
compares the results obtained with and without missingness, considering case hard-medium.
It shows that estimators are robust to missingness. Results obtained for the other three cases

TABLE 1
Convergence of estimators when 1000 replicates are drawn from case hard-medium: ARI between estimated and
true partition, ARI between estimated and true latent states and MSE between the MLE and the true parameters

ARI (latent variables) MSE (model parameters)

n T Partition States Ak εh ah bh δk

10 100 0.995 0.621 0.021 0.001 0.088 0.024 0.047
10 500 1.000 0.632 0.007 0.000 0.020 0.005 0.048

100 100 0.996 0.630 0.004 0.000 0.011 0.003 0.005
100 500 1.000 0.634 0.003 0.000 0.005 0.002 0.005
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TABLE 2
Convergence of estimators obtained over 1000 replicates with and without missing data when data are sampled
from case hard-medium: ARI between estimated and true partition, ARI between estimated and true latent states

and MSE between the MLE and the true parameters

Adjusted Rand index Mean square error

n T Missingness Partition States Ak εh ah bh δk

10 100 no missingness 0.995 0.621 0.021 0.001 0.088 0.024 0.047
MCAR-1 0.991 0.613 0.024 0.001 0.102 0.028 0.047
MCAR-2 0.987 0.605 0.028 0.001 0.113 0.032 0.047
MNAR 0.934 0.497 0.051 0.003 0.398 0.050 0.050

10 500 no missingness 1.000 0.632 0.007 0.000 0.020 0.005 0.048
MCAR-1 1.000 0.631 0.007 0.000 0.020 0.005 0.048
MCAR-2 1.000 0.631 0.007 0.000 0.019 0.005 0.048
MNAR 0.999 0.516 0.021 0.003 0.233 0.028 0.048

100 100 no missingness 0.996 0.630 0.004 0.000 0.011 0.003 0.005
MCAR-1 0.994 0.624 0.004 0.000 0.013 0.003 0.005
MCAR-2 0.989 0.618 0.005 0.000 0.014 0.004 0.005
MNAR 0.951 0.512 0.014 0.002 0.200 0.026 0.005

100 500 no missingness 1.000 0.634 0.003 0.000 0.005 0.002 0.005
MCAR-1 1.000 0.633 0.002 0.000 0.006 0.002 0.005
MCAR-2 1.000 0.632 0.002 0.000 0.005 0.002 0.005
MNAR 1.000 0.520 0.011 0.002 0.198 0.026 0.005

are similar and are reported in the Supplementary Material, Du Roy de Chaumaray, Marbac
and Navarro (2020b), Section 4.1.

6.2. Using the approach on classical accelerometer data. We consider the accelerome-
ter data measured on three subjects available from Huang et al. (2018). The accelerometer
measures the activity every five minutes for one week. Note that the first subject has 2% of
missing values. The purpose of this section is to illustrate the differences between the method
of Huang et al. (2018) and the method proposed in this paper.

Huang et al. (2018) consider one HMM per subject with three latent states. This model
is used for monitoring the circadian rhythmicity, subject by subject. Because they fit one
HMM per sequence measured by the accelerometer of a subject, the definition of the activity
level is different for each subject (see Huang et al. (2018), Figure 4). This is not an issue for
their study because the analysis is done subject by subject. However, the mean time spent
by activity levels cannot be compared among the subjects. The method proposed here makes
this comparison possible. Figure 4 depicts the activity data of the three subjects, the expected
value of Yi(t) conditionally to the most likely state and on the most likely component and
the probability of each state. Based on the QQ-plot (see Supplementary Material, Du Roy de
Chaumaray, Marbac and Navarro (2020b), Section 4.2), we consider M = 4 activity levels.
These levels can be easily characterized with the model parameters presented in Table 3. The
model permits to describe the physical activity of each subject by computing the repartition
of the time spent in each state (see Table 4). Moreover, the transition matrices also make
sense. For instance, class 1 (subjects 9 and 20) has an almost tridiagonal transition matrix (by
considering an order between the states given through the activity levels per state) and class-2
(subject 2) is composed of a subject with low-overall activity. Note that the state that we call
sleeping is characterized by a very low activity, so we assume that subjects are sleeping when
they are in this state. However, this assumption could be verified if polysomnography (PSG)
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FIG. 4. State estimation for the three subjects: (top) accelerometer data where color indicates the expected
value of Yi(t) conditionally to the most likely state and to the most likely component; (bottom) probability of each
state at each time.

data would be available.

Â1 =

⎡
⎢⎢⎣

0.86 0.14 0.00 0.00
0.12 0.81 0.06 0.01
0.00 0.07 0.79 0.14
0.00 0.00 0.13 0.87

⎤
⎥⎥⎦ .

