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We study the distribution of brain source from the most advanced brain
imaging technique, Magnetoencephalography (MEG) which measures the
magnetic fields outside of the human head produced by the electrical activity
inside the brain. Common time-varying source localization methods assume
the source current with a time-varying structure and solve the MEG inverse
problem by mainly estimating the source moment parameters. These methods
use the fact that the magnetic fields linearly depend on the moment parame-
ters of the source and work well under the linear dynamic system. However,
magnetic fields are known to be nonlinearly related to the location parameters
of the source. The existing work on estimating the time-varying unknown lo-
cation parameters is limited. We are motivated to investigate the source distri-
bution for the location parameters based on a dynamic framework, where the
posterior distribution of the source is computed in a closed form discretely.
The new framework allows us not only to directly approximate the posterior
distribution of the source current, where sequential sampling methods may
suffer from slow convergence due to the large volume of measurement, but
also to quantify the source distribution at any time point from the entire set
of measurements reflecting the distribution of the source, rather than using
only the measurements up to the time point of interest. Both a dynamic pro-
cedure and a switch procedure are pro- posed for the new discrete approach,
balancing estimation accuracy and computational efficiency when multiple
sources are present. In both simulation and real data, we illustrate that the
new method is able to provide comprehensive insight into the time evolution
of the sources at different stages of the MEG and EEG experiment.

1. Introduction. The human brain produces a wide range of bioelectromagnetic signals
from various electrical impulses when activated. The signals produced by the neurons in the
brain varies from 10s of femto-Tesla (fT) to 100s of fT which is approximately a billion times
smaller than the Earth’s magnetic field. Magnetoencephalography (MEG) is a noninvasive
imaging technique that is able to detect the weak magnetic fields generated by the neuronal
activity within the brain. The MEG recording is able to measure the magnetic fields caused
by the neuronal activity inside of the brain based on the instrument that is placed close to the
scalp. The Superconducting Quantum Inference Devices (SQUIDs) are sufficiently sensitive
magnetometers that are used to measure the extremely subtle magnetic fields, and these mag-
netometers are fixed in a one-size-fits-all helmet. The extreme sensitivity of SQUIDs makes
them ideal for studies. During the MEG scanning of SQUIDs, patients sit under the machine
that operates in a magnetically shielded room, and they are restricted from moving. The latest
optically pumped magnetometer (OMP) system (Boto et al. (2018)), which is equipped with
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a customized helmet, allows free and natural movement, including head nodding, stretching,
drinking and playing a ball game. With the excellent temporal resolution on a millisecond
scale, the MEG has been applied to provide new insights into the neural basis of develop-
mental disorders.

1.1. MEG inverse problem. In neuromagnetism the neuronal current J(r) at location r

is divided into the primary current Jp(r) and the volume current Jv(r) (Hämäläinen et al.
(1993)). Since the primary current Jp(r) is related to the movement of ions and the volume
current Jv(r) does not build up any electric charge, the source of brain activity can be captured
by finding the primary current Jp(r). The primary current Jp(r) can then be regarded as
current dipoles and approximated by the summation of N current dipoles,

Jp
n(r) = Qnδ(r − rn),

where δ(·) is the Dirac delta function and Qn is a charge dipole at location rn, for n =
1, . . . ,N .

The forward problem in neuromagnetism focuses on calculating the magnetic field outside
of the brain from a given primary current Jp

n within the brain. Using the quasistatic approxi-
mation of the Maxwell’s equations (Sarvas (1984)), the magnetic field generated by a primary
current Jp

n in the head is approximated by the Biot–Savart equation

Bl

(
Jp
n

) = μ0

4π

∫
�

Jp
n(r

′) × (rl − r ′)
|rl − r ′|3 dν,(1.1)

where rl is the location at which the magnetic field is computed, r ′ refers to the source
location within the relevant source region, μ0 is the permittivity of free space and � is the
head volume. Here, the integral in (1.1) as a function of rl is the solution of Maxwell’s
equations with Bl(J

p
n) → 0 as |rl| → ∞. Furthermore, the magnetic field at location rl of N

current dipoles is the summation of Bl(J
p
n) over each dipole n = 1, . . . ,N .

The MEG inverse problem is to infer the source current given the measured magnetic
fields collected from the MEG experiment. However, the solution of the inverse problem
is not unique since the measured magnetic fields could result from an infinite number of
possible source currents. The solution is also highly sensitive to small changes in the noise of
the measured data. Because of the nonuniqueness and instability, the general inverse problem
is ill posed, and this fact makes the MEG inverse problem challenging to solve. Two types
of models have been developed for the MEG inverse problem (Baillet, Mosher and Leahy
(2001)), equivalent current dipole (ECD) models and distributed source models. The ECD
models are based on the assumption that the locations of the current dipoles are unknown
and have to be estimated. On the other hand, the distributed source models assume that the
measured magnetic fields are generated from the current dipoles with known locations.

1.2. Existing source localization methods. The problem of source localization aims to
get a meaningful structure of the source current for the inverse problem. In the literature
two categories of methods focusing on addressing the challenging source localization were
proposed. The first category assumes that the current source is static during the MEG scans
which allows us to solve the inverse problem at each time point independently using the
quasistatic approximation. Several existing methods were proposed to investigate the current
source under the distributed source model and interpret the pattern from the observed mag-
netic fields. The L2 norm and its variations were implemented to solve the distributed source
current by using the regularization methods, including the minimum norm estimate (MNE)
(Hämäläinen and Ilmoniemi (1994)), minimum current estimate (Uutela, Hämäläinen and
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Somersalo (1999)), depth-weighted minimum norm estimate (Lin et al. (2006)) and low-
resolution electromagnetic tomography algorithm (Pascual-Marqui, Michel and Lehmann
(1994)). The MUltiple SIgnal Classification (MUSIC) algorithm (Mosher, Lewis and Leahy
(1992)) is a subspace scanning method in which the solution is found by searching a sin-
gle source current through the three-dimensional head volume entirely and projected to an
estimate of the signal subspace. The beamforming methods assume that the source currents
are uncorrelated, and the goal of the beamformers is to find a set of filter coefficients of the
measured magnetic fields, subjected to some constraints. The Linearly Constrained Minimum
Variance (LCMV) beamforming method in Veen, Joseph and Hecox (1992), which was first
applied to the inverse problem, is operated by searching a selected region of the head volume
to analyze the source current distribution subjected to the minimum variant constraint.

The second category of the methods on source localization incorporates the source cur-
rent with a time-varying structure. By assuming the variability of source activity, it is able
to investigate the source current at each time point t , Jp

t , and provide the temporal evolution
of the source current during the MEG scans. The spatiotemporal regularization was utilized
in Ou, Hämäläinen and Golland (2009) and improves the reconstruction accuracy of the dis-
tributed source current. In Long et al. (2011), a dynamic state-space model was proposed to
model the movement of the sources, and the Kalman filter (KF) and fixed interval smoother
(FIS) were used to solve the high-dimensional state estimation. The beamforming method
with spatial and temporal effects was proposed to summarize the information of the sources
during the voxel-based searching of the head volume; see Zhang and Liu (2015), Zhang
and Su (2015). Recent work has addressed the source localization of time-varying currents
as part of a Bayesian framework. In Baillet and Garnero (1997), a Bayesian approach with a
maximum a posteriori (MAP) estimator of source activities was built in the distributed source
model. The variational Bayesian learning algorithm was derived to reconstruct the distributed
sources in the probabilistic generative model; see Fukushima et al. (2015), Trujillo-Barreto,
Aubert-Vázquez and Penny (2008). In Lamus et al. (2012), the authors developed a dynamic
Maximum Posterior Expectation-Maximization (dMAP-EM) source localization algorithm,
based on the KF, FIS and EM algorithm, to obtain a spatiotemporal distributed solution for
the source current. Two sequential important sampling (SIS) (Liu and Chen (1998)) based
methods, the regular SIS method with rejection and improved SIS method with resampling,
were developed in Yao and Eddy (2014) to address the source localization in the ECD models.
These authors investigated the source localization by finding the marginal posterior distribu-
tion of the source current, given the measured magnetic fields, thus providing the variation of
the location, orientation and strength of the source current at each time point.

The magnetic fields (1.1), generated from the current dipole Qn, can be approximately
represented by the Biot–Savart in a discrete matrix form,

Bl

(
Jp
n

) = Ll(rn) · Qn,(1.2)

where Ll(r
′) is the lead field describing the magnetic fields generated by a unit dipole (with

unit moment parameter) satisfying Bl(J
p
n) = ∫

� Ll(r
′) · Jp

n(r
′) dν. In the distributed source

models, the location parameter rn of the source current Qn is assumed to be known; thus, the
lead field in (1.2) can be calculated from the forward model. In this case the magnetic fields
linearly depend on the current dipole Qn. Several approaches, such as the KF and FIS, were
proposed to estimate the current dipole Qn, and they work well under the linear dynamic sys-
tem. However, the magnetic fields also nonlinearly depend on the unknown location param-
eter rn; thus, the recovery of the location parameter usually involves nonlinear optimization,
in which applying the KF would degrade the performance (Arulampalam et al. (2002)). The
existing work on time-varying source current with unknown location parameter is limited,
and this motivates us to develop new approaches to investigate the source distribution for the
location parameter.
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1.3. Goal of this paper. The goal of this paper is to invent a new Bayesian framework to
find the posterior distribution of the source current Jp

t at time point t , given the entire collec-
tion of measurements YT , which consists of measurements Yt for 1 ≤ t ≤ T . The posterior
distribution p(Jp

t |YT ) for the source current Jp
t can be interpreted as a solution for the MEG

inverse problem. In contrast to the existing literature, our proposed methodology is novel
based on the following two aspects. First, we develop a discrete approach for computing the
discrete posterior distribution of the source current Jp

t , and the discrete posterior distribution
is used to approximate the continuous posterior distribution p(Jp

t |YT ). The SIS schemes in
Yao and Eddy (2014) investigated the source distribution by numerically sampling the con-
tinuous posterior distribution. However, the posterior distribution in Yao and Eddy (2014)
does not have an analytically tractable closed form, and the sampling procedure may suffer
from slow convergence due to the high dimensionality of the measurements. In comparison
with the sampling schemes, our method gives the discrete posterior distribution for the source
current with a closed form and are able to calculate it directly, even when the dimensionality
of the measurements is large. Second, we use the entire collection of measurements to in-
vestigate the source distribution p(Jp

t |YT ) instead of the source distribution p(Jp
t |Yt ), using

only the measurements up to the time point in which we are interested. The MEG allows
for a real-time recording of the brain activity on a millisecond scale. For each time point t ,
the past measurements and the future measurements both reflect the trajectory of the time-
varying source Jp

t , for 1 ≤ t ≤ T . In contrast to previous related approaches (Baillet and
Garnero (1997), Trujillo-Barreto, Aubert-Vázquez and Penny (2008), Yao and Eddy (2014)),
we utilize the entire set of measurements to recover the location of the source current.

