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Movement of soil and rocks in an unstable slope under gravitational
forces is an example of a complex system that is highly dynamic in space
and time. A typical failure in such systems is a landslide. Fundamental stud-
ies of granular media failure combined with a complex network analysis of
radar monitoring data show that distinct partitions emerge in the kinematic
field in the early stages of the prefailure regime, and these patterns yield
clues to the ultimate location of failure. In this study we address this par-
titioning of constituent units in complex systems by clustering the kinematic
data, specifically, with a Gaussian mixture model. In addition, we assume
that neighboring units should move together. As a result, spatial information
is taken into account in our model so that spatial proximity is retained. Our
case study of a rockslide from high resolution radar monitoring data shows
that, by incorporating spatial information, our approach is more effective in
revealing the dynamics of the system and detecting the location of a potential
landslide, compared to the use of only the kinematics.

1. Introduction. Slope failures, such as landslides, are a class of geological hazards that
involve the downslope movement of soil and rocks under gravitational forces. The most com-
mon and effective technique for determining slope stability (i.e., the resistance of a slope
to failure) is by monitoring the small precursory movements of its surface prior to collapse.
Modern early warning systems on both natural and man-made slopes that seek to detect these
precursory movements have become key components of risk management programs. How-
ever, although these monitors produce a large amount of data, effective use of this data is still
lagging behind the technology. For example, slope stability radar (SSR) can remotely scan a
surface and detect movements with submillimeter precision at high spatial and temporal res-
olutions. Yet, typical use of this data is based on analysis of displacement and displacement
rates at just one, or a few, suspected locations.

Slope failure is not instantaneous. There exists precursory failure regimes preceding fail-
ure where patterns emerge that give clues to the precise location of failure. Earlier study
(Tordesillas, Zhou and Batterham (2018)) suggests that such data can be organized as a time-
evolving network in the kinematic space and distinct patterns can be identified. Specifically,
at eventual failure the slip region moves together in rigid body motion as it falls, while the
nonslip region maintains its stable flow, with a narrow shear band that exhibits more chaotic
behavior. With this in mind, using real-time measurements of the surface kinematics moni-
tored on a spatial grid, the detection of the location of a potential landslide points to discov-
ering these types of clustering patterns in the kinematics through space and time. As opposed
to examining the displacement data via a network structure and partitioning in that space, we
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propose to cluster based on these surface kinematic observations to form the basis for deter-
mining their behavior. Using clustering to reveal such behavior can then, potentially, lead to
early prediction of the location of the eventual failure.

We examine landslide data from an open-pit mine, in which displacement was measured
as a univariate quantity. For this dataset we anticipate the nonslip region to have small move-
ments, and the slip region to have larger motion. We thus use a two-component Gaussian
mixture to represent this phenomenon at each time step.

In addition to the kinematic data, spatial information is a readily easy to access data source
and can assist in guiding the identification of clusters. The challenge here is to appropriately
balance between kinematic similarity and spatial proximity in the clustering process. To in-
corporate spatial information into the clustering algorithm, we additionally model the spatial
distribution of the pixels within each of the clusters. Given that these spatial distributions are
complex, that is, the boundaries of landslides can take very complex shapes, we use an em-
bedded Gaussian mixture model on the two-dimensional spatial coordinates within each of
the first-level clusters. The reason for the mixture of Gaussians within each first-level cluster
is to allow for the spatial regions to have more complex geometries, as a mixture of Gaussians
can yield any desired shape as the number of mixture components within each first-level clus-
ter increases. Such a mixture of mixture configuration is beneficial to produce locally-smooth
yet not over-simplified clustering patterns in the spatial domain. In this work we are interested
in the clustering pattern at each time stamp and how this varies over time. We do anticipate
that the clusters should vary relatively slowly with time, and a direct approach to account
for this without assuming a model for this behavior is to use a sliding window over the past
time points. An alternative way would be to fit a more complex evolution model over time.
However, in addition to having to choose a model assumption on the evolution, it would also
require using all of the data at once in order to fit the temporal model which can be time
consuming and infeasible. We show how combining kinematic and spatial data to build an-
alytic tools for landslide monitoring, or more broadly speaking, how to discover patterns in
one feature space while encouraging coherence in a separate domain.

