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This article introduces BART with Targeted Smoothing, or tsBART, a
new Bayesian tree-based model for nonparametric regression. The goal of
tsBART is to introduce smoothness over a single target covariate t while not
necessarily requiring smoothness over other covariates x. tsBART is based
on the Bayesian Additive Regression Trees (BART) model, an ensemble of
regression trees. tsBART extends BART by parameterizing each tree’s termi-
nal nodes with smooth functions of t rather than independent scalars. Like
BART, tsBART captures complex nonlinear relationships and interactions
among the predictors. But unlike BART, tsBART guarantees that the response
surface will be smooth in the target covariate. This improves interpretability
and helps to regularize the estimate.

After introducing and benchmarking the tsBART model, we apply it to our
motivating example—pregnancy outcomes data from the National Center for
Health Statistics. Our aim is to provide patient-specific estimates of stillbirth
risk across gestational age (t) and based on maternal and fetal risk factors
(x). Obstetricians expect stillbirth risk to vary smoothly over gestational age
but not necessarily over other covariates, and tsBART has been designed pre-
cisely to reflect this structural knowledge. The results of our analysis show the
clear superiority of the tsBART model for quantifying stillbirth risk, thereby
providing patients and doctors with better information for managing the risk
of fetal mortality. All methods described here are implemented in the R pack-
age tsbart.

1. Introduction. An ongoing research challenge in obstetrics is to quantify the risk of
stillbirth, defined as fetal death after 20 weeks of gestation. Stillbirth is a major public-health
problem with 23,595 reported cases in the U.S. in 2013 alone (MacDorman and Gregory
(2015)). Stillbirth is less well understood than other adverse pregnancy outcomes, and still-
birth rates have remained largely unchanged, even as many other serious adverse pregnancy
outcomes (e.g., neonatal death) have become rarer. Providing better estimates of stillbirth
risk as gestational age advances can yield important insights for obstetricians and patients.
If an obstetrician knew, for example, that a patient’s stillbirth risk was likely to rise earlier
in pregnancy than usual or was likely to rise to higher than normal levels at later gestational
ages, then proactive steps could be taken to manage that risk, especially in pregnancy at term.
Conservative steps might entail increased monitoring and more frequent prenatal clinic visits,
while a more aggressive step might involve an elective Cesarean section or early induction of
labor.
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Statistically speaking, we can think of stillbirth risk as a regression function h(t, x) rep-
resenting the conditional probability1 of stillbirth at gestational age t , given that the fetus
survived in utero until just before t , and given other characteristics x of the maternal-fetal
dyad. Thus, the fundamental biomedical problem we address in this paper is to provide better
patient-specific estimates of h(t, x). This fills an important knowledge gap, since the current
obstetrics literature does not provide an especially nuanced characterization of this function.
In particular, the way that h(t, x) depends upon maternal-fetal characteristics is not well un-
derstood. Structurally, obstetricians do expect that stillbirth risk evolves smoothly, without
sudden jumps or discontinuities, as gestational age (t) advances; however, they do not have
strong prior knowledge about how it should change with other maternal-fetal characteristics
(x).

The central argument of our paper is that this situation calls for nonparametric regression
with targeted smoothing in gestational age t , that is, we require that h(t, x) be smooth with
respect to t (the target covariate), but we remain agnostic about smoothness with respect to x.
This approach realizes two complementary advantages when quantifying stillbirth risk. First,
from a clinical perspective targeted smoothing reflects prior knowledge, aids interpretabil-
ity and assists doctors in communicating stillbirth risks to patients as clearly as possible.
For example, smoothing helps prevent doctors and patients alike from overinterpreting the
small jumps or wiggles in h(t, x) that arise in a completely nonparametric estimate but that
are likely just noise. Second, from a statistical perspective targeted smoothing can reduce
variance without inflating bias.

To incorporate these benefits into our analysis of stillbirth risk, we propose a Bayesian ap-
proach called BART with Targeted Smoothing, or tsBART, which is based on the highly
successful Bayesian Additive Regression Trees (BART) model introduced by Chipman,
George and McCulloch (2010). The original BART model is a Bayesian ensemble-of-trees
approach to nonparametric regression. It predicts a scalar response y using a sum of many
binary regression trees, where each tree is encouraged by a prior to be a “weak learner,”
that is, to have relatively few splits and to use only a small set of the available predictors.
BART with Targeted Smoothing is similar in this regard, and we use the same prior over tree
space proposed in the original BART paper. Where tsBART differs is in the prior used for the
terminal nodes of each tree. BART specifies a Gaussian prior for the scalar mean parameters
in each terminal node. tsBART replaces the Gaussian prior with a Gaussian process prior over
univariate functions in the “target” covariate t , so that each terminal node is parameterized
by a smooth function of t .

Thus to summarize our contributions:

1. We introduce the tsBART model and demonstrate its advantages for problems where
targeted smoothing is desirable.

2. We apply this method to data on birth records from the National Center for Health
Statistics in order to produce accurate estimates for h(t, x) and to provide clinicians with
more granular knowledge of patient-specific stillbirth risk.

It would certainly be possible to estimate stillbirth risk using existing techniques for mod-
eling time-to-event data (see, e.g., Mandujano, Waters and Myers (2013)). Thus, a major
focus of our paper is to demonstrate that the specific features we had in mind when designing
tsBART—targeted smoothing in gestational age, while avoiding strong assumptions in other
covariates—have some very real advantages for this kind of problem. Available techniques
either lack smoothness entirely (and thus tend to have smaller bias) or enforce smoothness
globally (and thus tend to have smaller variance). Each approach has its advantages, but

1Or, in continuous time, the hazard rate.
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tsBART enjoys the best of both worlds for quantifying stillbirth risk. It easily handles com-
plex interactions and nonlinear effects, maintains computational tractability, and offers a full
picture of posterior uncertainty, all while maintaining smoothness in t .

Moreover, while our motivating example involves estimating a smooth hazard function, the
tsBART model is much more general than this. The same approach can work in any nonpara-
metric regression problem where targeted smoothing is desired a priori, regardless of whether
the response is continuous, binary, or (as in our case) a time-to-event outcome. Across a se-
ries of benchmarking examples, we show that our approach to targeted smoothing can lead to
a favorable bias-variance tradeoff vs. both classes of competing methods—those that make
global smoothness assumptions, and those that make no smoothness assumptions. Our sim-
ulation studies also bear out another considerable advantage. When the targeted smoothing
assumption is valid, tsBART tends to yield superior frequentist coverage vs. plausible alter-
native methods.

The paper proceeds as follows. Section 2 provides an overview of the stillbirth risk-curve
modeling problem and dataset. Section 3 details the tsBART model and reviews the rele-
vant literature. Section 4 presents the results of simulation studies showing the advantages of
the method. Section 5 then presents our core scientific contribution, an analysis of stillbirth
risk using the tsBART model. Section 6 concludes with a brief discussion. Further details,
including on computational methods, are in the Appendices.