For the proposed discrete approach, we focus on the selected three-dimensional region of
interest (ROI), and the ROI is subsequently discretized into K voxels {Vk}Kk=1. Then, we cal-
culate the discrete posterior distribution P(Jp

t ∈ Vk|YT ) of the source current Jp
t at each time

point t , for all 1 ≤ k ≤ K . Figure 6 presents the posterior distribution for the location pa-
rameter of a single source at six selected time points, where the probabilities are highlighted
in different colors. The discrete posterior distribution indicates that the source would appear
in the voxel with a corresponding probability. The region with nonzero probabilities can be
interpreted as the activated area of the source current. Thus, the discrete approach is able to
provide the source distribution on time evolution during the MEG scanning.

In order to calculate the discrete posterior distribution, the EM algorithm with incom-
plete data is implemented to estimate the parameters in the source model. We further develop
a switch procedure and dynamic procedure to implement the proposed discrete approach.
The switch procedure is proposed to deal with the case involving multiple sources, and the
dynamic procedure is developed to balance the estimation accuracy and computational effi-
ciency when no available information on the ROI is provided. With the proposed approach,
we will be able to investigate both MEG and EEG recordings that contain valuable time-
sensitive information and shed light on the time evolution of the source localization.

1.4. Outline of this paper. In Section 2 we present the methodology of the discrete ap-
proach used to recover the source distribution. First, we utilize a dynamic spatiotemporal
model to reformulate the source localization problem in Section 2.1. After which, we pro-
pose the discrete approach for the calculation of the posterior distribution for the location
parameter of the source current in Section 2.2. An estimation procedure for the parameters,
which are introduced by the source model, will be presented in Section 2.3. We further de-
velop the switch procedure and dynamic procedure to implement the discrete approach for
the calculation of the posterior distribution in Section 2.4 and Section 2.5. Simulation studies
are described in Section 3. In Section 4 a MEG data application is presented. An extension to
the EEG data is illustrated in Section 5. A short discussion and concluding remarks are given
in Section 6.
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2. Methodology.

2.1. A dynamic spatiotemporal model. In an MEG experiment, the observed magnetic
fields are scanned at L sensors, and the data is recorded for a fixed time period, T millisec-
onds. Let Yt = (Yt,1, . . . , Yt,L)T be the measurements of L sensors collected at time point
t , 1 ≤ t ≤ T , and allow YT = (Y1, . . . ,YT ) be the entire collection of measurements of the
experiment. The magnetic field measured from the lth sensor at time point t is

Yt,l = Bl

(
Jp
t

) + Ut,l, 1 ≤ l ≤ L,1 ≤ t ≤ T ,

where Ut,l denotes the noise of the measurements. Homogeneous conductor models for the
human head are widely used for MEG studies (Sarvas (1984)). In this paper we consider a
current source in a spherically symmetric conductor. The magnetic field Bl(J

p
t ) in (1.1) can

be easily computed as

Bl

(
Jp
t

) = μ0

4π

qt × (rl − pt ) · ez

‖rl − pt‖3 , 1 ≤ l ≤ L,(2.1)

where the source current Jp
t = (pT

t ,qT
t )T is mathematically parameterized with location pa-

rameter pt and moment parameter qt , pt = (pt,1,pt,2,pt,3)
T contains the location parame-

ters in the three-dimensional head model, qt = (qt,1, qt,2, qt,3)
T contains the moments and

strength of the source at time t , rl is the location of the lth sensor placed on the scalp. Equa-
tion (2.1) may also apply to a dipole in a horizontally layered conductor. Note that MEG is
sensitive only to the tangential component of the source current. This is because a source
within the head pointing toward the sensor would produce a magnetic field parallel to the
sensor which would, therefore, not be measured. We also remark that because the magne-
tometers measure only the z-component of the magnetic field, ez = (0,0,1); a unit vector, is
used to find the z-component of Bl(J

p
t ) (Hämäläinen et al. (1993)).

REMARK 2.1. All the methodology developed in this paper is legitimately extendable
to the EEG source analysis. Speaking of the extension to EEG, the potential field generated
by the source currents is used to replace the magnetic field defined in (2.1). Similarly, the
potential field generated by a source Jp

t at the lth sensor is given by

Hl

(
Jp
t

) = 1

4πρ

qt · (rl − pt )

‖rl − pt‖3 ,(2.2)

where ρ is the conductivity and 1 ≤ l ≤ L.

Let B(Jp
t ) = (B1(J

p
t ), . . . ,BL(Jp

t ))
T be the collection of magnetic fields with source cur-

rent Jp
t generated at L sensors. Then, the general framework of the MEG measurement Yt is

given by

Yt = B
(
Jp
t

) + Ut , 1 ≤ t ≤ T ,(2.3)

where Ut contains environmental noise independent from Jp
t and Ut = (Ut,1, . . . ,Ut,L)T is

Gaussian noise vector with zero mean and covariance matrix V. For simplicity, we assume
that the noises Ut,l , 1 ≤ l ≤ L are uncorrelated between every pair of sensors and homoge-
neous. In this case the covariance matrix V is a diagonal matrix, V = diag(σ̃ 2

1 , . . . , σ̃ 2
L).

Evidence of neurophysiology, biophysics and neuroimaging illustrates that cortical activa-
tion is a spatiotemporal dynamic process (Destexhe, Contreras and Steriade (1999)). One way
to model the spatiotemporal connections of the source Jp

t is to use a autoregressive model. In
the first order vector autoregressive model, the evolution of the source Jp

t is a function of the
source at the previous time point,

Jp
t = AJp

t−1 + b + Zt , 2 ≤ t ≤ T ,(2.4)
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FIG. 1. Illustration of the causal relationship between the MEG observations YT and source J p
T .

where A is 6 × 6 coefficient matrix, b is 6 × 1 constant vector and the evolution noise Zt

is assumed to be Gaussian, Zt ∼ N (0,�), � = diag(σ 2
1 , . . . , σ 2

6 ). At the first time step we
assume that Jp

1 ∼ N (μ0,�0). The autoregressive model (2.4) is stable if the roots of �(x) =
det(I−Ax) = 0 lie outside the unit circle. Let J p

T be the collection of source Jp
t for 1 ≤ t ≤ T .

The causal relationship between the MEG measurements YT and source J p
T is described in

Figure 1.
Throughout the paper the framework is mainly based on a single source and can be

generalized to the case with multiple sources. Since estimating the number of sources is
not the focus of the paper, the number of sources N is determined by the method pro-
posed in Yao et al. (2018). We extend Jp

t to be the collection of N current sources, where

Jp
t = (Jp

t,1
T
, . . . ,Jp

t,N

T
)T, and Jp

t,n is the nth source parameterized with (pT
t,n,qT

t,n)
T for

1 ≤ n ≤ N . Then, the magnetic field in (2.1) is generated from N sources and is given by
Bl(J

p
t ) = ∑N

n=1 Bl(J
p
t,n). We further assume that the N sources are uncorrelated, and each

source Jp
t,n is modeled with the first order autoregressive model,

Jp
t,n = AnJp

t−1,n + bn + Zt,n, 2 ≤ t ≤ T ,1 ≤ n ≤ N,

where An is the coefficient matrix satisfying the stable condition and bn is a constant
vector, Jp

1,n ∼ N (μ0,n,�0,n), Zt,n ∼ N (0,�n). Thus, the general framework of N un-
correlated sources Jp

t is consistent with model (2.4), where the parameters μ0, �0, �,
A and b contain the information of N sources, correspondingly. To be precise, A =
diag(A1, . . . ,AN), b = (bT

1 , . . . ,bT
N)T, μ0 = (μT

0,1, . . . ,μ
T
0,N )T, �0 = diag(�0,1, . . . ,�0,N )

and � = diag(�1, . . . ,�N).
Let � = {μ0,�0,A,b,�,V} be the list of parameters introduced in the framework of

measurements (2.3) and source model (2.4). From the causal relationship described in Fig-
ure 1, we note that the sequences of source J p

T and measurements YT have the following
Markov properties:

1. p(Jp
t |J p

t−1,�) = p(Jp
t |Jp

t−1,�), for 2 ≤ t ≤ T .
2. p(Jp

t |Jp
t−1,Yt−1,�) = p(Jp

t |Jp
t−1,�), for 2 ≤ t ≤ T .

3. p(Yt |J p
T ,�) = p(Yt |Jp

t ,�), for 1 ≤ t ≤ T .

Throughout the paper we use p as a genetic symbol for continuous probability distribution.

2.2. A discrete approach. To interpret MEG data, we aim to investigate the source dis-
tribution for location parameter pt given the externally measured magnetic fields. Thus, we
focus on computing the posterior distribution of Jp

t , given the entire measurements YT , for
1 ≤ t ≤ T . In this section we build a discrete approach to approximate the posterior distri-
bution p(Jp

t |YT ,�), reformulate the discrete posterior distribution with a closed form and
present the forward-backward algorithm to further compute it. The location parameter of in-
terest is pt of the source current Jp

t , for 1 ≤ t ≤ T ; thus, the moment and strength parameter
qt is fixed for all the time points throughout this paper.