We demonstrate our approach by providing a comprehensive characterization of patterns
in ground motions from a high-resolution (spatially and temporally dense) dataset for a large,
real-world cascading failure—a rockfall. Our approach resolves some of the outstanding chal-
lenges in the area of landslide hazard forecasting and early prediction raised by Wasowski and
Bovenga (2014). As opposed to the prevailing approach of analyzing the time course of data
from one or a few selected locations, our analysis makes full use of data from all monitored
points (here, there are 1803 spatial locations). In addition, compared to existing studies where
the complex spatial patterns are often overlooked, in our analysis we characterize the complex
spatial patterns by performing a clustering of the ground surface deformation feature space
which encourages spatial coherence via a flexible spatial distribution. Our analysis is able to
capture the patterns of localized deformations preceding failure, even though these are small
and vary nonlinearly with space and time. Crucially, we were able to extract useful insights
that reliably predict the location of the yet-to-form failure and its complex dynamics in the
lead up to the collapse. In particular, we were able to capture the interaction between multiple
unstable zones (here, two zones) and distinguish which zone is likely to collapse based on
the spatiotemporal persistence of its pattern. The presence of multiple “competing” unsta-
ble zones is a defining aspect of granular media failure in the precursory regime (Tordesillas
et al. (2013)). In the field this can lead to forecasting errors with costly and, at times, fatal
consequences: a collapse may be missed (false negative) with attention focused elsewhere
while a false positive incurs the costs of a risk investigation. Thus, tools that can deliver ac-
curate knowledge of where failure might occur and distinguish it from other unstable zones
would help geologists and geotechnical engineers provide more reliable and effective risk as-
sessment and prevention measures. Moreover, our proposed method can also assist decision
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makers in: establishing emergency preparedness maps that indicate hazard zones, evacuation
routes and safe shelters; designing appropriate remedial measures (e.g., removal of material,
water drainage, adding retaining structures like barriers and walls in the hazard area); and
potentially optimizing slope steepness for safety and economic performance in man-made
slopes, such as those in open-pit mines where our studied landslide took place.

2. Related work. Statistical and machine learning approaches have a long history in
the landslide literature. One area drawing increasing attention from statisticians and machine
learning practitioners is landslide susceptibility modeling that aims to highlight potentially
unstable slopes based on linking characteristics of a particular slope with past landslide
events on similar slopes (Pourghasemi and Rahmati (2018)). Typically, a landslide inven-
tory is maintained and terrain attributes, such as slope angle, elevation and profile curvature,
are collected from one or few monitoring sites on the slope. Statistical and machine learning
methods, such as generalized linear models (GLM) (Brenning (2005)), support vector ma-
chines (SVM) (Yao, Tham and Dai (2008), Bui et al. (2012)), random forests (RF) (Hong,
Pourghasemi and Pourtaghi (2016)) and neural networks (NN) (Pham et al. (2017)), are ap-
plied to fit the historical data; the landslide susceptibility map can be generated as a classifi-
cation problem. Compared to traditional physical models (Thanh and De Smedt (2014)), data
driven approaches are less expensive and more applicable to large scale areas Pourghasemi
and Rahmati (2018). More details and a comparison of approaches can be found in Goetz
et al. (2015), Pourghasemi and Rahmati (2018) and a recent comprehensive review on this
topic by Reichenbach et al. (2018). Our problem differs from a susceptibility study in that,
rather than having location characteristics and determining if that location may be similar
to those that had previous landslides, we focus on the next stage of management, that is,
performing continuous monitoring of a previously identified susceptible site and examining
the smaller scale spatial resolution characteristics over time. As a result, the aforementioned
methods do not apply to this stage in the monitoring process. Instead, we address the prob-
lem with a clustering approach that reveals the dynamic changes of the system, given the high
frequency measurements generated by our large amount of monitoring stations.