All methods described in this paper are implemented in the R package tsbart; see the
Supplementary Material (Starling et al. (2020)).2

2. Stillbirth risk.

2.1. Background. Stillbirth is a significant public health concern that affects tens of thou-
sands of Americans each year. In the U.S. in 2013, a total of 23,595 stillbirths were reported
(MacDorman and Gregory (2015)). The National Vital Statistics System notes that stillbirth
has been significantly overlooked in public-health research and obstetrics guidance, and its
mechanisms are not well understood. Obstetricians do know that the risk of stillbirth typically
(but not universally) cumulatively increases with time in utero. But this risk must be balanced
against the potential negative consequences of early delivery. Preterm and early term births
are associated with increased risk of neonatal mortality and morbidity, adverse neurodevel-
opmental and cognitive outcomes and increased healthcare costs (e.g., Muraskas and Parsi
(2008), Kornhauser and Schneiderman (2010)). Obstetricians can therefore benefit greatly
from access to better estimates of stillbirth risk over gestational age, so that they can give
clinical advice that minimizes the overall risk of adverse perinatal outcomes. Conservative
patient management might entail increased monitoring and more frequent prenatal clinic vis-
its, while more aggressive steps include an early delivery via either elective Cesarean section
or early induction of labor. From a statistical perspective, this means that accurate uncer-
tainty quantification is vital for helping doctors understand which cases have a less precisely
estimated risk profile.

Previous research on adverse perinatal outcomes has focused more heavily on neonatal
death than on stillbirth (e.g., Bailit et al. (2010), Clark, Frye and Myers (2010), Reddy, Bet-
tegowda and Dias (2011)). A more recent line of work attempts to refine these broad conclu-
sions by seeking to model stillbirth risk based on a patient’s individual risk factors. In particu-
lar, Mandujano, Waters and Myers (2013) model hazard functions for stillbirth by stratifying
patients into two broad categories, low risk vs. high risk. Here “high risk” is determined by
presence or absence of at least one of several preexisting maternal conditions (e.g., diabetes,

2https://github.com/jestarling/tsbart.

https://github.com/jestarling/tsbart
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chronic hypertension, and others). The model provides two stillbirth risk curves, one each
for the high-risk and low-risk groups, for a U.S. cohort. This model does not meaningfully
distinguish among the individual risk factors with potentially distinct etiologies, nor does
it incorporate recent evidence that many other maternal and fetal characteristics—including
maternal race, plurality, birth weight and sex of the fetus—appear to correlate with stillbirth
risk (Xu et al. (2013), MacDorman and Gregory (2015)). Finally, it fails to allow for the pos-
sibility of statistical interactions between risk factors. Our targeted smoothing approach is
specifically designed to address these shortcomings.

2.2. Data description. Our analysis uses anonymized birth data from the National Center
for Health Statistics from the years 2004 and 2005 (Table 1). Each medical record is asso-
ciate with a single pregnancy. Each record contains the gestational age in weeks at which the
pregnancy was delivered, based on calculation from the woman’s last normal menstrual pe-
riod or a clinical estimate. The outcome of each pregnancy is recorded as either a stillbirth or
a live birth. Each record also contains information about the maternal-fetal dyad, including
maternal risk factors, such as diabetes, hypertension, sociodemographic variables and fetal
characteristics, such as sex or estimated fetal weight.

TABLE 1
Cohort characteristics for our dataset on stillbirth. The “low-risk” and “high-risk” designations are not used
formally in our model, but they are provided for the sake of comparison with Mandujano, Waters and Myers

(2013), Table 1. Our cohort is similar in composition to the cohort analyzed there. Numbers in parentheses are
percentages with respect to the given cohort

Full Cohort Low risk High risk
Characteristic (n = 4,553,868) (n = 4,137,260) (n = 416,608)

Maternal age (Yrs)
<20 452,060 (9.93) 418,953 (10.13) 33,107 (7.95)
20–29 2,401,223 (52.73) 2,204,168 (53.28) 197,055 (47.30)
30–39 1,585,226 (34.81) 1,415,991 (34.23) 169,235 (40.62)
40–49 115,020 (2.53) 97,855 (2.37) 17,165 (4.12)
50+ 339 (0.01) 293 (0.01) 46 (0.01)

Maternal race and ethnicity
White, non-Hispanic 2,757,816 (60.56) 2,520,632 (60.93) 237,184 (56.93)
Black, non-Hispanic 693,751 (15.23) 619,761 (14.98) 73,990 (17.76)
Hispanic 809,086 (17.77) 736,908 (17.81) 72,178 (17.33)
Other 293,215 (6.44) 259,959 (6.28) 33,256 (7.98)

Parity
Primiparous 1,490,501 (32.73) 1,370,443 (33.12) 120,058 (28.82)
Multiparous 3,063,367 (67.27) 2,766,817 (66.88) 296,550 (71.18)

Maternal risk factors
Anemia 115,663 (2.54) 0 (0.00) 115,663 (27.76)
Cardiac disease 20,937 (0.46) 0 (0.00) 20,937 (5.03)
Lung disease 63,063 (1.38) 0 (0.00) 63,063 (15.14)
Diabetes mellitus 159,765 (3.51) 0 (0.00) 159,765 (38.35)
Hemoglobinopathy 4260 (0.09) 0 (0.00) 4260 (1.02)
Chronic hypertension 43,935 (0.96) 0 (0.00) 43,935 (10.55)
Renal disease 14,210 (0.31) 0 (0.00) 14,210 (3.41)
Rh isoimmunization 31,317 (0.69) 0 (0.00) 31,317 (7.52)

Infant sex
Male 2,330,557 (51.18) 2,117,958 (51.19) 212,599 (51.03)
Female 2,223,311 (48.82) 2,019,302 (48.81) 204,009 (48.97)
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The dataset consists of 8,371,461 pregnancies with 7,940,495 live births, 100,072 still-
births and 330,894 cases where stillbirth outcome is missing. We restrict our analysis to
complete cases with all maternal-fetal information and stillbirth response present. Analysis
is also limited to pregnancies delivered from 34 to 42 weeks inclusive, as this is the range
where clinicians might plausibly recommend to deliver a baby based on elevated stillbirth
risk, barring truly exceptional circumstances. These restrictions yield 4,553,868 pregnan-
cies for analysis, of which 7,175 are stillbirths, for an overall prevalence of 1.58 stillbirths
per thousand pregnancies from 34 to 42 weeks’ gestation. The prevalence in the high risk
category was 2.85 stillbirths per thousand, while the prevalence in the low risk group was
1.45 per thousand. Prevalence is comparable to the dataset analyzed by Mandujano, Waters
and Myers (2013), where overall prevalence was 1.45 births per thousand, 2.68 in the high
risk group and 1.34 in the low risk group. A full table of summary statistics for our sam-
ple is shown in Table 1. In practice, we work with a smaller case-control sample of this full
dataset. This is described in Section 5; full details of the data pipeline are also available at
github.com/jestarling/tsbart-analysis.