With an available ROI the movement of location parameter pt of source Jp
t is assumed

to be restricted within the ROI at all times. For the discrete approach, each dimension of
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the ROI is discretized with mesh grid Ki , i = 1,2,3. The mesh grids are used to construct
a sequence of voxels {Vk}Kk=1 and approximate the three-dimensional ROI, where Vk is the
kth voxel with its center ck and K = K1 · K2 · K3. To investigate the source current Jp

t , we
introduce a corresponding set of binary indicator variables vtk ∈ {0,1}, where k = 1, . . . ,K ,
describing which of the K voxels the source Jp

t is located in, so that if Jp
t ∈ Vk , then vtk = 1

and vtk′ = 0 for k′ 	= k. Applying the coding scheme, we can then approximate the continuous
probabilities introduced in (2.3) and (2.4) using the corresponding discrete probabilities. For
the continuous probability p(Jp

1|�), there exists 1 ≤ k∗ ≤ K , such that

p
(
Jp

1|�
) ≈ P

(
Jp

1 ∈ Vk∗ |�) =
K∏

k=1

P
(
Jp

1 ∈ Vk|�)v1k

=
K∏

k=1

P(v1k = 1|�)v1k .

(2.5)

Similarly, we have the following approximations:

(2.6) p
(
Jp
t |Jp

t−1,�
) ≈

K∏
k=1

K∏
l=1

P(vtk = 1|vt−1,l = 1,�)vtkvt−1,l

for 2 ≤ t ≤ T , and

(2.7) p
(
Yt |Jp

t ,�
) ≈

K∏
k=1

P(Yt |vtk = 1,�)vtk

for 1 ≤ t ≤ T .
From Bayes’ theorem, the posterior distribution is stated as

p
(
Jp
t |YT ,�

) = p(Jp
t ,Yt |�)p(YT \t |Jp

t ,�)

p(Yt |�)p(YT \t |�)
, 1 ≤ t ≤ T ,(2.8)

where Yt is the collection of the measurements up to time point t and YT \t contains the
remaining measurements from time point t +1 to T . Under the discrete approach the posterior
distribution in (2.8) can be approximated by

P
(
Jp
t ∈ Vk|YT ,�

) = P(vtk = 1|YT ,�)

= P(vtk = 1,Yt |�)P(YT \t |vtk = 1,�)

p(Yt |�)p(YT \t |�)
,

for 1 ≤ k ≤ K and 1 ≤ t ≤ T . Let αtk(�) = P(vtk = 1,Yt |�)/p(Yt |�), βtk(�) =
P(YT \t |vtk = 1,�)/p(YT \t |�), and we have

P
(
Jp
t ∈ Vk|YT ,�

) = αtk(�)βtk(�).(2.9)

Therefore, the calculation of the discrete posterior distribution (2.9) consists of two parts, a
filtering procedure on αtk(�) using the past measurements Yt and a smoothing procedure on
βtk(�) using the remaining measurements YT \t . The forward-backward algorithm (Rabiner
(1989)) is implemented to compute αtk(�) and βtk(�) in (2.9), and the details of the algo-
rithm are summarized in Appendix A.

Each step of the forward-backward recursion involves multiplying by the probabilities in
(2.5)–(2.7), and the computational complexity of calculating these probability matrices are
O(K), O(K2) and O(L), correspondingly. Therefore, the overall cost of the discrete ap-
proach is of O(LK2T ) in time. However, the entry mkl of the K × K matrix for transition
probability in (2.6) is proportional to exp(−(Vk − Vl)

T�−1(Vk − Vl)). That is, mkl 	= 0 over
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TABLE 1
Comparison of computational complexity

Proposed discrete method MNE SIS

O(LKT ) O(L2KT ) O(LKT )

some interval, and mkl = 0 outside the interval. The complexity on calculating the K × K

transition probability matrix can be reduced to O(K) (Felzenszwalb, Huttenlocher and Klein-
berg (2004)), and, thereby, the complexity of the discrete approach can be computed in linear
time O(LKT ). In comparison with other existing methods, we summarize the computational
complexity for three methods in Table 1. To make the complexity comparable, we consider a
distributed source model with K known locations for implementing MNE, although the num-
ber of known locations usually takes value of several thousands. The complexity of obtaining
MNE at one selected time point is O(L2K). In Table 1 we report the complexity for MNE
at all time points. To implement the sampling scheme, we consider K samples at each time
point to make the procedure comparable; computing the weight for each sample takes O(L)

in time. The overall SIS procedure takes time O(LKT ).

2.3. Parameter estimation. Under the models (2.3) and (2.4), the posterior distribution
p(Jp

t |YT ,�) depends on the parameter �. To obtain the discrete posterior distribution in
(2.9), an estimate for the parameter � needs to be determined. In this section we apply the
EM algorithm (Dempster, Laird and Rubin (1977)) to find a MLE �̂ of the parameter � with
incomplete MEG data (YT ,J p

T ), as we have no access to the collection of the source J p
T

during the MEG scans. The optimization problem is defined as

�̂ = argmax
�

�(�,YT ),(2.10)

where �(�,YT ) is the log-likelihood function of parameter �, given the entire set of mea-
surements YT . Under the discrete approach in Section 2.2, the unobserved source J p

T is
assumed to be the discrete variable; thus, the log-likelihood function in (2.10) can be written
into the following form:

�(�,YT ) = logp(YT |�) = log
∑
J p

T

p
(
YT ,J p

T |�)
,

where

p
(
YT ,J p

T |�) =
T∏

t=1

p
(
Yt |Jp

t ,�
) T∏
t ′=2

p
(
Jp
t ′ |Jp

t ′−1,�
)
p

(
Jp

1|�
)
,(2.11)

under the Markov properties of YT and J p
T . Applying Jensen’s inequality, we have

�(�,YT ) = log
∑
J p

T

q
(
J p

T

)p(YT ,J p
T |�)

q(J p
T )

≥ ∑
J p

T

q
(
J p

T

)
log

p(YT ,J p
T |�)

q(J p
T )

(2.12)

= ∑
J p

T

q
(
J p

T

)
logp

(
YT ,J p

T |�) − ∑
J p

T

q
(
J p

T

)
logq

(
J p

T

)

=: L(
q
(
J p

T

)
,�,YT

)
,(2.13)
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where q(J p
T ) is a probability distribution on the unobserved variables J p

T . From (2.12) we
have

�(�,YT ) ≥ L
(
q
(
J p

T

)
,�,YT

)
(2.14)

for any probability distribution q(J p
T ). When q(J p

T ) = P(J p
T |YT ,�), the equality in (2.12)

holds,

(2.15) �(�,YT ) = L
(
P
(
J p

T |YT ,�
)
,�,YT

) = logp(YT |�).

To maximize the log-likelihood function �(�,YT ) in (2.10), we construct an alternating EM
algorithm, maximizing L(P(J p

T |YT ,�),�,YT ) as defined in (2.13). The EM algorithm is
summarized in Appendix B.

Under the following regularity conditions:

(C1) The parameter space � is an open set in the Euclidean space.
(C2) The density function p(y|�) of the measurements Yt , 1 ≤ t ≤ T , is continuous in

� and differentiable in the interior of �.
(C3) The level set ��0

= {� ∈ � : �(�,YT ) ≥ �(�0,YT )} is compact for any
�(�0,YT ) > −∞, and ��0

is in the interior of � for any �0 ∈ �.

(C4). The distribution of the unobserved variables P(J p
T |YT ,�) has the same support for

all � ∈ �.
(C5) The function Q(�′|�) is continuous in both � and �′ and differentiable in �′.
(C6) All the stationary points in S� are isolated, where S� denotes the stationary points of

the log-likelihood function �(�,YT ).
(C7) For all � ∈ S�, there exists a unique global maximum of Q(·|�).

We prove the convergence of the EM sequence {�(j)} in Theorem 2.1 and the proof can be
found in Appendix C.

THEOREM 2.1. The iterative procedure of EM algorithm does not cause a decrease in
the log-likelihood function �(�,YT ). Furthermore, we assume that (C1)–(C7) hold. Then,
for any starting value {�(0)}, the EM sequence {�(j)}, �(j) → �∗, when j → ∞, for some
stationary point �∗ ∈ S�.

2.4. A switch procedure. When we apply the discrete approach to the case with multiple
sources, the possible states for N sources go to KN , where K is the number of discrete voxels.
In the Supplementary Material (Yao et al. (2020)), we compare the possible states for N

sources with mesh grids in the discretization. Even with the mesh grids Ki = 6, i = 1,2,3, the
calculation for the discrete posterior distribution needs to include more than 40,000 possible
states which makes the computation procedure impossible. Thus, a method that enables a
more achievable posterior calculation of multiple sources is desirable.

In this section we propose a switch procedure to reduce the computational complexity for
the case with multiple sources. Applying the Bayes’ rule, we have

P
(
Jp
t,n ∈ Vkn |Jp

t,n′ ∈ Vkn′ ,YT ,�, n′ 	= n
)

= P(Jp
t,1 ∈ Vk1, . . . ,Jp

t,N ∈ VkN
|YT ,�)

P(Jp
t,n′ ∈ Vkn′ , n′ 	= n|YT ,�)

∝ P
(
Jp
t,1 ∈ Vk1, . . . ,Jp

t,N ∈ VkN
|YT ,�

)
for 1 ≤ n ≤ N . To reduce the computational complexity, the marginal posterior probabil-
ity P(Jp

t,n ∈ Vkn |Jp
t,n′ ∈ Vkn′ ,YT ,�, n′ 	= n), 1 ≤ n ≤ N , is used to approximate the poste-

rior distribution of N sources, and we calculate the marginal posterior distribution of the
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source Jp
t,n by assuming that the states of other sources Jp

t,n′ are known. During the EM itera-

tions, we let ζt,kn(�
(j−1)
s ) = P(vt,kn = 1|Jp

t,n′ ∈ Vkn′ ,YT ,�
(j−1)
s , n′ 	= n) at the j th iteration,

where {�(j)
s } is the EM sequence with the switch procedure. For 1 ≤ n ≤ N , we compute the

marginal posterior probability by

ζt,kn

(
�(j−1)

s
) = P

(
vt,kn = 1

∣∣∣Jp
t,1 =

K∑
k1=1

ζt,k1

(
�(j−1)

s
)
ck1, . . . ,

Jp
t,n−1 =

K∑
kn−1=1

ζt,kn−1

(
�(j−1)

s
)
ckn−1,

Jp
t,n+1 =

K∑
kn+1=1

ζt,kn+1

(
�(j−2)

s
)
ckn+1, . . . ,

Jp
t,N =

K∑
kN=1

ζt,kN

(
�(j−2)

s
)
ckN

)
.