Another relevant area is landslide forecasting where time series generated by the monitor-
ing stations are fitted and predicted in order to attempt to produce early warnings. Statistical
and machine learning methods have been applied in this task. Examples include support sec-
tor regression (SVR) (Miao et al. (2018)), classification and regression tree (CART) (Chen
et al. (2017)), kernel extreme learning machine (KELM) (Zhou et al. (2016)) and NN (Chen
and Zeng (2013), Neaupane and Achet (2004), Yao et al. (2015)). However, the major limita-
tion of such numerical approaches is that sudden events like landslides usually occur within a
short period of time and may have significant deviations from the models fitted based on the
historical data. Consequently, they are more often used to detect when the observed displace-
ment exceeds the forecasted value while failing to give long-term forecasting of potential
landslide (Zhou et al. (2016)).

The closest study to our work is that of Tordesillas, Zhou and Batterham (2018). Inspired
by knowledge from fundamental studies of granular failure showing that a distinct kinematic
pattern is initiated early on and well before ultimate failure (Tordesillas et al. (2013)), they
argued that the ultimate failure pattern is encoded in the surface kinematics of a slope well
before collapse (weeks in advance) for a landslide and sought to establish a reliable method
for predicting the “strain-localization region,” the boundary of the slip region. Specifically,
k-nearest neighbor networks are generated based on features derived from the displacement
data at each time stamp. Closeness centrality, a measurement that quantifies how close one
node is to all others, is calculated for each of the nodes. As reported in their study, nodes
with relatively high closeness centrality coincide with the shear band that divides the slip and
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stable regions. As a result, monitoring this network connectivity over time enabled the early
detection of the location of the landslide. However, unlike our proposed method, there is no
use of spatial information in that work, and the regions that are found are not necessarily spa-
tially contiguous or enclosed. In addition, their approach only learns the boundary between
the slip and nonslip regions. In their study the identified boundary zone is sufficient to de-
termine the location of the landslide, but in other datasets, like Mount Stromboli (Di Traglia
et al. (2015, 2018)), the landslide might be associated with more complex patterns where the
slip regions is consisted of two zones with irregular shape and disconnected to each other. In
such cases knowledge of only the boundary may not be sufficient for detecting the landslide
site and may even deliver misleading results. To address this issue, we propose to directly
detect where the landslide is going to happen via a clustering technique which can encode
complex spatial patterns.

3. Statistical modeling.

3.1. sGMM: Spatially-aided Gaussian mixture model. Let X ∈ R
M×D be the feature

data matrix comprising M instances with D features, S ∈ R
M×2 be the spatial locations

of these instances such that sm1 and sm2 represent the x and y coordinates of mth data point,
respectively. We model the feature data by a K-component Gaussian mixture model (GMM)
(Fraley and Raftery (2002)) with parameters �f = {α1, . . . , αK,μ1, . . . ,μK,�1, . . . ,�K}
as

(3.1) p(xm|�f ) =
K∑

k=1

αkϕ(xm|μk,�k),

where ϕ(xm|μk,�k) is the Gaussian density with mean vector μk and covariance matrix �k

and αk is the mixing coefficient of the kth component. The mixture weights are nonnegative
and sum up to 1.

Assuming g is a latent variable such that gm = k stands for xm arising from the kth com-
ponent, we have

p(gm = k) = αk,

(xm|gm = k) ∼ N (μk,�k).
(3.2)

Given that we anticipate complex spatial patterns in our data (e.g., see Figure 4(b)), direct
modeling of spatial coordinates with a mixture model would enforce inappropriate ellipti-
cal spatial distributions per cluster. Instead, we would like to model the spatial distribution
within each cluster with a more flexible model, allowing for much more complex geometries.
Inspired by Reich and Bondell (2011), we model the spatial distribution within each cluster
as a nested GMM with L components.

In this way spatial information aids in the cluster allocation in that the number of subcom-
ponents, L will control the role of the spatial information in cluster allocation. The larger the
L, the less weight is placed on the spatial information, while as L → 1 yields a restrictive
spatial structure that is forced to be elliptical within each cluster.

Formally we have

(3.3) (sm|gm = k) ∼
L∑

l=1

βklN (νkl,�kl),

where 0 ≤ βkl ≤ 1 is the mixing coefficient, νkl is the mean vector, �kl is the covariance
matrix of the lth sub-component of the kth cluster, respectively, and

∑L
l=1 βkl = 1.
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Given the clustering assignment gm, the distribution of the features are assumed to be
homogeneous across the spatial locations within the cluster, that is, (xm ⊥ sm)|gm and, hence,
the density of the mth instance can be factored as

(3.4) p(xm, sm|gm) = p(xm|gm)p(sm|gm),

resulting in the following observed data log-likelihood:

�(�|X,S) = ∑
g

p(gm)p(xm, sm|gm)

=
M∑

m=1

log

(
K∑

k=1

αkϕ(xm|μk,�k)

L∑
l=1

βklϕ(sm|νkl,�kl)

)
.