Maternal-fetal characteristics were selected for inclusion in our regression models based
on clinical knowledge, availability of data and previous research findings on risk factors for
stillbirth (e.g., Mandujano, Waters and Myers (2013), Muraskas and Parsi (2008), Kornhauser
and Schneiderman (2010)). Maternal covariates include maternal age, primiparity, whether
the labor was induced, ethnicity (White non-Hispanic, Black non-Hispanic, Hispanic, Other),
aggregate pregnancy weight gain quantile, presence of diabetes mellitus, presence of chronic
hypertension, and an indicator for the presence of any other risk factor. Other risk factors
include anemia, cardiac disease, lung disease, hemoglobinopathy and Rh sensitization. Con-
sistent with the analysis of Mandujano, Waters and Myers (2013), pregnancy-related com-
plications, such as gestational diabetes, abruption or preeclampsia, were not included as risk
factors. Fetal covariates include infant sex and birth weight quantile.

We did not exclude any variables on statistical grounds. One of the benefits of the BART
framework, which also applies to the tsBART method, is that variable selection procedures
are not generally required. As discussed in Section 3, the BART prior guides the model to
choosing subsets of the most relevant covariates for inclusion in each tree.

Birth weight cannot be observed directly by a doctor contemplating whether to delivery
a pregnancy early due to elevated stillbirth risk. However, birth weight quantile acts as a
sensible proxy for the information doctors would actually have at their disposal in a prenatal
visit—fetal weight quantile in utero which is estimated routinely using ultrasound and fetal
growth charts. Because fetal weight quantile at later gestational ages correlates very strongly
with birthweight quantile, we do not expect that there is substantial error introduced by using
birth weight quantile (which we have and a doctor would not) as a proxy for fetal weight
quantile in utero (which a doctor would have).

3. BART with targeted smoothing. We now introduce the tsBART model, which later
in Section 5 we will use to analyze the stillbirth data just described. Throughout the remaining
sections, we let t ∈ T represent the target covariate, that is, the covariate in which the response
surface is assumed to be smooth which in our case is gestational age (discrete time measured
in weeks or days). We let x ∈ X represent a vector of covariates other than t which in our
case are the characteristics of a particular maternal-fetal dyad.

Because tsBART is a general approach for targeted smoothing in nonparametric regres-
sion, we first introduce the model in full generality. We then explain how to adapt it more
specifically for modeling the hazard function for stillbirth, h(t, x), which represents the con-
ditional probability of stillbirth at gestational age t , given that a fetus has survived in utero
through gestational age t − 1.

http://github.com/jestarling/tsbart-analysis
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3.1. The BART model. Before introducing tsBART, we briefly review the original BART
framework. BART (for Bayesian Additive Regression Trees) is a fully Bayesian ensemble-of-
trees model (Chipman, George and McCulloch (2010)). BART models the mean response for
a nonlinear regression function as the sum of a large number of binary trees, each of which
is constrained by the BART prior to be shallow (and therefore a weak learner). The model is
defined by a likelihood and prior, and inference is performed by sampling from the posterior.
Specifically, suppose that yi is a scalar response and that xi is a vector of covariates. The
BART model assumes that

yi = f (xi) + εi, εi
i.i.d.∼ N

(
0, σ 2)

,(3.1)

f (xi) =
m∑

j=1

g(xi;Tj ,Mj).(3.2)

Here, each Tj is a binary tree that induces a step function in x via a partition of the covariate
space, while the Mj = {μ1j , . . . ,μbj j } are the bj terminal node values in tree j (i.e., the
levels of the step function). We can think of each g as a basis function parameterized by the
binary tree defined by (Tj ,Mj ).

The BART prior consists of three elements. The first component is the conjugate prior for
the error variance, σ 2 ∼ νλ/χ2

ν . The second component is the specification of independent

Gaussians μhj
i.i.d.∼ N(μ0, τ

2) on the terminal node parameters Mj = {μ1j , . . . ,μbj j } of each
tree. The third component is the prior over tree space, composed of a set of probabilities
governing three things: the choice of splitting covariate, the choice of splitting value for each
covariate and whether a node at a given depth is a terminal node. We refer interested readers
to Chipman, George and McCulloch (2010), who recommend default hyperparameters that
favor shallow trees which both regularizes the estimate and encourages rapid mixing.

BART has been successful in a variety of contexts including prediction and classification
(Chipman, George and McCulloch (2010), Linero (2018), Linero and Yang (2018), Murray
(2017), Hernández et al. (2018)), survival analysis (Sparapani et al. (2016)) and causal in-
ference (Hahn, Murray and Carvalho (2017), Hill (2011), Logan et al. (2019), Sivaganesan,
Müller and Huang (2017)).

3.2. The tsBART model. Motivated by the success of BART models, we introduce
tsBART, an extension of BART for estimating regression functions that are smooth in a target
covariate. Consider a regression problem with scalar response yi = f (ti, xi) + ei , where the
underlying mean function f (ti, xi) depends both on t (a scalar) and x (a vector), and should
be smooth in t . To adapt BART for this setting, we replace the scalar node-level parameters
μhj with univariate functions in t , μhj (t), and we assume that only x variables (but not the
target variable t) are used to define tree splits (see Figure 1). These univariate functions in t

can in principle be assigned any prior over function space; in the applications considered in
this paper, we use Gaussian process priors.

More formally, we express the tsBART model as follows. Suppose that each observa-
tion i in our dataset consists of predictor variables (ti , xi) together with outcome yi for
i = 1, . . . ,N . (Recall that ti is the target variable for smoothing, while xi is a vector of all
other variables.) We now let

yi = α(ti) + f (ti, xi) + εi, εi
i.i.d.∼ N

(
0, σ 2)

,

f (ti, xi) =
m∑

j=1

g(ti, xi;Tj ,Mj).
(3.3)
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FIG. 1. Illustrates the extension of BART to tsBART for a single tree, where nodes are parameterized by smooth
functions instead of scalar parameters. (Left) A vanilla BART example binary tree Tj where terminal nodes are
labeled with the corresponding scalar parameters μhj . (Middle) The corresponding vanilla BART partition of the
sample space and the step function g(Tj ,Mj ). (Right) Our BART with Targeted Smoothing modification, where
the μhj (t) parameters associated to terminal nodes are now functions of t .

Here, Tj is a binary tree whose terminal nodes partition the “nontarget” covariate space X
into bj disjoint regions, just as in the original BART model. But unlike BART, we parametrize
the terminal nodes of the tree not by scalars but by a collection of Gaussian processes in t :
Mj = {μ1j (t), . . . ,μbj j (t)}, with each function μhj (t) associated with one terminal node.
The right panel of Figure 1 illustrates an example with bj = 3 terminal nodes. The overall
response is the sum of m such trees, so that at any fixed design point x = (x1, . . . , xp), the
response f (t, x) is the sum of m Gaussian processes.3 We center the model at α(t), a baseline
function of t , so that the trees parametrize deviations from the baseline that are associated
with x. We estimate α(t) using the sample mean response for observations at each t .