(2.16)

When the EM iteration converges, we will use the estimated parameter �̂s to calculate the
posterior distribution P(Jp

t,1 ∈ Vk1, . . . ,Jp
t,N ∈ VkN

|YT , �̂s) which is approximated by the

marginal posterior distribution P(Jp
t,n ∈ Vkn |Jp

t,n′ ∈ Vkn′ ,YT , �̂s, n
′ 	= n) in the switch proce-

dure.
The posterior distribution from the switch procedure is compared with the one from the

nonswitch procedure in Theorem 2.2; the proof can be found in Appendix D.

THEOREM 2.2. Under regularity conditions (C1) and (C7), there exists ε > 0, such that∣∣∣∣∣P(
Jp
t,n ∈ Vkn |Jp

t,n′ ∈ Vk′
n
,YT , �̂s, n

′ 	= n
)

−
K∑

kn′=1

P
(
Jp
t,1 ∈ Vk1, . . . ,Jp

t,N ∈ VkN
|YT , �̂ns

)∣∣∣∣∣ ≤ cε,

where 1 ≤ n ≤ N , c is a positive constant, P(Jp
t,n ∈ Vkn |Jp

t,n′ ∈ Vk′
n
,YT , �̂s, n

′ 	= n) is the

marginal posterior distribution of source Jp
t,n obtained from the switch procedure, �̂ns is the

estimate obtained from the nonswitch procedure and P(Jp
t,1 ∈ Vk1, . . . ,Jp

t,N ∈ VkN
|YT , �̂ns)

is the posterior distribution of N sources from the nonswitch procedure.

2.5. A dynamic procedure. When no information on the ROI is available, we have to dis-
cretize the whole head model. Implementing the discrete approach to the parameter estima-
tion procedure, we note that the estimate depends on the discretization. Increasing mesh girds
will improve the estimation accuracy of calculating the discrete posterior distribution of the
source during the EM iterations. However, it will also increase the computational complex-
ity. This motivates us to develop a dynamic procedure to implement the discrete approach in
order to balance the estimation accuracy and computational complexity when no information
on the ROI is available.

We assume that a true ROI, ROI0, exists and is assumed to be restricted within the head
model. The movement of the source current Jp

t is assumed to be restricted within ROI0 at
all times. In the EM algorithm with the discrete approach, calculating the discrete posterior
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distributions ξtk(�
(j−1)) and ηtk

t−1,l(�
(j−1)) depends on the discretization in the E-step of

the j th iteration. For the dynamic procedure we assume that a shrunken ROI, ROI(j), exists
and covers the true ROI. Utilizing the shrunken ROI, ROI(j), with increased mesh grids, the
dynamic procedure will improve the estimation accuracy of calculating the discrete posterior
distributions ξtk(�

(j−1)) and ηtk
t−1,l(�

(j−1)) in the E-step of the j th iteration. Then, the

posterior distributions are used to update �(j), and the update will also be improved in the
following M-step. By implementing the dynamic procedure, we expect to obtain an accurate
estimate �̂d with a shrunken ROI.

In the dynamic procedure we calculate the intermediate posterior distribution ξtk(�
(j−1))

for the location parameter pt based on the current ROI in the j th iteration. After which, we
use the intermediate marginal posterior distribution ξtk(�

(j−1)) to obtain a shrunken ROI for
the (j + 1)th iteration. This new ROI is constructed by ROI(j+1) = I

(j+1)
1 × I

(j+1)
2 × I

(j+1)
3 ,

where the one-dimensional interval is given by

I
(j+1)
i =

[
min

1≤t≤T

{
μ

(j)
t,i − 3 · σ (j)

t,i

}
, max

1≤t≤T

{
μ

(j)
t,i + 3 · σ (j)

t,i

}]
,

where μ
(j)
t,i = ∑K

k=1 ξtk(�
(j−1))ck,i , σ

(j)
t,i = sqrt(

∑K
k=1 ξtk(�

(j−1))(ck,i − μ
(j)
t,i )2), ck,i is the

ith component of ck , and i = 1,2,3. With the shrunken ROI, we also increase the mesh grids
Ki , i = 1,2,3, during the iterative procedures. When the dynamic EM algorithm converges,
an estimate �̂d will be available with a shrunken ROI.

3. Simulation study.

3.1. MEG data generation. In the simulation study we considered a single sphere head
model (centered at the origin with radius 10 cm) and simulated 102 magnetometers which
are randomly placed on the upper part of the head. Movement of the current sources inside
the head model was restricted. In order to focus on the location parameters of the sources, we
fixed some parameters (initial distribution parameters μ0, �0, and noise parameters �, V)
in the model (2.3) and (2.4). The total length of each simulation was 100 time points, and of
interest at any time point is the discrete posterior distribution of the sources.

3.2. Simulated Case 1. In this example, we consider a single source which moves in
three dimensions (x, y, z) in the head model. The parameters of the simulated source are
summarized in Table 2.

In the simulation we applied the EM algorithm with the dynamic procedure to estimate
the parameter � = {A,b} in the single source model. We chose the upper-head model as the

TABLE 2
Source simulation in Case 1: The location parameter pt of the source is expressed in

terms of Cartesian coordinates (x (cm), y (cm), z (cm)) and is allowed to vary.
The moments and strength parameter qt is fixed during simulations

μ0 = (pT
0 ,qT

0 )T (−2,1,5,3,3,3)T

�0 = diag(σ 2
0,1, σ 2

0,2, . . . , σ 2
0,6) diag(0.0225,0.0225,0.0225,10−4,10−4,10−4)

A = diag(a1, a2, . . . , a6) diag(0.75,0.8,0.9,1,1,1)

b = (b1, b2, . . . , b6)T (0.75,−0.5,0.25,0,0,0)T

� = diag(σ 2
1 , σ 2

2 , . . . , σ 2
6 ) diag (0.25,0.25,0.25,10−4,10−4,10−4)

V = diag(σ̃ 2
1 , σ̃ 2

2 , . . . , σ̃ 2
102) diag(6.25 ∗ 10−5,6.25 ∗ 10−5, . . . ,6.25 ∗ 10−5)

Number of time points 100
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FIG. 2. Marginal posterior means for location parameter pt = (pt1,pt2,pt3)T of a single source with dynamic
procedure in 100 time points. The simulated location parameters are plotted in a black line, and the estimated
posterior means are plotted in a red line.

initial ROI and let the initial mesh grids K
(1)
i = 10, i = 1,2,3. Since we applied the discrete

approach to the simulated data, we started the dynamic EM algorithm by discretizing the
initial ROI with the initial mesh grids. In the j th iteration, the mesh grid was increased by
K

(j+1)
i = K

(j)
i + 1, i = 1,2,3, and the ROI was shrunk for the following iteration. The

iteration procedure was performed until the conditional expectation in (B.1) converged, and
we obtained the MLEs �̂d = {Âd, b̂d}, where

Âd =
(

Â∗
d 03×3

03×3 03×3

)
, Â∗

d =
⎛
⎝ 0.6969 0.0260 −0.0024

0.0479 0.8352 0.0382
−0.0207 0.0029 0.9035

⎞
⎠ ,

and b̂d = (0.9173,−0.6657,0.3194,3.0032,2.9536,3.0488)T. When we obtained the es-
timated parameter, we also obtained a shrunken ROI [−1.7707,3.1606] cm × [−3.0992,

1.2701] cm × [1.4235,4.7374] cm. Utilizing the estimated parameter and the shrunken ROI,
we computed the discrete posterior distribution P(Jp

t |YT , �̂d). To visualize the discrete poste-
rior distribution, we plot the marginal posterior means for location parameter pt of the source
in Figure 2.

We also compared the numerical result from the dynamic procedure with the result from
the nondynamic EM procedure. For the nondynamic EM algorithm we implemented the dis-
crete approach by discretizing the initial ROI with initial mesh grids throughout the simula-
tions. In this case we obtained the estimates

Ând =
(

Â∗
nd 03×3

03×3 03×3

)
, Â∗

nd =
⎛
⎝ 0.7280 −0.0018 0.0052

−0.0019 0.7888 0.0208
−0.0689 −0.0258 0.8988

⎞
⎠ ,

and b̂nd = (0.7980,−0.6292,0.4197,3.0032, 2.9536,3.0488)T. The posterior means for the
location parameter of the source are plotted in Figure 3. To compare the estimation accuracy
from the two procedures, we repeated the simulation four times and computed the estimation
error in maximum norm. From Table 3 we note that the estimates from the dynamic EM
procedure are more accurate than the nondynamic EM procedure.

3.3. Simulated Case 2. In addition to Case 1, a case of two sources was performed. In
the simulation the two sources were assumed to be uncorrelated and were allowed to move
in three dimensions (x, y, z) in the head model. The parameters of the simulated sources are
summarized in Table 4.



QUANTIFYING TIME-VARYING SOURCES IN MEG 1391

FIG. 3. Marginal posterior means for location parameter pt = (pt1,pt2,pt3)T of a single source without dy-
namic procedure in 100 time points. The simulated location parameters are plotted in a black line, and the esti-
mated posterior means are plotted in a red line.

To deal with the simulated data with two sources, the dynamic procedure and switch proce-
dure were applied to implement the EM algorithm for estimating the parameters � = {A,b}
in the source model. When the EM algorithm converged, we obtained the estimates

Â =
(

Â1 06×6

06×6 Â2

)
and b̂ = (b̂

T
1 , b̂

T
2 )T,

where

Âi =
(

Â∗
i 03×3

03×3 03×3

)
, i = 1,2,

Â∗
1 =

⎛
⎝0.2660 0.0942 −0.1494

0.0283 0.5690 0.2668
0.0884 0.0570 0.8590

⎞
⎠ , Â∗

2 =
⎛
⎝ 0.2501 −0.0450 0.0243

−0.0953 0.7234 0.0916
−0.0481 0.0255 0.8550

⎞
⎠ ,

b̂1 = (3.6058,−2.5997,0.2934,2.9535,3.0124,2.9188)T

and

b̂2 = (2.5589,−0.9985,0.6659,3.0527,3.0327,3.0541)T.