(3.5)

3.2. EM algorithm for sGMM. Directly maximizing (3.5) is difficult. Instead, the widely
applied technique of Expectation-Maximization (EM) (Dempster, Laird and Rubin (1977)) is
preferred for parameter estimation. Here, we introduce the EM algorithm for maximizing the
log-likelihood of the sGMM.

Since the spatial distribution within a cluster is represented by its own GMM, we introduce
a latent variable h for indicating this subcomponent membership conditional on the cluster
assignment, that is, (hm = l)|(gm = k) means that the mth instance is located in the lth sub-
region of the kth cluster. As a result, (3.3) can be represented as

p(hm|gm) = βkl,

(sm|gm,hm) ∼ N (νkl,�kl).
(3.6)

Given the feature vector and the location of the mth instance, let r
(t)
mkl be the posterior

probability of this instance belonging to the kth cluster and the lth sub-component within it
at time t , we have

r
(t)
mkl = p

(
gm,hm|xm, sm,�(t)) = p(xm, sm,gm,hm|�(t))∑

g,h p(xm, sm,gm,hm|�(t))

= p(xm|gm,hm,�(t))p(sm|gm,hm,�(t))p(hm|gm,�(t))p(gm|�(t))∑
g,h p(xm, sm,gm,hm|�(t))

= α
(t)
k ϕ(xm|μ(t)

k ,�
(t)
k )β

(t)
kl ϕ(sm|ν(t)

kl ,�
(t)
kl )∑K

k=1
∑L

l=1 α
(t)
k ϕ(xm|μ(t)

k ,�
(t)
k )β

(t)
kl ϕ(sm|ν(t)

kl ,�
(t)
kl )

.

(3.7)

In the E-step, Q(�,�(t)) is calculated as

Q
(
�,�(t)) = Eg,h|X,S,�(t) logp(X,S,g,h|�)

= ∑
g,h

p
(
g,h|X,S,�(t)) M∑

m=1

log
(
p(xm, sm,gm,hm|�)

)

=
M∑

m=1

K∑
k=1

L∑
l=1

r
(t)
mkl logαk +

M∑
m=1

K∑
k=1

L∑
l=1

r
(t)
mkl logϕ(xm|μk,�k)

+
M∑

m=1

K∑
k=1

L∑
l=1

r
(t)
mkl logβkl +

M∑
m=1

K∑
k=1

L∑
l=1

r
(t)
mkl logϕ(sm|νkl,�kl).

(3.8)
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In the M-step, the following closed-form updates can then be readily obtained as

α
(t+1)
k = 1

M

M∑
m=1

L∑
l=1

r
(t)
mkl,

μ
(t+1)
k =

∑M
m=1

∑L
l=1 r

(t)
mklxm∑M

m=1
∑L

l=1 r
(t)
mkl

,

�
(t+1)
k =

∑M
m=1

∑L
l=1 r

(t)
mkl(xm − μ

(t+1)
k )(xm − μ

(t+1)
k )�∑M

m=1
∑L

l=1 r
(t)
mkl

,

β
(t+1)
kl =

∑M
m=1 r

(t)
mkl∑M

m=1
∑L

l=1 r
(t)
mkl

,

ν
(t+1)
kl =

∑M
m=1 r

(t)
mklsm∑M

m=1 r
(t)
mkl

,

�
(t+1)
kl =

∑M
m=1 r

(t)
mkl(sm − ν

(t+1)
kl )(sm − ν

(t+1)
kl )�∑M

m=1 r
(t)
mkl

.

(3.9)

4. Simulation study. In this section we perform experiments on a synthetic dataset in
order to illustrate the merits of the proposed sGMM algorithm compared to two baseline
methods, K-Means and GMM.