We use the same prior over tree space as in the original BART paper. To model the μhj (t)’s
in each terminal node, we use a zero-centered Gaussian process prior,

μ(t) ∼ GP
(
0,Cθ

(
t, t ′

))
,

where Cθ(t, t
′) is the covariance function with hyperparameter θ which can be either chosen

based on prior knowledge or tuned using the data. (Zero-centering is appropriate here because
we separate out the mean term α(t) in equation (3.3).)

In principle, any covariance function can be used. For all examples in this paper, we use
the squared-exponential covariance function with variance parameter τ 2/m and length scale
l. That is,

(3.4) C
(
t, t ′

) = τ 2

m
exp

{
−d(t, t ′)2

2l2

}
,

where d(t, t ′) is the Euclidean distance between t and t ′. Here, τ 2 determines the marginal
variance of the μhj ’s, while l governs their “wiggliness.” As in the original BART model, we
scale the variance parameter τ 2 inversely by the number of trees m. Since the mean-response
function f (t, x) is the sum of m trees, this implies that the marginal prior variance of f (t, x)

at any point t is τ 2. We then assign τ a folded-Cauchy prior as in Gelman (2006).
The tsBART model also requires specifying l, the length scale of the Gaussian process

prior, with larger l corresponding to more wiggliness. This length scale can be set using prior
knowledge, but in Section 3.3 we provide a method to tune it automatically over a grid of
possible values. As we also explain in Section 3.3, a reasonable default choice when using
the squared exponential covariance function is l = T/π , where T is the range of ti values in
the dataset.

3This implies that f (t, x) is a Gaussian process in t for fixed x, but it is not a Gaussian process in (t, x) jointly.
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We make the simplifying assumption of an i.i.d . error structure and complete the model
specification by assigning σ 2 an inverse chi-square distribution σ 2 ∼ νλ/χ2

ν . For full compu-
tational details, including the prior specification and posterior full conditional distributions,
see Appendices A.1 and A.2.

3.3. Tuning the length scale l. We must select l, the length-scale parameter of the covari-
ance matrix. To do this, we represent l using a formula by Kratz (2006) for the expected num-
ber of times a random function crosses its mean, E[NT (s)], on some interval I = [0, tmax].
This formula gives us a closed-form solution for the length-scale parameter as a function of
the expected number of times that f (t, x) crosses zero. Recall that if f (t, x) = 0, then the
overall response at predictor x is simply α(t), which we can think of as the baseline response
over t . The more times that f (t, x) crosses zero, the more sharply the covariate-specific mean
response deviates from the overall mean response.

To set E[NT (s)], let r(s) be the correlation function between time 0 and time s:

r(s) = E[{f (0, x) − μ(0)}{f (s, x) − μ(s)}]
sd(f (0, x)) · sd(f (s, x))

.

Per Kratz,

E
[
NT (s)

] = tmax · exp
[
−s2

2

](√
r ′′(0)

π

)
,

and we let s = 0 in order to maximize tmax. We use the squared exponential covariance kernel,
so

r(t) = Cov(f (0, x), f (t, x))

τ 2 = exp
[
− t2

2l2

]
.

Some algebra yields

l = tmax

πE[NT (0)] .(3.5)

This opens up several options for choosing the length scale. The first is by subjective
choice. This would entail eliciting a guess for κ ≡ E[NT (0)], the average number of times
that f (t, x) will cross zero over all values of the covariates—or equivalently, the average
number of times that each response α(t) + f (t, x) will cross the overall mean response α(t).
This is a useful basis for elicitation, since the number of crossings is a sensible and intuitive
measure for the wiggliness of our response as a function of t .

The second option is to choose a default value for κ . If a default must be chosen, we
recommend κ = 1, or equivalently, l = tmax/π . This encodes the belief that each response
surface in t will cross the overall mean response α(t) once on average across all predictor
values. This allows for a substantial amount of heterogeneity in the mean responses over time
while still shrinking toward the overall mean.

A final option, which we use in our simulation studies and real-data examples, is to tune
κ = E[NT (0)] over a grid of candidate values. This could be done using cross validation,
as in the original BART paper, although we use the Watanabe–Akaike information criterion,
or WAIC (Watanabe (2013)). WAIC is calculated as the log pointwise posterior predictive
density plus a penalty for effective number of parameters, to avoid overfitting. It provides an
estimate of generalization error without requiring that we split the data into multiple subsets;
see Appendix A.3 for details. In our simulation we note that values of κ ≈ 1 are frequently
chosen by this data-driven approach, lending further credence to the choice of κ = 1 as a
reasonable default.
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3.4. Adapting tsBART for binary and time-to-event outcomes. In their original paper
Chipman, George and McCulloch (2010) provide a probit version of the BART model for
binary outcomes Y ∈ {0,1}:

p(Y = 1 | x) = �
(
G(x)

)
,(3.6)

G(x) =
m∑

j=1

g(x;Tj ,Mj),(3.7)

where �(·) is the standard normal CDF, and where G is the standard BART model.
Our tsBART model can be extended in the same way. Suppose that we observe a binary

response ci , together with target covariate ti and nontarget covariates xi . The tsBART-probit
model introduces a latent Gaussian variable zi (Albert and Chib (1993)) and then parameter-
izes zi using tsBART in a manner parallel to the original BART probit model:

ci =
{

1 if zi ≥ 0,

0 if zi < 0,
(3.8)

zi = α(ti) + f (ti, xi) + εi, εi
i.i.d.∼ N(0,1),(3.9)

f (ti, xi) =
m∑

j=1

g(ti, xi;Tj ,Mj).(3.10)

Here, α(t) and f (t, x) are defined exactly as in equation (3.3), and each gj is assigned the
same prior outlined the previous subsection. Marginalizing over zi yields the desired proba-
bility under the probit model, P(ci = 1 | xi, ti) = �{α(ti) + f (ti, xi)}.

Crucially for our application, it is also straightforward to extend tsBART probit to discrete
right-censored time-to-event outcomes, as noted by Sparapani et al. (2016) in the context of
the original BART-probit model. Suppose that ti ∈ T is a discrete time-to-event outcome, and
that ci is a censoring indicator: ci = 1 means that an event occurred at time ti , while ci = 0
means that observation i was right-censored at time ti . In our stillbirth risk-modeling prob-
lem, ci = 1 corresponds to a stillbirth at gestational age ti , while ci = 0 corresponds to a live
birth at ti (which is right-censoring with respect to the stillbirth event). The object of interest
is the set of conditional probabilities p = {pit }, where pit is the conditional probability of
an event at time t for observation i, given than no event has happened through time t − 1.
These conditional probabilities define the discrete-time hazard function h(t, x). For ease of
exposition, we assume here that the possible event times are T = {1, . . . , T }, but this is not a
requirement.