The discrete posterior distributions of the sources were calculated using the estimated param-
eter �̂, and the posterior means for the location parameter of the two sources are plotted in
Figure 4.

To compare the result with the nondynamic procedure, we performed the simulation with
the nondynamic EM algorithm and switch procedure. The comparison of the estimation ac-
curacy between the dynamic EM algorithm with switch procedure and nondynamic EM al-
gorithm with switch procedure is shown in Table 3. We also performed the simulation with a

TABLE 3
Comparison of mean errors for MLEs from the EM algorithm with different procedures. Standard deviations

computed based on four repetitions are shown in parentheses

Case 1 Case 2

Dynamic EM Nondynamic EM
Dynamic EM Nondynamic EM with switch procedure with switch procedure

‖Â − A‖max 0.1293 (0.0078) 0.1642 (0.0128) 0.3346 (0.0577) 0.4074 (0.0578)
‖b̂ − b‖max 0.2095 (0.0257) 0.3110 (0.1165) 1.7887 (0.1788) 2.3282 (0.4476)
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TABLE 4
Source simulation in Case 2: The location parameter pt of the sources is expressed in

terms of Cartesian coordinates (x (cm), y (cm), z (cm)) and is allowed to vary.
The moments and strength parameter qt is fixed during simulations

μ0,1 = (pT
0,1,qT

0,1)T (1,1,5,3,3,3)T

μ0,2 = (pT
0,2,qT

0,2)T (−1,2,4,3,3,3)T

�0,1 = diag(σ 2
0,1, σ 2

0,2, . . . , σ 2
0,6) diag(0.01,0.01,0.01,10−4,10−4,10−4)

�0,2 = diag(σ 2
0,1, σ 2

0,2, . . . , σ 2
0,6) diag(0.01,0.01,0.01,10−4,10−4,10−4)

A1 = diag(a1,1, a1,2, . . . , a1,6) diag(0.5,0.8,0.9,1,1,1)

A2 = diag(a2,1, a2,2, . . . , a2,6) diag(0.45,0.75,0.85,1,1,1)

b1 = (b1,1, b1,2, . . . , b1,6)T (2,−1,0.25,0,0,0)T

b2 = (b2,1, b2,2, . . . , b2,6)T (1.8,−0.8,0.5,0,0,0)T

�1 = diag(σ 2
1,1, σ 2

1,2, . . . , σ 2
1,6) diag(0.25,0.25,0.09,10−4,10−4,10−4)

�2 = diag(σ 2
2,1, σ 2

2,2, . . . , σ 2
2,6) diag(0.25,0.25,0.09,10−4,10−4,10−4)

V = diag(σ̃ 2
1 , σ̃ 2

2 , . . . , σ̃ 2
102) diag(6.25 ∗ 10−5,6.25 ∗ 10−5, . . . ,6.25 ∗ 10−5)

Number of time points 100

nondynamic, nonswitch procedure for comparison in the Supplementary Material (Yao et al.
(2020)).

REMARK 3.1. The dynamic switch EM algorithm was started with initial ROI
[−10,10] cm × [−10,10] cm × [0,10] cm and mesh grids Ki = 10, i = 1,2,3. The ROI

FIG. 4. Marginal posterior means for location parameter pt = (pt1,pt2,pt3)T of two sources with the dynamic
and switch procedure in 100 time points. Top row: results for source 1; bottom row: results for source 2. The
simulated location parameters are plotted in a black line, and the estimated posterior means are plotted a in red
line.
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was shrunk, and the mesh grids were increased by 1 during iterations. The nondynamic
switch EM algorithm was implemented with the initial ROI and mesh grids throughout all
the iterations.

4. Real data application 1. The first real data analysis reports the source localization
for the Brain-Controlled Interfaces (BCI) data collected at the Center for Advanced Brian
Magnetic Source Imaging (CABMSI) at the Presbyterian University Hospital in Pittsburgh.
The data consists of MEG scans of 102 magnetometers recorded at 37,000 milliseconds (ms).
During the experiment the subjects performed a two-dimensional center-out task using wrist
movement. In the imagined movement task, the subjects were first asked to imagine that they
were performing the center-out movement using their wrist. During the overt movement task,
subjects controlled a 2D cursor using their wrist to perform the center-out task. Each trial
started after the subject held the cursor in the center for a holding period, followed by a target
onset. In order for a trial to be considered successful, the subject needed to move the cursor
to the target and hold it there for the duration of the holding period.

The goal of our analysis is to investigate the dynamics of the possible existing sources
in the BCI data. Previous work on this data focused on estimating the distribution of the
source when the number of sources is assumed to be known (Yao and Eddy (2014)). In this
section we consider the data after movement onset from all the magnetometers and, mainly,
focus on the time varying characteristics of the source location with a dynamically estimated
number of sources. We adopt the viewpoint developed in Yao et al. (2018) about the changing
number of sources that might exist in the BCI data and exploit the distribution of sources
using the estimated number of sources at different stages of the experiment. Throughout the
analysis, we assume a unit moment for all possible sources for simplicity. A single sphere
head model, with its center (1.07,0.74,1.65), radius 10.5 and measured in centimeters (cm),
was constructed based on the magnetometer positions and head shape information from the
BCI data.

Specifically, we have applied the proposed discrete approach to the BCI data through
two subanalyses (short time frame and long time frame): (1a) With the estimated number
of sources introduced in Yao et al. (2018), we investigate the source distribution in space and
time within two selected time windows after the movement onset; (1b) as a previous study
has suggested that there are still some active sources present after the movement, we contrast
the behavior of the sources for the same selected time windows with no noise estimation;
(2) the source estimation for a longer time frame is also reported.

4.1. Activity for short time frame.

1. In 1a the sources with the estimated number obtained by the Fourier transform were
investigated for two selected time windows [12,000,12,099] ms and [20,000,20,099] ms,
where time window [12,000,12,099] ms was analyzed for the time varying characteristics
of two sources and the time window [20,000,20,099] ms was selected for the analysis with
three sources. In 1b we considered the same time windows for the source investigation with
the estimated number of sources without noise estimation, which suggested only one and two
sources, respectively.

2. The Matlab toolbox “fieldtrip” was used to obtain an MNE by searching the entire head.
We set the area around the MNE to be the 3D ROI.

3. To implement the proposed discrete approach, we chose mesh grids Ki , i = 1,2,3, for
x, y, z dimensions of the ROI, respectively. Then, the ROI was subsequently discretized into
K1 · K2 · K3 voxels.
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FIG. 5. Trajectory of posterior means for location parameter (x, y, z) of a single source in the time window
[12,000,12,099] ms. (a) Trajectories of a single source during EM iterations. (b) Trajectory of the converged
source is highlighted at six selected time points 12,000, 12020, 12040, 12060, 12080 and 12,099 ms.

4. Motivated by the MNE, we manually set the parameters μ0, �0 in the source model,
and, therefore, the initial stage of the source was constrained in the small neighbourhood of
the MNE. To let the movement of the sources within the ROI all the time, the covariance
matrix � in the source model was also manually set from the ROI that we chose in 2. The
noise estimation of the selected data was obtained using the Fourier transform.

5. We used the estimates Â and b̂ from the converged EM algorithm to calculate the dis-
crete posterior probability distribution of the location parameter (x, y, z) at each time point.

To illustrate the results of the analysis, we now explain the sources distribution (single-
source case in 1b and two-source case in 1a) for the time window [12,000,12,099] ms.
For the single-source case the trajectories of posterior means at each time point during EM
iterations are shown in Figure 5(a), and the posterior means of the converged source are high-
lighted in Figure 5(b) at six selected time points. To visualize the time varying characteristics,
the target posterior distribution for the location parameters with nonzero probabilities in the
3D ROI are provided. Figure 6 shows the dynamics of the target posterior distribution at the
same selected time points. As shown in Figure 6, the posterior means at the selected time
points are highlighted using green stars which vary from (6,1.73,−1.47) cm at the first time
point t = 12,000 ms to (5.66,0.53,−1.81) cm at the last time point t = 12,099 ms. Figure 7
represents the marginal posterior distribution at three selected time points from which we can
see the dynamics for the location parameter in each dimension. The dynamics of the two-
source case for the same time window have been summarized in Figure 8 to Figure 10 with
similar interpretation. The results (two-source case in 1b and three-source case in 1a) for the
time window [20,000,20,099] ms can be found in the Supplementary Material (Yao et al.
(2020)).

4.2. Activity for long time frame. To investigate the effect of window length in source
distribution for the BCI data, we carried out the same analysis for a sequence of two time
windows starting at the same time point that was previously studied, but differing in length.
In this case, each time window was selected with four different lengths (200, 300, 400 and
500 ms, respectively). The distributions of the two sources estimated by the Fourier transform
were investigated for four selected time windows [12,000,12k∗99] ms, where k∗ = 1,2,3,4.
We chose the ROI and discretized it, similar to the manner that it was done in the previous
section, but the noise estimation of the selected data was obtained by the Fourier transform
using the measurements within the first 100 ms. Although the data covariance matrix in noise
estimation changes over the length of the window, we have observed that it is necessary to
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FIG. 6. Posterior distribution for location parameter (x, y, z) of a single source in the time window
[12,000,12,099] ms. Green star: posterior mean for location parameter at the selected time point.

FIG. 7. Marginal posterior distribution for location parameter (x, y, z) of a single source in the time window
[12,000,12,099] ms. Green bar: marginal posterior distribution for parameter x; red bar: marginal posterior
distribution for parameter y; blue bar: marginal posterior distribution for parameter z.

FIG. 8. Trajectory of posterior means for location parameter (x, y, z) of two sources in the time window
[12,000,12,099] ms. (a) and (b) Trajectories of the two sources during EM iterations. (c) Trajectories of the
two converged sources are highlighted at six selected time points 12,000, 12,020, 12,040, 12,060, 12,080 and
12,099 ms.
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FIG. 9. Posterior distribution for location parameter (x, y, z) of two sources in the time window
[12,000,12,099] ms. Top row: results for source 1; bottom row: results for source 2. Green star: posterior mean
for location parameter at the selected time point.