4.1. Data. The simulated data consists of 400 data points which are evenly divided into
two clusters, C1 and C2. Each point has a D-dimensional feature vector (we set D = 2 for
ease of visualization) and another two-dimensional vector as its spatial coordinates. Feature
values of points in C1 and C2 are sampled from N (μ,�) and N (ν,�), where μ = [0,0],
ν = [1,1] and � = [ 1 0

0 1

]
, respectively. The visualization of the generated feature data can

be found in Figure 1. The clustering pattern in the feature space is highly overlapped, with
more than 20% of data points not correctly assigned by baselines to their actual clusters if
this data is only used as input. The spatial coordinates of data points are uniformly distributed
in a 2 × 2 squared space, and three different spatial patterns are simulated in our experiment:
SP1, SP2 and SP3, as shown in the second column of Table 1.

4.2. Settings. Two baseline methods, K-Means and GMM, are used, and each of them
has two variants, indicated by the (X), and (X + S) suffices followed by the algorithm name.

FIG. 1. Ground truth clustering pattern in the feature space.
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TABLE 1
Visualization of clustering results of different methods in the spatial space

Spatial K-Means K-Means GMM GMM
pattern (X) (X + S) (X) (X + S)∗ sGMM

SP1

SP2

SP3

∗GMM (X + S) is equivalent to sGMM with just one spatial component (L = 1) when diagonal covariance is used.

K-Means (X) and GMM (X) takes only the feature data as input, whereas the feature and
spatial data are concatenated and fed to K-Means (X + S) and GMM (X + S). The proposed
sGMM algorithm uses both the feature and spatial data. In addition, it is worth noting that
when diagonal covariance is used, GMM (X + S) is equivalent to sGMM with just one spatial
component.

The number of clusters is set to two for all algorithms. For our proposed method, an addi-
tional parameter, the number of spatial components for each cluster, L, is selected from one
to four via Bayesian Information Criterion (BIC) (Schwarz (1978)) as

BIC = �(�|X,S) + |�| log(M),

where �(�|X,S) is the log likelihood, |�| is the number of parameters and M is the total
number of observations, respectively. In addition, to quantify the quality of prediction pro-
duced by each algorithm, we measure the similarity between the produced clustering and the
ground truth by Normalized Mutual Information (NMI) (Vinh, Epps and Bailey (2010)) as

NMI(Ỹ , Y ) = I (Ỹ ;Y)√
H(Ỹ )H(Y )

,

where Ỹ is the prediction, Y is the ground truth, I (Ỹ ;Y) is the mutual information between
Ỹ and Y and H(·) is the entropy of the corresponding clustering partition.

4.3. Results and discussion. We visualize the clustering assignment produced by each
algorithm in the spatial domain, as shown in Table 1, along side the of clustering quality
results in Figure 2. The reported sGMM results (column 6 in Table 1) are chosen by the BIC
results presented in Figure 3.

As shown in Figure 2, baselines that use only the feature data (K-Means (X) and GMM
(X)) demonstrate poor performance with an NMI score under 0.3. Generally, incorporating
spatial information helps the improvement in clustering quality. For example, for the trivial
case like SP1, GMM (X + S) only mistakenly clusters a few observations and reaches a NMI
score above 0.8 by simply concatenating feature and spatial data. However, this concatenating
strategy can easily fail for the slightly more complex cases. Only minor performance boost
can be found in SP3 for K-Means (X + S) and GMM (X + S) and the NMI score of GMM
(X + S) even decreases for SP2, compared to the results of using solely the feature data.
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FIG. 2. Clustering quality compared to the ground truth (the higher the better).

In contrast, by modeling the spatial coordinates of observations with an embedded mix-
ture model, significant performance improvement can be found in our method. Compared to
baselines, the clustering patterns produced by sGMM are less noisy and show much better
similarity to the ground truth. In addition, it is clear that our model can easily accommo-
date different spatial patterns by simply choosing different number of spatial components, as
demonstrated in Figure 3, where 1,2,3 spatial components are used for SP1, SP2 and SP3,
respectively. Overall, it is clear to see the proposed method is a better way of using spatial
information to aid the clustering problem, especially when data are hard to distinguish in the
feature space while complex patterns are presented in the spatial domain.