To accommodate this data structure, we use the following standard factorization of the
likelihood for a discrete-time hazard model. We introduce binary auxiliary variables {c̃is :
s = 1, . . . ti} for each observation i = 1, . . . ,N , where

c̃is =
{

1 if ci = 1 and s = ti ,

0 otherwise.

The likelihood for the hazard function is now

L(p) =
N∏

i=1

ti∏
s=1

p
c̃is

is (1 − pis)
1−c̃is .

We note, as do Sparapani et al. (2016), that the product form of this likelihood does not come
from the assumption that the binary c̃is events are independent but rather from the definition
of each pis as a conditional probability.



BART WITH TARGETED SMOOTHING 37

We now construct the tsBART-probit model for p, as follows:

c̃is ∼
{

1 if zis ≥ 0,

0 if zis < 0,
(3.11)

zis = α(s) + f (s, xi) + εis, εis
i.i.d.∼ N(0,1),(3.12)

f (s, xi) =
m∑

j=1

g(s, xi;Tj ,Mj),(3.13)

where α and the gj ’s are parametrized just as in the tsBART model described previously,
treating time as the target covariate for smoothing.

3.5. Connection with existing work. Our paper sits in a long line of other research on
extensions to the Bayesian tree-modeling framework. Two papers in particular are especially
close in spirit to ours. The first is Sparapani et al. (2016) who introduce a model for nonpara-
metric survival analysis using BART. Their model incorporates dependence on t by simply
adding time as an ordinary covariate to a BART-probit for the discrete-time hazard function.
This does not impose any continuity or smoothness constraints on f (t, x). In contrast, our
approach smooths the hazard function over time while still retaining the benefits of BART.
The second paper is the treed Gaussian process (TGP) model of Gramacy and Lee (2008).
Their model uses a single deep tree with a Gaussian process in each terminal node; our model,
in contrast, is a sum of many trees. Our work therefore generalizes that of Gramacy and Lee
(2008) in the same way that the BART model generalizes the single-tree Bayesian CART
model of Chipman, George and McCulloch (1998).

Smooth or partially smooth extensions of Bayesian tree models have also been proposed
previously by Linero and Yang (2018) who smooth a regression tree ensemble by random-
izing the decision rules at internal nodes of the tree. This model induces smoothness over
all covariates by effectively replacing the step function induced by the binary trees with sig-
moids. In contrast, our approach smooths over just one target covariate while avoiding the
high computational cost associated with the method of Linero and Yang (2018).

4. Simulations. We conduct two simulation studies to compare tsBART to existing
methods. These simulations are designed to evaluate tsBART along several dimensions—out-
of-sample predictive performance, credible interval coverage and interpretability—in settings
with varying degrees of complexity in covariate interactions.

Given the importance of uncertainty quantification for modeling stillbirth risk, we do not
benchmark against pure machine-learning methods that do not readily produce valid confi-
dence or credible intervals. This excludes neural networks, boosting, CART and many other
ensemble methods. We do, however, benchmark against BART which has been shown to en-
joy comparable or superior predictive performance to all these pure machine-learning meth-
ods across a range of scenarios (see, e.g., Chipman, George and McCulloch (2010) who run
these comparisons across 42 benchmark datasets). Thus, very little is lost by excluding meth-
ods that perform comparably to BART in terms of pure prediction but that cannot produce
confidence/credible sets for those predictions.

One plausible benchmark might be Random Forests, for which recent research (Wager,
Hastie and Efron (2014)) has addressed the problem of accurate uncertainty quantification.
However, we choose not to include Random Forest in the simulation benchmarks for two
reasons. First, Chipman, George and McCulloch (2010) performed extensive benchmarking
of ordinary BART versus Random Forests, and they make a persuasive argument that, if the
computational resources are available for BART, it tends to perform a bit better on average.
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Additionally, we did investigate the performance of Random Forests on the stillbirth dataset
that we analyze in Section 5. We found that the stillbirth risk curve estimates provided by
Random Forest had many of the same interpretational problems posed by BART—namely,
by not imposing adequate smoothness over time, it limits the interpretability for clinicians,
encouraging them to over-interpret small wiggles in the fit. This analysis is included in Ap-
pendix A.5.

4.1. Simulation 1—direct comparison with BART. We first conduct a simulation study
comparing tsBART to the ordinary BART model. The initial focus on BART is intended
to isolate a key feature of our approach, smoothing in t vs. simply including t as another
predictor available in the model. BART is also the most relevant practical comparison for our
application, since Sparapani et al. (2016) have already shown that ordinary BART probit has
cutting-edge performance for discrete-time survival modeling vs. a wide range of competing
methods, including many more traditional time-to-event models.

We simulated datasets across three scenarios of modest dimension in the nontarget vari-
ables x: one with four covariates, one with eight covariates and another with 20 covari-
ates. For all scenarios we used eight discrete time points (T = {1, . . . ,8}) for the target
covariate. This mimics the stillbirth data, where information on gestational age is used at
a weekly resolution between 34 and 42 weeks. It also reflects many other obstetrics, public
health and biomedical applications where data is observed at discrete intervals. We gener-
ated each pair of covariates (xij , xi,j+1) for odd j from a bivariate Gaussian with moder-
ate correlation and unit variances. For each case, we simulated data sets with sample sizes
n ∈ {100,500,1000,2500}, for a total of 12 combinations of sample size (n) and dimension
of the nontarger covariate (p). For each of these 12 combinations, we simulated 100 datasets.

We focus on a ground truth in which the mean response evolves smoothly in t , and we
seek to answer two key questions: 1) can tsBART adapt to the correct degree of smoothness,
and 2) if so, how large are the gains versus an otherwise very similar model that makes no
smoothness assumptions? In the p = 4 case, we let

f (t, x) = g(x1, x2) · cos
(
t + 2πh(x3, x4)

)
,

so that the covariates x modify both amplitude and phase shift. We let g and h be simple
functions of the covariate pairs; here, we sum each pair of covariates.

In the p = 8 and p = 20 cases, we continue in a similar fashion, alternating sines and
cosines, so that

f (t, x) = g(x1, x2) · cos
(
t + 2πh(x3, x4)

)
+ g(x5, x6) · sin

(
t + 2πh(x7, x8)

) + · · · ,

where this pattern continues. We again let g and h be sums of each pair of covariates. We

generate responses y(t, x) = f (t, x) + ε where ε
i.i.d.∼ N(0,1).