FIG. 10. Marginal posterior distribution for location parameter (x, y, z) of two sources in the time window
[12,000,12,099] ms. Top row: results for source 1; bottom row: results for source 2. Green bar: marginal poste-
rior distribution for parameter x; red bar: marginal posterior distribution for parameter y; blue bar: marginal
posterior distribution for parameter z.
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use early observations for stable noise estimation. The posterior distributions for the two
sources were obtained for location parameter (x, y, z) at each time point in the selected time
windows [12,000,12k∗99] ms, k∗ = 1,2,3,4. To illustrate the results from the four selected
time windows, we compared the source distributions with the result from the previous anal-
ysis from the time window [12,000,12,099] ms. Since we considered five time windows
with different lengths, we denote Y[12,000,12k∗99] as the measurements in the time window
[12,000,12k∗99] ms and �̂[12,000,12k∗99] as the estimate obtained from the measurements
Y[12,000,12k∗99], for k∗ = 0,1, . . . ,4. For 12,000 ≤ t ≤ 12,099, we focused on the posterior
distributions P(Jp

t |Y[12,000,12k∗99], �̂[12,000,12k∗99]) for k∗ = 0,1, . . . ,4. We found that the es-
timated posterior means of the two sources changed as we increased k∗ from 0 to 4. Figure 11
exhibits such changes in source 1 for only selected time points. The corresponding plot for
source 2 can be found in the Supplementary Material (Yao et al. (2020)). On one hand, this
result is expected because the selection on time windows should have affected the parame-
ter estimation in EM and the smoothing procedure of the posterior calculation; on the other
hand, this serves as an example that the estimation of the source distribution based on more
data could result in a significant difference from the short frame. Moreover, we also noted
that the changes in the posterior means were subtle in circumstances where k∗ was increased
from 0 to 3, as shown in the Supplementary Material (Yao et al. (2020)). However, when
k∗ was greater than 3, the marginal posterior means was largely different from those with
k∗ less than 3. This difference seems be caused by a temporary effect. This result matches
well with our observation that the filtering result P(Jp

t |Y[12,000,12,099], �̂[12,000,12,099]) might
not be a good estimate of the distribution P(Jp

t |Y[12,000,12k∗99], �̂[12,000,12k∗99]) when k∗ is
bigger than 3. A similar phenomenon was observed for the time window [20.000,20k∗99]
at k∗ = 3, where k∗ was increased from 0 to 4 with no noise estimation. The details can be
found in the Supplementary Material (Yao et al. (2020)). We did not find the temporary ef-
fect for one-source case in [12,000,12k∗99] ms and three-source case in [20,000,20k∗99]
ms, for all k∗ = 0,1, . . . ,4. All other analyses are in the Supplementary Material (Yao et al.
(2020)).

5. Real data application 2. For the second real data application, we extend the pro-
posed methodology to a set of EEG recordings under spatial working memory (SWM) task.
The SWM reflected in brain activities is often related to relevant brain networks. Thus, source
localization studies using the EEG recordings should provide insight into how the brain tem-
porally and spatially responds to different SWM loads.

The EEG recordings are collected from a participant under three memory load conditions
which consist of 26, 27 and 29 trials, respectively. For each trial it contains three phases:
encoding, retention and probing. During the encoding phase, it began with a cross in the
center of the screen. Depending on the load condition, 1, 3 or 5 white dots was/were presented
sequentially on the screen. During the retention phase, a fixation cross was then displayed,
followed by a red dot presented for the probing phase. The participant was required to indicate
whether the red dot appeared at a previously occupied location. The EEG data are processed
and down sampled to 250 Hz. For each trial of EEG recording for the retention phase, it
consists of a baseline duration, time before event onset, lasting for 200 ms and an event
duration lasting for the following 3992 ms.

To investigate the association between EEG responses and brain network in the SWM
task, we identify the source distribution at each time step during the event onset period for
the retention phase. Since the SWM task often observes sustained negative activity during
retention (Liu et al. (2018)), three ROIs associated with fMRI-based deactivation pattern in
higher capability group are used for source searching in our study. For each memory load
condition, the source distribution is obtained with the estimated number of sources trial by
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FIG. 11. Marginal posterior distribution for location parameter (x, y, z) of source 1 in the time window
[12,000,12k∗99] ms, where k∗ = 0,1,2,3,4. Top row: t = 12,000 ms; middle row: t = 12,040 ms; bottom row:
t = 12,080 ms. Green bar: marginal posterior distribution for parameter x; red bar: marginal posterior distribu-
tion for parameter y; blue bar: marginal posterior distribution for parameter z.

trial. In Figure 12 we plot the source location with significant posterior probability in the
three highlighted ROIs (red areas) within the human cortex (grey dots). To distinct brain
network under different load conditions, the source distribution from four trials (with two to
five estimated sources) for each load condition are illustrated column by column. With two or
three estimated sources (the first two rows in Figure 12), the source distributions under load 1
and load 5 share some similarity that the two/three sources are concentrated in the rightmost
ROI, while the source distribution under load 3 spread out to the other two ROIs. When more
sources are presented, the distribution pattern change. In the last row of Figure 12, it shows
the source distribution with five estimated sources. The patterns of the source distributions
under load 3 and load 5 are similar, with most of the sources distributed in the rightmost ROI.
However, none of the sources distributed in the leftmost ROI under load 1 at the selected time
point.

The construction of EEG sources also shed light on exploring the brain’s functional or-
ganization. In this case we searched the sources among the 400 parcels within the whole
brain with parcellating the cerebral cortex into seven functionally consistent subregions. In
Figure 13 we highlighted the networks with significant posterior probabilities of one selected
source under three memory loads. From the the pattern of functional connections between 14
subregions, the Limbic network (5 and 12 in vertical axis of Figure 13) is one of the com-
monly activated regions under three memory loads. As we increase the memory condition,
the pattern of the activated regions seems to be more concentrated.

6. Conclusion. The quantification of the source current in a time-varying source model
for the MEG data is still a practically urgent problem. Due to the nonlinearity of the mea-
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FIG. 12. Posterior distribution for location parameter (x, y, z) of estimated number of sources at selected time
step t = 600 ms during the retention phase under three load conditions. Column 1: load condition 1; column 2:
load condition 3; column 3: load condition 5. Source 1: green ×; source 2: blue ◦; source 3: magenta +; source 4:
red �; source 5: black �. Grey dot: cortex; red area: ROI.

FIG. 13. Significant source distributions among the 400 parcellations in seven networks. The horizontal axis
represents time points. The vertical axis represents the seven networks in each hemisphere. From 1 to 7, the
networks are Visual, Somatomotor, Dorsal Attention, Ventral Attention, Limpic, Frontoparietal, Default in the left
hemispher; From 8 to 14, they are the seven networks in the right hemisphere.
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surement with respect to the source location parameter, effective methods for dealing with
this problem are lacking. Common regularization-based methods mainly focus on estimating
the source moment, while other time-varying methods attempt to find estimates of the source
location using measurements up to the time point of interest. The latter is encouraged for
improvement, as using the entire set of measurements is more justifiable for estimating the
time-varying source. Meanwhile, these methods are often restricted to a predetermined num-
ber of sources. In MEG a reliable estimation of the number of sources present in the data, or
perhaps at different stages of the experiment, is quite crucial for the whole problem.

With the goal of proposing a framework that allows the flexible estimation of the evolu-
tion of the source in MEG, we introduced a discrete approach for calculating the posterior
distribution of the source. We emphasized the importance of directly calculating the poste-
rior distribution of the source through a discrete model, and this method differs in the fact
that it only samples the intractable continuous target distribution. In this respect this discrete
approach has improved the posterior distribution by providing the probability of the possible
sources present in the brain rather than using some approximated samples (Yao and Eddy
(2014)). In both the single-source case and mutiple-source case, the proposed approach was
seen to be more reliable in estimating the source distribution.

We show the suboptimality of the EM algorithm in estimating the model parameters within
the discrete source model. The performance of our proposed approach was examined in some
simulated examples with varying model setups. For the single-source case, the combined
procedure seemed to well capture the true time evolution of the sources. For the multisource
model, we have proposed a dynamic procedure and a switch procedure for estimation ac-
curacy and computational efficiency. The proposed approach gave rather satisfactory and
consistent results.

In our analysis we adopted the results of the estimated number of sources in the real
MEG/EEG data application from Yao et al. (2018) and implemented the source estimation
dynamically with and without noise estimation. As suggested in Yao et al. (2018), we did not
estimate the number of sources for the BCI data from the entire set of data at once but rather
attempted to estimate it from some selected windows. We found the existence of a temporal
effect at several selected time points in this data. In fact, we noted that the source distribution
estimated from the proposed method and the sequential sampling method in Yao and Eddy
(2014) did not differ much in the beginning but started to diverge as more measurements were
included. In addition, this phenomenon was only found to be significant for two-source cases
in the BCI data. However, the investigation for the EEG data in the SWM task was conducted
with the entire measurements after event onset in retention.

To summarize, a reliable estimation of the source distribution depends on a reliable esti-
mation of the number of the sources and the source localization algorithm. With our method,
we explore the use of combined approaches in a more advanced form to further examine the
evolution of sources.

APPENDIX A

The forward-backward algorithm (Rabiner (1989)) is an efficient inference algorithm
which computes the posterior distribution of the hidden state variables given the entire set
of measurements in two passes. The forward-backward algorithm for computing the discrete
posterior distribution in (2.9) is summarized in Table 5 and Table 6. In Table 5 we start the for-
ward recursion from the first time point t = 1 and compute the filtering posterior distribution
α1k(�) given �, for 1 ≤ k ≤ K . After which, we compute the filtering posterior distribu-
tion αtk(�) using the previous filtering posterior distribution αt−1,l(�), for t = 2, . . . , T .
Table 6 illustrates the backward procedure to calculate the smoothing posterior distribution



QUANTIFYING TIME-VARYING SOURCES IN MEG 1401

TABLE 5
Forward procedure of the forward-backward algorithm

Aim: Calculation of αtk(�), 1 ≤ t ≤ T , 1 ≤ k ≤ K .