5. Application to rock slope data.

5.1. Rock slope dataset. Slope failures are a class of geological hazards that involve the
downslope movement of soil and rocks under gravitational forces. The most common and
effective technique for determining slope stability (i.e., the resistance of a slope to failure)
is by monitoring the small precursory movements of its surface prior to collapse. Various
radar interferometry systems have been developed for this purpose. One example is the slope
stability radar (SSR). This monitoring technology can remotely scan a surface and detect
movements with submillimeter precision at high spatial and temporal resolutions. Readers
are referred to Casagli et al. (2010), Dick et al. (2014), Pienaar and Anton (2013) for details
on: (a) the monitoring technology, (b) measurement methods and other data generated using
SSR as well as (c) current best practice for prediction of slope failure from these datasets.

In this case study we analyze a rock slope dataset on which SSR was deployed to monitor
the rock slope shown in Figure 4(a). Spatiotemporal raster data on movement were gathered
for 1803 locations on the slope surface: a time series of the cumulative surface displacement
along the line-of-sight from the stationary (ground-based) monitoring station to each ob-
served location on the surface. This displacement is measured relative to a reference baseline
observation and is updated at every six minute interval over a period of three weeks—10:07,

FIG. 3. BIC of sGMM with different number of spatial components (the lower the better).
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FIG. 4. Rock slope dataset.

May 31 to 23:55, June 21. A collapse occurred to the west in the early afternoon of June 15.
Specifically, accelerating motions were recorded along the western side of the slope reaching
peak velocity of 74.8 mm/h at location (x, y) = (77m,4m) at 1:10 p.m., June 15, which rep-
resents time point 3567 in this data. This coincided in time with the global average velocity
reaching its peak of 33.6 mm/h (Figure 4(d)). Smaller surface movements were recorded in
the south-eastern corner of the slope from June 1, but these stabilized on June 14. Two dis-
tinct subzones of the slope emerged in the failure. Large cumulative downward displacements
characterize the rockslide region to the west, whilst relatively small movements developed in
the stable region to the east.



986 S. ZHOU ET AL.

5.2. Settings. We apply sGMM on the first 3600 time stamps (10:07 May 31 to 16:25
June 15) of the data in a sliding window fashion. That is, given a particular window size
W , at each time stamp a small snapshot of length W (taken backward from current time)
is extracted from the displacement time series and clustered by sGMM, with the help of
positional data of each radar monitor. Thus, 3600 clusterings from sGMM are produced. In
order to demonstrate the value of incorporating spatial information in the clustering process,
we use K-Means and GMM which use only the displacement of the given time range, as
baselines.

NMI is used to quantify the quality of the produced clustering at each time stamp. Since
no label information is presented in this data, we assume that the K-Means clustering of the
displacement data at the final time stamp is the ground truth. This is a reasonable assumption,
since at the last time stamp the rockslide has occurred and the groups (functional units) have
become clearly defined.

In terms of parameter settings, the number of clusters is set to 2 for all algorithms, where
one cluster indicates the active region and the other refers to the relative stable subzone. The
number of iterations is set to 100 for the EM steps. Other parameters are selected via a grid
search with window size, W , chosen from 1 (six minutes), 5 (30 minutes) and 10 (one hour),
and the number of spatial components each cluster can have, L, is selected among 1, 2, 4, 8
and 16. The best parameters are chosen by the averaged BIC across all time steps.

In addition, for GMM and sGMM, we quantify the model uncertainty as the posterior
probability for each point to be allocated to the cluster with relatively higher mean displace-
ment in order to provide additional information regarding the certainty of the regions, that is,
answering the question of whether a particular point will belong to the portion that collapses
or to the portion that does not collapse. The other model parameters, such as the mixture
component means and variances, are not themselves of interest but rather a way to obtain
the clustering patterns. With this target in mind, we note that these posterior probabilities
are functions of the parameters in the model and, hence, will have uncertainty associated
with them as well. Specifically, we perform a weighted likelihood bootstrap as suggested for
GMM (Newton and Raftery (1994), O’Hagan et al. (2019)). We use 1000 bootstrap samples
at each time point. Based on these bootstrap samples, we then quantify the uncertainty in the
posterior probability for each location to belong to the active region and demonstrate via plots
(Figure 8) how the uncertainty shows up. We construct a 95% confidence interval for each
probability, and our plots now show three sets of locations: those points whose confidence
interval does not contain 0.5, which allows us to classify them to either the active or stable
clusters (depending on whether they are above or below 0.5), and those points whose interval
does contain 0.5. These are the points that we are uncertain as to which cluster they would
belong, and we highlight these points separately.