7. Analysis of PAT data. In this section we analyze the data presented in Section 2.

7.1. Experimental conditions. In order to compare our approach to the cuts defined a
priori in the PAT study (see Section 2), the model was fitted with four activity levels. Note
that selecting the number of states in HMM stays a challenging problem (see the discussion
in the Conclusion). However, approaches considering four activity levels are standard for
accelerometer data. The number of components (i.e., the number of classes) is estimated,
using an information criterion, unlike the PAT study where it is arbitrarily set at 3 or 4. For
each number of components, 5000 random initializations of the EM algorithm are performed.
The analysis needs about one day of computation on a 32-Intel(R) Xeon(R) CPU E5-4627 v4
@ 2.60 GHz.

TABLE 3
Description of the states: Estimator of the parameters, mean and standard deviation (sd) of the count per five

minutes measured by the accelerometer conditionally on the state

Count per five minutes

State name εh ah bh Mean sd

Intensive-level 0.00 98.94 0.65 152.76 15.36
Moderate-level 0.00 11.09 0.11 99.34 29.84
Low-level 0.00 2.32 0.11 20.98 13.79
Sleeping 0.22 1.48 0.72 2.06 1.70
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TABLE 4
Repartition of the times spent at the different states for each subject (sum for each subject is equal to one)

State name Subject 9 Subject 16 Subject 20

Intensive-level 0.42 0.00 0.20
Moderate-level 0.21 0.00 0.27
Low-level 0.15 0.55 0.34
Sleeping 0.22 0.45 0.19

7.2. Model selection. To select the number of components, we use two information crite-
ria which are generally used in clustering: the BIC (Schwarz (1978)) and the ICL (Biernacki,
Celeux and Govaert (2000)) defined by

BIC(K) = �K(θ;y) − νK

2
log

(
n∑

i=1

Si∑
s=1

Tis + 1

)
,

and

ICL(K) = BIC(K) +
n∑

i=1

K∑
k=1

ẑik(θ̂) log τik(θ̂),

where νK = (K − 1) + K(M + M2) + 3M is the number of parameters for a model with K

components and M states and ẑik(θ̂) defines the partition by the MAP rule associated to the
MLE such that

ẑik(θ̂) =
{

1 if τik(θ̂) = argmax�=1,...,Kτi�(θ̂),

0 otherwise.

The ICL is defined according as the integrated complete-data likelihood computed with
the partition given by the MAP rule with the MLE. The values of the information crite-
ria are given in Table 5 for different number of classes. Both criteria select five compo-
nents. The values of ICL(K) are close to those of the BIC(K), implying that the entropy∑n

i=1
∑K

k=1 ẑik log τik(θ̂) ≈ 0. This is a consequence of Theorem 2 (see also numerical ex-
periments in Section 6). In the following we interpret the results obtained with M = 4 activity
levels and K = 5 classes.

7.3. Description of the activity levels. The parameters of the ZIG distributions are pre-
sented in Table 6. The four distributions are ordered by the value of their means. The sleeping
state is characterized by a large probability of observing zero (i.e., εh is close to one). Again,
note that we call this state sleeping state due to the low activity level but that PSG data should
be used to verify that subject are really sleeping within this state. However, εh is not equal
to zero for the other states, but the more active the state is, the smaller εh is. We also com-
pute the marginal cutoffs (i.e., the cutoffs by considering the MAP of P(Xi(t) | Yi(t))). These

TABLE 5
Information criteria obtained on PAT data with four levels of activity (minima are in bold)

K 1 2 3 4 5 6 7

BIC −2,953,933 −2,952,313 −2,951,809 −2,951,705 −2,951,308 −2,951,364 −2,951,696
ICL −2,953,933 −2,952,313 −2,951,810 −2,951,707 −2,951,309 −2,951,364 −2,951,697



1850 M. DU ROY DE CHAUMARAY, M. MARBAC AND F. NAVARRO

TABLE 6
Parameters describing the four activity levels for PAT data and statistics on the distribution of the counts per five

minutes per state

Parameters Statistics

Name of the activity level εh ah bh Mean Marginal cutoffs

Sleeping 0.988 7.470 7.470 0.012 [0,0]
Low-level 0.260 0.974 0.020 36.926 ]0,97.7]
Moderate-level 0.025 1.408 0.004 329.249 ]97.7,614.4]
Intensive-level 0.007 2.672 0.002 1696.935 ]614.4,+∞[

cutoffs neglect the time dependency due to the Markov structure but can be compared to the
cutoffs proposed by the PAT study. Indeed, according to the PAT study, minutes with < 100
counts are assigned to “Sedentary” activity, minutes with 100–2019 counts were classified as
“Light,” the class Moderate corresponds to 2020–5998 counts/minute and “Vigorous” 5999
and above counts/minute. The marginal cutoff associated with the low-level state is very close
to that of the “Sedentary” class of the PAT. We find, however, that our marginal cutoffs are
more accurate for higher levels of activity. PAT cutoffs do not adequately characterize the
activity level of the study population. Finally, contrary to classical thresholds, our modeling
approach allows to capture and characterize the variability associated with the different levels
of activity, variability which seems important (see Figure 5 and Table 6).