Input: Parameter �, and discretization {Vk}Kk=1.
1. Compute P(v1k = 1|�), P(vtk = 1|vt−1,l = 1,�), 2 ≤ t ≤ T , and P(Yt |vtk = 1,�),

1 ≤ t ≤ T .
2. Compute

c1(�) := p(Y1|�) ≈ ∑K
k=1 P(Y1|v1k = 1,�)P(v1k = 1|�),

α1k(�) = P(Y1|v1k = 1,�)P(v1k = 1|�)/c1(�)
,

for 1 ≤ k ≤ K .
3. For t = 2, . . . , T , compute αtk(�) by using αt−1,l (�),

ct (�) := p(Yt |Yt−1,�)

≈ ∑K
k=1{P(Yt |vtk = 1,�)

∑K
l=1 P(vtk = 1|vt−1,l = 1,�)αt−1,l (�)},

αtk(�) = 1/ct (�)P(Yt |vtk = 1,�)
∑K

l=1 P(vtk = 1|vt−1,l = 1,�)αt−1,l (�)

for 1 ≤ k ≤ K .

Output: {αtk(�)}T ,K
t=1,k=1 and {ct (�)}Tt=1.

βtk(�). We start the calculation from the last time point t = T and initialize βT k(�) = 1
for 1 ≤ k ≤ K . Then, we calculate the smoothing posterior distribution βtk(�) using the
smoothing posterior distribution βt+1,l(�), for t = T − 1, . . . ,1. From the output of the
forward-backward algorithm, the discrete posterior distribution of the source current Jp

t is
given in (2.9).

APPENDIX B

We start the EM algorithm from a reasonable initialization �(0). Let L(�|�(j−1)) :=
L(P(J p

T |YT ,�(j−1)),�,YT ), j = 1,2, . . . . For the following iterations, we compute the
posterior probability P(J p

T |YT ,�(J−1) to maximize L(�|�(j−1)) in the E-step. It is noted
that we cannot treat the summation over J p

T in (2.13) at each time point independently. Since
the expectation of the binary variable vtk is just the probability that it takes the value 1, we
have

P
(
vtk = 1|YT ,�(j−1)) = E

(
vtk|YT ,�(j−1)) = ∑

J p
T

P
(
J p

T |YT ,�(j−1))vtk

TABLE 6
Backward procedure of the forward-backward algorithm

Aim: Calculation of βtk(�), 1 ≤ t ≤ T , 1 ≤ k ≤ K .

Input: Parameter �, discretization {Vk}Kk=1, and {ct (�)}Tt=1 from the forward
procedure.

1. Compute P(v1k = 1|�), P(vtk = 1|vt−1,l = 1,�), 2 ≤ t ≤ T , and P(Yt |vtk = 1,�),
1 ≤ t ≤ T .

2. Initialize βT k(�) = 1, for 1 ≤ k ≤ K .
3. For t = T − 1, . . . ,1, compute βtk(�) by using βt+1,l (�) and ct+1(�),

βtk(�) = 1/ct+1(�)
∑K

l=1 βt+1,l (�)P(Yt+1|vt+1,l = 1,�)P(vt+1,l = 1|vtk = 1,�)

for 1 ≤ k ≤ K .

Output: {βtk(�)}T ,K
t=1,k=1.
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for 1 ≤ t ≤ T , 1 ≤ k ≤ K , and

P
(
vt−1,l = 1, vtk = 1|YT ,�(j−1)) = E

(
vt−1,lvtk|YT ,�(j−1))

= ∑
J p

T

P
(
J p

T |YT ,�(j−1))vt−1,lvtk

for 2 ≤ t ≤ T , 1 ≤ k ≤ K . For the first term of L(�|�(j−1)) defined in (2.13), we have∑
J p

T

P
(
J p

T |YT ,�(j−1)) logp
(
YT ,J p

T |�) =: Q(
�|�(j−1))

≈
T∑

t=1

K∑
k=1

P
(
vtk = 1|YT ,�(j−1)) log P(Yt |vtk = 1,�)

+
T∑

t ′=2

K∑
k=1

K∑
l=1

P
(
vt ′−1,l = 1, vt ′k = 1|YT ,�(j−1))(B.1)

· log P(vt ′k = 1|vt ′−1,l = 1,�)

+
K∑

k=1

P
(
v1k = 1|YT ,�(j−1)) log P(v1k = 1|�),

where the complete likelihood function p(YT ,J p
T |�) is approximated by the discrete dis-

tributions (2.5)–(2.7). For the j th iteration, we let ξtk(�
(j−1)) := P(vtk = 1|YT ,�(j−1)) be

the intermediate discrete posterior distribution and η
t,k
t−1,l(�

(j−1)) := P(vt−1,l = 1, vtk = 1|
YT ,�(j−1)) be the intermediate discrete joint posterior distribution. Instead of targeting the
posterior distribution P(J p

T |YT , �(j−1)), we compute the intermediate posterior distributions
ξtk(�

(j−1)) and η
t,k
t−1,l(�

(j−1)) during the E-step at the j th iteration. To be precise, we obtain

αtk(�
(j−1)) and βtk(�

(j−1)) from the forward-backward algorithm given the intermediate
estimate �(j−1). Then, we have

ξtk

(
�(j−1)) = αtk

(
�(j−1))βtk

(
�(j−1))

for 1 ≤ t ≤ T , and

η
t,k
t−1,l

(
�(j−1)) = αt−1,l

(
�(j−1))βtk

(
�(j−1))P(

Yt |vtk = 1,�(j−1))
· P

(
vtk = 1|vt−1,l = 1,�(j−1))/ct

(
�(j−1)),

where 2 ≤ t ≤ T , 1 ≤ k ≤ K .
In the M-step of the j th iteration, we update �(j), in which the intermediate posterior

distributions ξtk(�
(j−1)) and η

t,k
t−1,l(�

(j−1)) are treated as constant. The maximization of

L(�|�(j−1)) is equivalent to maximize (B.1), and it gives the closed form of the updates
�(j); see Table 7.

We perform the E-step and M-step until the function L(�|�(j−1)) defined in (2.13) con-
verges. The EM algorithm is summarized in Table 8.

APPENDIX C

PROOF OF THEOREM 2.1. In the j th iteration of the EM algorithm, we are given the
estimate �(j−1) from the previous iteration. From (2.15) we have

�
(
�(j−1),YT

) = L
(
P
(
J p

T |YT ,�(j−1)),�(j−1),YT

)
.(C.1)
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TABLE 7
Closed form for updates of estimated parameters at each iteration in the EM algorithm

Update �(j) = {μ(j)
0 ,�

(j)
0 ,A(j),b(j),�(j),V(j)}, given discretization {Vk}Kk=1,

intermediate posterior distributions {ξtk(�(j−1))}T ,K
t=1,k=1 and {ηt,k

t−1,l (�
(j−1))}T ,K

t=2,k,l=1,
and constant moment parameter q.

dk := (cT
k ,qT)T,

μ
(j)
0 = ∑K

k=1 ξ1k(�
(j−1))dk ,

�
(j)
0 = ∑K

k=1 ξ1k(�
(j−1))(dk − μ

(j)
0 )(dk − μ

(j)
0 )T,

A(j) = [(∑T
t=2

∑K
k=1 ξtk(�

(j−1))dk)(
∑T

t=2
∑K

l=1 ξt−1,l (�
(j−1))dT

l ) − (T − 1)

· (∑T
t=2

∑K
k=1

∑K
l=1 ηtk

t−1,l (�
(j−1))dkdT

l )] · [(∑T
t=2

∑K
l=1 ξt−1,l (�

(j−1))dl )

· (∑T
t=2

∑K
l=1 ξt−1,l (�

(j−1))dT
l ) − (T − 1)(

∑T
t=2

∑K
l=1 ξt−1,l (�

(j−1))dldT
l )]−1,

b(j) = (
∑T

t=2
∑K

k=1 ξtk(�
(j−1))dk − A(j) ∑T

t=2
∑K

l=1 ξt−1,l (�
(j−1))dl )/(T − 1),

�(j) = 1
T −1 (

∑T
t=2

∑K
k=1

∑K
l=1 ηtk

t−1,l (�
(j−1))(dk − A(j)dl − b(j))(dk − A(j)dl − b(j))T),

V(j) = (
∑T

t=1
∑K

k=1 ξtk(�
(j−1))(Yt − B(dk))(Yt − B(dk))

T)/T .

The update �(j) is obtained by maximizing the function L(P(J p
T |YT ,�(j−1)), �,YT ); thus,

we have

L
(
P
(
J p

T |YT ,�(j−1)),�(j−1),YT

) ≤ L
(

P
(
J p

T |YT ,�(j−1)),�(j),YT

)
≤ �

(
�(j),YT

)
,

(C.2)

where the second inequality comes from Jensen’s inequality (2.14). From (C.1) and (C.2), we
have that the EM sequence {�(j)} does not cause a decrease in the log-likelihood function.
Under the regularity conditions, we refer the proof of Theorem 3 in Vaida (2005) for the
convergence of the EM sequence. �

APPENDIX D

PROOF OF THEOREM 2.2. We first consider the case with two sources. From the EM
algorithm with the switch procedure and the nonswitch procedure, there exists δ > 0, such
that ‖�̂s − �̂ns‖ ≤ δ.

In the nonswitch procedure, we calculate the posterior distribution of two sources P(Jp
t,1 ∈

Vk1,Jp
t,2 ∈ Vk2 |YT , �̂ns) and can further calculate the marginal posterior distribution

P
(
Jp
t,n ∈ Vkn |YT , �̂ns

) =
K∑

kn′=1

P
(
Jp
t,1 ∈ Vk1,Jp

t,2 ∈ Vk2 |YT , �̂ns
)
,

TABLE 8
EM algorithm

Initialize �(0). For j = 1,2, . . . ,
1. E-step. Calculate the posterior distribution ξtk(�

(j−1)), for 1 ≤ t ≤ T , 1 ≤ k ≤ K ,
and the joint posterior distribution ηtk

t−1,l (�
(j−1)), for 2 ≤ t ≤ T , 1 ≤ k, l ≤ K .