The experiments are conducted on Spartan (Lafayette and Wiebelt (2017)), a research
platform with multiple computing nodes, each having 12 CPU cores and 251 GB RAM.
Due to the fact that Spartan is a highly utilized system, we limit the computing resources
for each algorithm-dataset pair to two CPU cores, 16 GB memory and 12-hour maximum
running time. The whole experiment is implemented in MATLAB,1 and the code of GMM
are adapted from Gebru et al. (2016).

5.3. Results and discussion.

5.3.1. Overall performance of sGMM. According to Figure 5(a), the best parameter to
fit this rock slope data is by using a time window with single time step and four spatial

1The MATLAB implementation of sGMM is available upon on request.
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FIG. 5. Performance of sGMM under different parameters.

components for each cluster. In terms of running time, as shown in Figure 5(b), sGMM often
takes under a second to cluster one time window’s data, and generally, this goes up linearly
with the increase of the number of spatial components. Considering the six minutes time
interval in our data and usually even lower data generating frequency in landslide monitoring
applications, such time consumption is insignificant and acceptable.

5.3.2. Comparison to K-means. Comparison between sGMM and K-Means can be
found in Figures 6 and 7. We see that the major advantage of using spatial information in
addition to kinematic features in clustering is that it allows sGMM to reveal more detail about
the underlying dynamic changes of the system. Specifically, as shown in Figure 7, a key dif-
ference between the clusterings found by sGMM and K-Means is that the small region on the
southeast side shows a “come-and-go” pattern in sGMM (i.e., it constantly joins and leaves
the red cluster between time 700 to 2400 in Figure 7(a)). Unlike the “coactivate” pattern
discovered by K-Means, sGMM detects that the ultimate failure is the outcome of a contin-
uous competition between the west and southeast regions, with the western region ultimately
winning the competition (being responsible for the failure). A similar type of competition
phenomenon has been observed in previous small-scale laboratory studies, which observed
that multiple strain localization regions initially compete with each other, with the winning
region developing into the final shear band (see Vitone et al. (2013), Le Bouil et al. (2014),
Karimi and Barrat (2018)). By incorporating spatial information into clustering, our method
is able to detect the competition between the intermittent failure and winning failure regions
in this large-scale real-world example. With this in mind, it is desirable to ignore the dis-
traction of the southeast site, treating it as a false alarm occurring at an earlier stage, while

FIG. 6. Changes of clustering similarities w.r.t. time. Larger NMI values indicate better similarity to the ground
truth.
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FIG. 7. Clustering patterns at a sequence of time points. Results are from time 100 to 3600, with step size as
100, reading from left to right, top to bottom. Red cluster is the one with higher average displacement.

focusing on the region that does actually collapse, the western wall, which is persistently
active.

In fact, the incorporation of the spatial locality in our sGMM approach is able to automati-
cally remove the southeast region from the active cluster 400 time stamps (∼40 hours, ∼five
days prior to the eventually landslide) in advance, compared to K-Means, which consistently
learns the arch that is bridging the west and southeast wall from time 700 to 2800 (∼three
days before the eventually landslide). As a result, sGMM is more effective in terms of iden-
tifying the failure region over time (as shown in Figure 6, sGMM generates more accurate
results that are similar to the final pattern formulated at the landsliding time). An additional



SPATIALLY-AIDED GAUSSIAN MIXTURE MODEL 989

two days of warning on the landslide location is a significant gain and has the potential for a
major impact for public safety.

Lastly, as an additional benefit of optimizing spatial locality, sGMM produces more spa-
tially coherent clustering partitions than K-Means. This effect is especially noticeable in the
early phase of the monitoring procedure. For example, clustering partitions produced by K-
Means is more noisy than those of sGMM in the first 300 time stamps, where more isolated
sensors can be found next to the boundary between two clusters. This appears to happen
because in the early stages, the difference in the displacement data among radar sensors is
subtle and highly concentrated within a small value range, as presented in Figure 4(c). Thus,
if purely using the displacement data with K-Means, two sensors with only slightly differ-
ent displacement records may be assigned to different clusters. In contrast, the clustering
partitions produced by sGMM are generally smoother compared to K-Means, since spatial
information has been incorporated in the clustering process, which is more interpretable and
meaningful for understanding the evaluation of the rock slope.