We compare BART and tsBART using m = 200 trees and 10,000 MCMC draws with a
burn-in of 1000 draws. We compare performance by calculating the log loss at each iteration
of the algorithm, both in-sample and for a held-out sample, and by taking the mean log loss
across all MCMC iterations. Log losses are scaled by sample size. We tune the length scale
l using the method described in Appendix A.3. We compare models using log loss since
our goal is not to classify patients by whether they will experience stillbirth but to provide
well-calibrated probabilities of stillbirth to clinicians. Log loss is a proper scoring rule which
measures how effectively each method calibrates its probability estimates.

tsBART consistently outperforms ordinary BART (Table 2) in the out of sample log loss.
tsBART has the most significant gains in scenarios with small sample sizes or more predic-
tors. Figure 2 illustrates the out of sample fits and log loss in a single scenario, where n = 500
and p = 4; tsBART tends to smooth out the long-range periodicities in f (t, x) much less than
ordinary BART.
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TABLE 2
In-sample and out-of-sample log loss (scaled by sample size), averaged across 100 replicates, comparing BART
with tsBART. tsBART consistently outperforms ordinary BART in the out-of-sample log loss. tsBART has the most
significant gains in scenarios with small sample sizes or more predictors, as evidenced by p-values from a paired

Wilcoxon test comparing out-of-sample results

In-sample Out-of-sample

p n BART tsBART BART tsBART P -value

4 100 −1.61 −1.49 −1.97 −1.92 <0.001
4 500 −1.53 −1.47 −1.80 −1.74 <0.001
4 1000 −1.47 −1.46 −1.76 −1.72 0.001
4 2500 −1.43 −1.44 −1.68 −1.67 0.367
8 100 −1.74 −1.66 −2.18 −2.07 <0.001
8 500 −1.66 −1.63 −2.02 −1.92 <0.001
8 1000 −1.55 −1.58 −1.95 −1.91 0.002
8 2500 −1.48 −1.53 −1.88 −1.87 0.742

20 100 −2.04 −2.02 −2.59 −2.31 <0.001
20 500 −1.94 −1.99 −2.41 −2.28 <0.001
20 1000 −1.81 −1.94 −2.31 −2.27 <0.001
20 2500 −1.66 −1.84 −2.27 −2.32 0.023

4.2. Simulation 2—comparison with BART and splines. We next compare tsBART to
four existing models in a simulation study designed to mimic the basic properties of the
hazard functions we expect to see in our stillbirth data. We generate hazard functions and
corresponding survival data for three scenarios, where covariates determine shape of the haz-
ard function with increasing degrees of interaction complexity. We compare the following
methods:

1. tsBART: The BART with Targeted Smoothing method with smoothing parameter κ

tuned as described in Appendix A.3.

FIG. 2. Compares a single model fit for tsBART and BART for one scenario (n = 500, p = 4), to illustrate the
difference in fit when the ground truth is smooth in a single target covariate t . (Left) The bold dashed line repre-
sents the true function value, while the solid line and shading give posterior means and 95% credible intervals.
Lighter dashed lines give the prediction intervals. (Right) tsBART outperforms BART across t and on average.
The boxplot gives the distribution of average log loss at each t for both methods with overall average log loss in
parenthesis on the x-axis label.
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2. tsBART (default): The BART with Targeted Smoothing method with our suggested κ =
1 default smoothing parameter.

3. BART: an ordinary BART-probit model which also sets hyperparameters (ν,λ), as rec-
ommended in Chipman, George and McCulloch (2010), and includes time t as a covariate

4. Splines 1: a logistic regression model using cubic B-splines with seven degrees of free-
dom with main effects for all covariates included in xi . Use of the spline basis induces tar-
geted smoothness in t by ensuring that, for fixed x, f (t, x) is piecewise polynomial with
continuous first and second derivatives.

5. Splines 2: another logistic regression model using cubic B-splines and seven degrees of
freedom with the addition of interactions between each basis element in t and each covariate
in xi .

6. P-Splines: a penalized spline model including the same covariates and a penalized
spline basis with 9 spline basis elements and a second-order smoothing penalty (Eilers and
Marx (1996)). (The maximum possible number of basis elements is determined by the fact
that there are only nine distinct values for gestational age, 34–42 weeks.) By allowing for
all possible basis elements to enter the model while penalizing deviations from smoothness,
penalized splines provide flexibility while still regularizing the stillbirth risk curve estimates.

We evaluate the performance of tsBART for three scenarios, representing increasing degrees
of difficulty in how x parametrizes the hazard function.

We simulate data as follows. Let t be a grid of times on the unit interval, spaced in in-
crements of 0.1. Generate n = 1000 ten-dimensional covariates xi = {xi1, . . . , xi10} where

xij
i.i.d.∼ U(0,1). The first five covariates in each xi impact the response; the rest are noise.

In each case we define the hazard function as the weighted combination of two “template”
hazard functions f1(t) and f2(t), where weights w(xi) depend on covariates xi :

h(t, x) = 0.25xi5 + w(xi1, . . . , xi4)f2(t) + [
1 − w(xi1, . . . , xi4)

]
f1(t).

The differences between the three scenarios are in how the weight depends on the co-
variates: linearly, linearly with interactions or nonlinearly with interactions. Figure 3 illus-
trates resulting hazard functions for each scenario. There are four general hazard function
shapes, dictated by high versus low baseline risk and with or without a sharp increase in
hazard beginning at t = 0.75. Appendix A.4 provides further detail, and code is available at
https://github.com/jestarling/tsbart-analysis.

For each of the three scenarios, we simulate 500 datasets to compare point-wise cover-
age of tsBART compared to the methods detailed in Section 5. The mean-squared error of
the estimates are small and comparable across all methods. Most striking, however, is that
tsBART gives far better coverage than other methods, both with the smoothing parameter
tuned and set to the default value of 1 (Table 3). No other method consistently produces cred-
ible/confidence sets that are close to the nominal value of 95%. We conclude that tsBART

FIG. 3. Illustrates the different ground truth hazards used in the three simulation scenarios. The same basic
shapes of hazard functions are present in all three scenarios; the difference is in how covariates x influence
which shape arises. There is a mixture of gently-rising hazards and hockey stick hazards; linearity determines the
straightness of the rise, and presence of an interaction increases strength of the hockey stick.

https://github.com/jestarling/tsbart-analysis
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TABLE 3
Average coverage rates (nominal is 95%) and mean squared error across 500 simulated datasets for each

weighting scenario and model combination. For tsBART and BART, coverage is for posterior credible intervals
and mean squared error uses the posterior mean. For the spline-based methods, coverage is for prediction

intervals. tsBART has better coverage, even with the default smoothing parameter, and MSE for all methods is
small and comparable.