7.4. Description of the classes. Classes can be described using their proportions and their
associated parameters presented in Table 6. The data are composed of a majority class (δ1 =
0.518). Three other classes are composed of more sedentary individuals (e.g., their marginal
probabilities of being in states 1 and 2 are higher). Finally, there is a small class (δ5 = 0.045)
which contains the most active subjects (i.e., πk4 = 0.143). For three of the five classes,
Figure 5 presents a characteristic subject of each class and the probabilities of the activity
levels (the associated graphs for the two remaining classes are given in the Supplementary
Material, Du Roy de Chaumaray, Marbac and Navarro (2020b), Section 4.3). Classes can be
interpreted from the mean time spent at different activity levels presented in Table 7 and from
transition matrices presented in Table 8 which are almost tridiagonal. This could be expected

FIG. 5. Examples of observations assigned into the five classes with the probabilities of the states.
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TABLE 7
Repartition of the times spent at the different states for each class (sum for each class is equal to one)

Active Sedentary Moderate Very sedentary Very active

Class
Sleeping 0.306 0.467 0.304 0.504 0.189
Low-level 0.284 0.209 0.411 0.366 0.351
Moderate-level 0.338 0.263 0.225 0.124 0.316
Intensive-level 0.072 0.061 0.060 0.006 0.143

because it seems relevant to obtain a low probability of jumping between the sleeping state
and the intensive state. Additionally, the approximation made for efficiently handling the
missingness (see Section 4.4) turns out to be relevant. The minimal range of missing values
is indeed equal to dmin = 60 which leads to a distance in total variation between the dmin-
power of the transition matrices and the stationary distribution being less than 5.10−4 for any
component.

8. Conclusion. A specific mixture of HMM has been introduced to analyze accelerome-
ter data. It avoids the traditional cutoff point method and provides a better characterization of
activity levels for the analysis of these data while adapting to the population. The proposed
model could be applied to a population with different characteristics (e.g., younger) which
would lead to different definitions of activity levels. In addition, the use of several HMMs
make to take into account dependency over time and thus improve the traditional method
based on cutoff points (Witowski et al. (2014)). This approach also allows us to take into
account the heterogeneity of the population (in the sense of physical activity).

An interesting perspective is to consider adjusting for covariates (e.g., gender or age).
These confusing factors could impact the probabilities of transition between the latent spaces
(e.g., using a generalized linear model approach) and/or the definition of the accelerometer
measurement given a state (e.g., linear regression on some parameters of the ZIG distribu-
tion).

TABLE 8
Transition matrix for the five classes

Sleeping Low-level Moderate-level Intensive-level

Class moderate
sleeping 0.76 0.21 0.03 0.00
low-level 0.16 0.73 0.11 0.00
moderate-level 0.03 0.20 0.73 0.04
intensive-level 0.01 0.04 0.16 0.80

Class very sedentary
sleeping 0.85 0.08 0.06 0.00
low-level 0.20 0.67 0.13 0.01
moderate-level 0.10 0.11 0.76 0.03
intensive-level 0.01 0.04 0.14 0.82

Class very active
sleeping 0.80 0.14 0.05 0.01
low-level 0.08 0.74 0.17 0.01
moderate-level 0.03 0.18 0.69 0.10
intensive-level 0.01 0.05 0.21 0.74
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In the application the number of activity levels was not estimated but fixed at a common
value for accelerometer data. Estimating the number of states for a mixture of HMM is an
interesting but complex topic: for instance, the use of BIC is criticized (see Cappé, Moulines
and Rydén (2005), Chapter 15). This makes the study of relevant information criteria for se-
lecting the number of states an interesting topic for future work. Pseudo-likelihood based cri-
teria could be used (Csiszár and Talata (2006), Gassiat (2002)), but the fact that the marginal
distribution of one Yi(t) is not identifiable limits this approach. A more promising approach
could be to use cross-validated likelihood (Celeux and Durand (2008)), but it would be com-
putationally intensive because accelerometer data provide a large number of observations.
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SUPPLEMENTARY MATERIAL

Mixture of hidden Markov models for accelerometer data (DOI: 10.1214/20-
AOAS1375SUPP; .pdf). Supplementary material contains technical proofs and complements
to the numerical experiments.
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