5.3.3. Comparison to GMM. We report the posterior probability of a monitor being as-
signed to the active cluster by GMM and sGMM in Figure 8. The uncertain monitors found
via the bootstrap test are also visualized by the black points. Additionally, the change of NMI
scores of GMM can be found in Figure 6.

As can be seen in Figures 6 and 8(b), the clustering assignment of GMM is quite similar
to K-Means in the first 1500 time stamps, where a large number of noisy points can be found
in the early phase and a gradual development of the active region towards the east wall is
presented. However, unlike K-Means that predicts the whole east wall as a part of slip region
until time 2900, GMM shows a similar “come-and-go” pattern as our method inside the east
wall and eliminates the distraction from this site 100 time stamps earlier than K-Means.

Compared to our proposed sGMM algorithm, the “come-and-go” pattern illustrated by
GMM is less obvious and less frequent. One can easily see from Figure 8(a) that there are
periodical expansion of uncertain monitors to the east wall from time 1600 to 2400 in sGMM.
This means that, by taking spatial information into consideration, it is less confident to say
that the east wall is of high likelihood to be a part of the active region, thus, the easier and
earlier to narrow down the predicted active region to the the actual rockslide site. In contrast,
the uncertain monitors found by GMM locate mainly in the boundary of the whole west and
east sites that have relatively higher displacement, and it shows less clear and frequent signals
in order to eliminate the east wall as earlier as sGMM can.

6. Conclusion. In this paper we study the failure detection problem in complex systems
and propose a clustering algorithm that incorporates spatial information into a Gaussian mix-
ture model. A case study on a rockslide monitoring dataset demonstrates that our model not
only improves the spatial coherence of the clustering but also effectively identifies the correct
failure region earlier, as much as two days in advance, compared to the baseline. More im-
portantly, much richer patterns are discovered by the proposed model, such as the presence
of an intermittent competing region of failure. Knowledge of such regions opens the door to
deeper understanding of the dynamic of failure in complex systems.

More generally, the clustering method proposed in this paper is a unified approach for
discovering patterns in one feature space while encouraging coherence in a separate feature
space. This could potentially be applied to many real-world problems other than the rockfall
forecasting we examine in our case study. Examples include: (1) multiview problems in cy-
ber security, where one feature space reflects node behavior (patterns of API access or user
application profiles) and the second space represents internode communication, such as con-
nections endowed with statistics on port and protocols used; (2) traffic monitoring systems
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FIG. 8. Posterior probability of being in the active region. The darker the red, the closer the probability to 1.
Black points are monitors that have 0.5 within its 95% confidence interval of the posterior.

where the spatial proximity in the road network should be taken into account when clustering
sensors based on the traffic volume; (3) recommender systems that partition users accord-
ing to both their rating activities and their demographic information; and (4) social networks
where communities or user groups are detected based not only on the linkage information
among users but also their features such as age, occupation, and personal interest.

In terms of future work, one possible extension to our existing model is to incorporate do-
main knowledge as prior distributions on the parameters in a Bayesian modeling framework,
similar to Reich and Bondell (2011). However, it is not entirely clear how best to incorpo-
rate this prior information on these model parameters which would represent things such as
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the locations of the spatial clusters. In some sense this would then attempt to use the prior
information to place a prior on the location of the rockslide, which we seek to find in the data-
driven approach. Given that we have 1803 sensor locations within our framework, the data
tends to identify the location well (as our results show), so a prior distribution on the location
may not provide much additional information in this case. We also note that, in our example,
we only have measurements of the kinematic data. Without additional measurements regard-
ing characteristics of the slope, the experts are not typically able to give reliable information
about the location of the eventual rockslide. In other cases there may perhaps be information
about other characteristics of the slope, such as moisture readings, terrain density, etc. With
that additional information, it would be potentially useful to include these readings as prior
information on the suspected locations. For example, the spatial centers could be modeled
via a hierarchical regression using these other characteristics as covariates.
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