Weighting scenario Method Coverage MSE

Linear tsBART (tuned) 0.9310 0.0014
tsBART (default) 0.9092 0.0017

BART 0.7642 0.0011
Splines 1 (Linear) 0.7925 0.0007

Splines 2 (Interaction) 0.7788 0.0014
P-Splines 0.7720 0.0007

Linear (with interaction) tsBART (tuned) 0.9571 0.0019
tsBART (default) 0.9443 0.0022

BART 0.7907 0.0022
Splines 1 (Linear) 0.8874 0.0039

Splines 2 (Interaction) 0.7213 0.0391
P-Splines 0.8718 0.0036

Nonlinear (with interaction) tsBART (tuned) 0.9539 0.0013
tsBART (default) 0.9354 0.0016

BART 0.7408 0.0012
Splines 1 (Linear) 0.8918 0.0006

Splines 2 (Interaction) 0.8392 0.0013
P-Splines 0.8747 0.0006

is capable of matching or exceeding other methods in terms of mean-squared error while
producing error bars that are statistically trustworthy and scientifically sensible.

We acknowledge the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources that have contributed to the results reported
within this paper. URL: http://www.tacc.utexas.edu

5. Results for modeling stillbirth risk. We now turn to our motivating application, by
applying the tsBART method to estimate patient-specific stillbirth risk, using the data de-
scribed in Section 2. To model the discrete-time hazard function for stillbirth, h(t, x), we use
the extension of tsBART-probit formulation described in Section 3.4. Our target covariate
for smoothing is gestational age in weeks: ti ∈ {34,35, . . . ,42}. We let yi be an indicator of
whether stillbirth has occurred for each pregnancy, and xi be the vector of maternal-fetal co-
variates for each patient, including maternal age, primiparity, ethnicity, infant sex, presence
of diabetes mellitus, presence of chronic hypertension, presence of other risk factors, whether
the pregnancy was induced and birth weight and weight gain quantiles.

We first focus on the question of whether tsBART does, indeed, yield better-calibrated
risk estimates over existing methods for our dataset. For the purpose of evaluating all models
while maintaining computational tractability, we created five balanced case-control samples
of n = 1000 pregnancies each. (Since stillbirth is a rare event, using a balanced case-control
sample also more clearly highlights differences among methods.) We then split each balanced
case-control sample into training and testing sets. We used the training set to fit tsBART
in addition to each of the four models discussed in Section 4: vanilla BART, the two B-
spline models and P-splines. We tune the length-scale parameter of tsBART using the method
described in Appendix A.3, and we set tree-prior hyperparameters (ν,λ) as recommended in
Chipman, George and McCulloch (2010). We then used the fitted model to predict the hazard

http://www.tacc.utexas.edu
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TABLE 4
Overall out-of-sample log loss for each method,
averaged over five evenly balanced case-control

samples. tsBART outperforms other methods, with
the tuned smoothness parameter only slightly

outperforming the default.

Method Log loss

tsBART (tuned) −1.711
tsBART (default) −1.713
BART −1.810
Splines 1 −1.725
Splines 2 −1.919
P-splines −1.724

functions for all held-out points, and we computed held-out log losses. We repeat this process
over five balanced case-control datasets and average the results (Table 4).

tsBART outperforms other methods, with the tuned smoothness parameter setting only
slightly outperforming the default (untuned) setting. To provide some intuition for these re-
sults, Figure 4 also shows relative out-of-sample log losses of all methods as a function of
gestational age with tuned tsBART normalized to 1. The figure shows that tsBART’s gains
are especially apparent at higher and lower gestational ages, where fewer observations are
available. Most methods are comparable at gestational ages across the middle of the available
range (37–39 weeks).

We next turn to the question of how obstetricians might use the results of tsBART to un-
derstand stillbirth risk and to communicate that risk to their patients. To do so, we construct a
set of hypothetical “test” patients representing various configurations of maternal-fetal char-
acteristics:

• Patient 1 is a young, primiparous, white patient in her early 20’s with no medical history,
normal weight gain and normal birth weight for a female infant.

• Patient 2 is otherwise similar to Patient 1 but has hypertension.

FIG. 4. Illustrates performance of each method relative to tsBART with tuned smoothing parameter κ . Shows
weekly out-of-sample log loss for each method, averaged over five evenly balanced case-control samples. tsBART’s
gains are especially apparent in higher and lower gestational ages; other methods have small gains in the 37 to
39 week range, at the expense of inflation at extreme gestational ages where sample sizes are small.
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• Patient 3 is otherwise similar to Patient 1 but has both hypertension and diabetes.
• Patient 4 is also a young white patient in her early 20’s but is multiparous with birth weight

less than the 10th quantile.
• Patient 5 is a white patient in her early 40’s with diabetes, hypertension and other risk

factors present; her labor is induced, and her infant is male.

To maintain computational tractability, we again select a case-control sample of the overall
data set. We include all stillbirths in the case-control sample. Then, for each gestational age,
we sample 2% of the live births at that age. As a result, stillbirths are 50 times more prevalent
in our sample than they are in the full data set, both overall and at each gestational age. This
approach yields a dataset that is still reasonably large with 91,078 pregnancies, all 7,175
stillbirth cases and 83,903 live-birth controls. While we would prefer to fit the model to all
4.55 million data points, we are not yet able to do so, owing to computational constraints.
Scalable Bayesian ensemble methods are an active area of research, and we are currently
drawing on this work to develop methods for scaling tsBART to use the entire dataset.

We use this large case-control sample to fit all methods from Section 4. We use the results
to produce estimates of the stillbirth hazard function for each of our hypothetical test patients.
We then rescale the estimated hazard functions to account for the 50-fold downsampling of
live births in our case-control sample, and we express the resulting hazard functions as a
stillbirth rate per 1000 live births.

The results are shown in Figure 5. Each column represents one test patient, while each row
shows a particular method. In each panel we show the estimated conditional probability of
stillbirth risk at gestational age t , given survival through time t − 1, along with 95% uncer-
tainty intervals. Estimated probabilities for all other methods are also visible in grey within
each panel and for easier comparison across panels. For tsBART and BART the estimates are
posterior-mean predicted probabilities and (Bayesian) credible intervals; for spline methods
the estimates are predicted probabilities and (frequentist) prediction intervals.

These plots have several features of interest (we focus on the tsBART results in the top
row). First, there is considerable heterogeneity in the estimated stillbirth risk curves, in their
shape, level and degree of interaction between maternal-fetal covariates and gestational age.
Patient 1, for example, has a lower overall risk with a relatively small increase in risk at
very late gestational ages (41–42). Patients 2–4 have slightly higher overall risk at earlier
gestational ages but more much pronounced “spikes” in risk at late gestational ages, when
the inherent stillbirth risk at an advanced stage of pregnancy is exacerbated by these patients’
covariates (hypertension, diabetes + hypertension and low fetal weight, respectively). Patient
5, on the other hand, has a higher overall risk at all gestational ages but a much more linear
risk trajectory across gestational age compared with Patients 1–4, without the pronounced
spike.

This striking heterogeneity across the patients illustrates the shortcomings of collapsing
patients into two risk groups, as in Mandujano, Waters and Myers (2013). Our method, in
contrast, can produce individualized estimates of risk for any patient and across all gestational
ages.