2. M-step. Maximize the expected complete data log-likelihood defined in (B.1),
�(j) = argmax� Q(�|�(j−1)).
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where n = 1,2 and n′ 	= n. In the switch procedure, we focus on calculating the marginal
posterior distribution P(Jp

t,n ∈ Vkn |Jp
t,n′ ∈ Vkn′ ,YT , �̂s), for n = 1,2, n′ 	= n. For the first

source current Jp
t,1, we aim to calculate

∣∣∣∣∣P(
vtk1 = 1|Jp

t,2 ∈ Vk2,YT , �̂s
) −

K∑
k2=1

P(vtk1 = 1, vtk2 = 1|YT , �̂ns)

∣∣∣∣∣
=

∣∣∣∣∣
P(vtk1 = 1,Yt |Jp

t,2 ∈ Vk2, �̂s)P(YT \t |vtk1 = 1,Jp
t,2 ∈ Vk2, �̂s)

p(Yt |Jp
t,2 ∈ Vk2, �̂s)p(YT \t |Jp

t,2 ∈ Vk2, �̂s)

−
K∑

k2=1

P(vtk1 = 1, vtk2 = 1,Yt |�̂ns)P(YT \t |vtk1 = 1, vtk2 = 1, �̂ns)

p(Yt |�̂ns)p(YT \t |�̂ns)

∣∣∣∣∣
=

∣∣∣∣∣αs
tk1

(�̂s)β
s
tk1

(�̂s) −
K∑

k2=1

αns
t,k1,k2

(�̂ns)β
ns
t,k1,k2

(�̂ns)

∣∣∣∣∣,

(D.1)

where we let αs
tk1

(�̂s) := P(vtk1 = 1,Yt |Jp
t,2 ∈ Vk2, �̂s)/p(Yt |Jp

t,2 ∈ Vk2, �̂s) and

βs
tk1

(�̂s) := P(YT \t |vtk1 = 1,Jp
t,2 ∈ Vk2, �̂s)/p(YT \t |Jp

t,2 ∈ Vk2, �̂s) in the switch proce-

dure, and αns
t,k1,k2

(�̂ns) := P(vtk1 = 1, vtk2 = 1,Yt |�̂ns)/p(Yt |�̂ns) and βns
t,k1,k2

(�̂ns) :=
P(YT \t |vtk1 = 1, vtk2 = 1, �̂ns)/p(YT \t |�̂ns) in the nonswitch procedure. In order to bound
(D.1), we analyze α’s and β’s from two procedures, recursively. We suppose the same ROI
and mesh grids for the discretization {Vk}Kk=1.

First, we analyze α’s in the forward recursion. For t = 1, we have

αs
1k1

(�̂s) = 1

cs
1(�̂s)

P
(
Y1|v1k1 = 1,Jp

1,2 ∈ Vk2, �̂s
)

P
(
v1k1 = 1|J p

1,2 ∈ Vk2, �̂s
)
,

where cs
1(�̂s) = p(Y1|Jp

1,2 ∈ Vk2, �̂s) in the switch procedure for 1 ≤ k1 ≤ K , and

αns
1,k1,k2

(�̂ns) = 1

cns
1 (�̂ns)

P(Y1|v1k1 = 1, v1k2 = 1, �̂ns)P(v1k1 = 1, v1k2 = 1|�̂ ns),

where cns
1 (�̂ns) = p(Y1|�̂ns) in the nonswitch procedure for 1 ≤ k1, k2 ≤ K . From reg-

ularity conditions (C2) and (C3), there exists positive constants c and C, such that c ≤
cs

1(�̂s), c
ns
1 (�̂ns) ≤ C, and we have

∣∣∣∣∣αs
1k1

(�̂s) −
K∑

k2=1

αns
1,k1,k2

(�̂ns)

∣∣∣∣∣
≤ c

∣∣∣∣∣P(
v1k1 = 1|Jp

1,2 ∈ Vk2, �̂s
) −

K∑
k2=1

P(v1k1 = 1, v1k2 = 1|�̂ns)

∣∣∣∣∣,
(D.2)

where c is a positive constant. Throughout the proof, we use c as a genetic symbol for positive
constant. Since ‖�̂s − �̂ns‖ ≤ δ, there exist ε > 0, such that

∣∣∣∣∣P(
v1k1 = 1|Jp

1,2 ∈ Vk2, �̂s
) −

K∑
k2=1

P(v1k1 = 1, v1k2 = 1|�̂ns)

∣∣∣∣∣ ≤ ε/KT ,(D.3)
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given that ‖ck∗
2
− ∑K

k2=1
∑K

k1=1 P(v1k1 = 1, v1k2 = 1|�̂ns)ck2‖ ≤ ε, where ck∗
2

is the location
of the second source assumed in the switch procedure. From (D.2) and (D.3), we have∣∣∣∣∣αs

1k1
(�̂s) −

K∑
k2=1

αns
1,k1,k2

(�̂ns)

∣∣∣∣∣ ≤ cε for 1 ≤ k1 ≤ K.(D.4)

From item 3 in Table 5, we have

αs
tk1

(�̂s)

= 1

cs
t (�̂s)

P
(
Yt |vtk1 = 1,Jp

t,2 ∈ Vk2, �̂s
)

×
K∑

l1=1

P
(
vtk1 = 1|vt−1,l1 = 1,Jp

t,2 ∈ Vk2, �̂s
)
αs

t−1,l1
(�̂s)

and

αns
t,k1,k2

(�̂ns)

= 1

cns
t (�̂ns)

P(Yt |vtk1 = 1, vtk2 = 1, �̂ns)

×
K∑

l1=1

K∑
l2=1

P(vtk1 = 1, vtk2 = 1|vt−1,l1 = 1, vt−1,l2 = 1, �̂ns)α
ns
t−1,l1,l2

(�̂ns),

for t = 2, . . . , T . Therefore, we have∣∣∣∣∣αs
tk1

(�̂s) −
K∑
k2

αns
t,k1,k2

(�̂ns)

∣∣∣∣∣
(a)≤ c

K∑
l1=1

∣∣∣∣∣P(
vtk1 = 1|vt−1,l1 = 1,Jp

t,2 ∈ Vk2, �̂s
)
αs

t−1,l1
(�̂s)

−
K∑

k2=1

K∑
l2=1

P(vtk1 = 1, vtk2 = 1|vt−1,l1 = 1, vt−1,l2 = 1, �̂ns)

· αns
t−1,l1,l2

(�̂ns)

∣∣∣∣∣
≤ c

K∑
l1=1

∣∣P(
vtk1 = 1|vt−1,l1 = 1,Jp

t,2 ∈ Vk2, �̂s
)∣∣ ·

∣∣∣∣∣αs
t−1,l1

(�̂s)

−
K∑

l2=1

αns
t−1,l1,l2

(�̂ns)

∣∣∣∣∣ + c

K∑
l1=1

∣∣∣∣∣
K∑

l2=1

αns
t−1,l1,l2

(�̂ns)

∣∣∣∣∣
·
∣∣∣∣∣P(

vtk1 = 1|vt−1,l1 = 1,Jp
t,2 ∈ Vk2, �̂s

)

−
K∑

k2=1

P(vtk1 = 1, vtk2 = 1|vt−1,l1 = 1, vt−1,l2 = 1, �̂ns)

∣∣∣∣∣
(b)≤ cε/KT −t ≤ cε,

(D.5)
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where (a) follows from (D.2), (b) follows from (D.3) and (D.4), 2 ≤ t ≤ T , and 1 ≤ k1 ≤ K .
Second, we analyze β’s in the backward recursion. For t = T , we initialize βs

T k1
(�̂s) =

βns
T ,k1,k2

(�̂ns) = 1, for 1 ≤ k1, k2 ≤ K . Thus,

(D.6)
∣∣βs

T k1
(�̂s) − βns

T ,k1,k2
(�̂ns)

∣∣ = 0 ≤ ε/KT .

From item 3 in Table 6, we have

βs
tk1

(�̂s) = 1

cs
t+1(�̂s)

K∑
l1=1

βs
t+1,l1

(�̂s) P
(
Yt+1|vt+1,l1 = 1,Jp

t+1,2 ∈ Vk2, �̂s
)

· P
(
vt+1,l1 = 1|vtk1 = 1,Jp

t,2 ∈ Vk2, �̂s
)

and

βns
t,k1,k2

(�̂ns) = 1

cns
t+1(�̂ns)

K∑
l1=1

K∑
l2=1

βns
t+1,l1,l2

(�̂ns)P(Yt+1|vt+1,l1 = 1, vt+1,l2 = 1,

�̂ns)P(vt+1,l1 = 1, vt+1,l2 = 1|vtk1 = 1, vtk2 = 1, �̂ns),

for t = T − 1, . . . ,1. Using the same derivation in the forward recursion of (D.5), we have

(D.7)
∣∣βs

tk1
(�̂s) − βns

t,k1,k2
(�̂ns)

∣∣ ≤ cε/KT −t+1.

Thus, we have∣∣∣∣∣P(
vtk1 = 1|Jp

t,2 ∈ Vk2,YT , �̂s
) −

K∑
k2=1

P(vtk1 = 1, vtk2 = 1|YT , �̂ns)

∣∣∣∣∣
(a)=

∣∣∣∣∣αs
tk1

(�̂s)β
s
tk1

(�̂s) − αs
tk1

(�̂s)β
ns
t,k1,k2

(�̂ns) + αs
tk1

(�̂s)β
ns
t,k1,k2

(�̂ns)

−
K∑

k2=1

αns
t,k1,k2

(�̂ns)β
ns
t,k1,k2

(�̂ns)

∣∣∣∣∣
≤ |αs

tk1
(�̂s))

∣∣·∣∣βs
tk1

(�̂s) − βns
t,k1,k2

(�̂ns)
∣∣ +

∣∣∣∣∣αs
tk1

(�̂s) −
K∑

k2=1

αns
t,k1,k2

(�̂ns)

∣∣∣∣∣
· ∣∣βns

t,k1,k2
(�̂ns)

∣∣,
(b)≤ cε,

where (a) follows from (D.1), (b) follows from (D.4), (D.5), (D.6) and (D.7), for 1 ≤ t ≤
T , 1 ≤ k1 ≤ K . We can obtain the same result for the second source Jp

t,2. Without loss of
generality, we can extend the result to the case with N sources, where N > 2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Quantifying time-varying sources in magnetoencephalography—
A discrete approach” (DOI: 10.1214/19-AOAS1321SUPP; .pdf). We include all materials
omitted from the main text.
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