We note that the estimates from the BART model are generally similar in shape to the
tsBART estimates but lack smoothness over gestational age. This results in increased vari-
ance and poorer overall out-of-sample performance, as evident from Table 4. It also invites
clinicians and patients to over-interpret small wiggles in the risk curves that are a result
of estimation noise rather than clinically meaningful differences. The spline models, mean-
while, tend to result in estimates that are either over smoothed (Splines 1, P-splines) or under
smoothed and erratic (Splines 2). We attribute this to the fact that Splines 1 and P-splines
are underparametrized. They fail to include clinically meaningful interactions (e.g., between
hypertension and diabetes). This results in higher bias, poorer estimation performance and
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FIG. 5. Estimated stillbirth risk curves for five hypothetical patients with different combinations of maternal-fe-
tal covariates, using full case-control sample. Each row is a method, and each column is a hypothetical patient.
In each row the posterior mean and credible interval are highlighted (dark line and shading), while the other
methods’ posterior means are in dashed lines for comparison. Patient 1 is a low-risk patient (young, primiparous,
no medical history, normal weight gain and birth weight). Patient 2 introduces hypertension; Patient 3 introduces
both diabetes and hypertension. Patient 4 is multiparous with very low birth weight, and Patient 5 has a combina-
tion of risk factors (older, diabetes, hypertension, medical history, induced labor). tsBART gives a smooth fit with
sensible credible intervals, consistent with clinical intuition about the way stillbirth risk evolves with gestational
age.

infeasibly narrow confidence intervals that, in light of our simulation studies (Section 4), are
likely to be anticonservative. Splines 2, meanwhile, is likely overparametrized. It allows for
the possibility of all pairwise interactions between maternal-fetal covariates and gestational
age, needlessly inflating variance for the sake of finding a small handful of clinically impor-
tant interactions. This suggests that the spline models, in order to yield good performance for
stillbirth prediction, would require more nuanced model selection and attention to functional
form since including more flexible interactions was not a fruitful approach.

TsBART, in contrast, produces the best out-of-sample performance, smooth estimates and
wider more clinically sensible error bars. It also finds the important interactions out of the
box without the need to specify them by hand or to conduct a specification search for the right
form of the model. In addition, the posterior credible intervals from tsBART are noticeably
wider for patients with unusual combinations of characteristics—an intuitive result which
reflects a higher degree of uncertainty about rarer, more medically complex cases.
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6. Discussion. Our tsBART model is a novel extension of BART which allows for tar-
geted smoothing over a selected covariate. tsBART enjoys the same advantages as BART—
excellent predictive performance, easily tunable hyperparameters and avoiding specification
of interactions. Hyperparameters are set efficiently via data-driven approaches using recom-
mendations from Chipman, George and McCulloch (2010) and our suggested method for
tuning the length-scale of the covariance function. tsBART provides regularization in the
form of constraining trees to be shallow learners in the prior which is a well studied and
highly successful approach to regularization in regression.

The kind of stillbirth risk analysis made possible by tsBART represents a substantial ad-
vancement on previous work in obstetrics (Mandujano, Waters and Myers (2013)) in terms of
capturing heterogeneity of risk curves by patient and quantifying levels of certainty around
each risk curve. Further investigation into nuanced approaches for stillbirth risk modeling is
warranted; maternal-fetal covariates such as age, weight gain and birth weight may play a
role in risk of stillbirth and may interact with other covariates in complex ways. Our fully
Bayesian approach naturally allows the model to capture rich and complex interactions and
quantify uncertainty about stillbirth risk which appropriately varies by patient.

We recognize the potential limitation of confounding between the decision to induce labor,
risk of stillbirth and maternal-fetal covariates. We currently consider the decision to induce to
be a proxy for other maternal-fetal covariates which may increase stillbirth risk but are not in-
cluded in the model; future work may include modeling this covariate in a causal framework.
A second limitation is the inability to link birth records to the same mother, potentially vio-
lating the independence assumption (the deidentified nature of the data prevents this linking).
However, because our data set spans only two years, it is unlikely that a large fraction of the
overall births are multiple births to the same mother. Moreover, the concern about noninde-
pendence is mitigated because we have included many of the known risk factors for stillbirth
in our model. While it is not plausible that two stillbirth events for the same mother are
marginally independent, it is much more plausible that they are conditionally independent, or
nearly so, given these risk factors.

Future areas of methodological work may include extension of tsBART to a causal infer-
ence framework for observational data as well as extension to other priors with other types
of structure. tsBART may be adapted in the accelerated framework of He, Saar and Hahn
(2018) to speed computation time. It would also be interesting to explore more nuanced char-
acterizations of partial dependence of stillbirth risk on individual covariates. For example,
plots of individual conditional expectation (ICE) may be used to assess partial relationships
between response and specific covariates, using the techniques described in Goldstein et al.
(2015). ICE plots go beyond the simple partial dependence plot by showing the functional
relationship between response and feature at the level of individual observations (rather than
averaging across the sample). This could potentially give insight into the extent of poten-
tial heterogeneity in the conditional expectation function. ICE plots can be created using the
ICEbox R library (Goldstein et al. (2015)).

APPENDIX

A.1. Review of the Bayesian backfitting MCMC. The original BART model is typi-
cally fit using an algorithm called Bayesian backfitting (Chipman, George and McCulloch
(2010), Hastie and Tibshirani (2000)). We review this algorithm, then we describe the modi-
fications necessary to fit the BART with Targeted Smoothing model.

Bayesian backfitting involves sampling each tree and its parameters one a time, given the
partial residuals from all other m − 1 trees. One iteration of the sampler consists of looping
through the m trees, sampling each tree Tj via a Metropolis step and then sampling its as-
sociated leaf parameters Mj , conditional on σ 2 and the remaining trees and leaf parameters.
After a pass through all m trees, σ 2 is updated in a Gibbs step.
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To sample {Tj ,Mj } conditioned on the other trees and leaf parameters {T−j ,M−j }, define
the partial residual as

Rij = yi −
m∑

k=1,k 	=j

g(xi;Tk,Mk).(A.1)

Using Rj as the working response vector, at step s of the MCMC one samples T
(s)
j by propos-

ing one of four local changes to T
(s−1)
j , marginalizing analytically over Mj . The local change

is selected randomly from the following candidates:

• grow randomly selects a terminal node and splits it into two child nodes;
• prune randomly selects an internal node with two children and no grandchildren and prunes

the children, making the selected node a leaf;
• change randomly selects an internal node and draws a new splitting rule;
• swap randomly selects a parent-child pair of internal nodes and swaps their decision rules.

The change and swap moves are computationally expensive; in practice, BART is often im-
plemented with only prune and grow proposals (Pratola et al. (2014)). Once the move in tree
space is either accepted or rejected, Mj is sampled from its Gaussian full conditional, given
Tj and σ 2.

A.2. Fitting the tsBART model with Bayesian backfitting. Our approach to fitting
tsBART retains the form of the Bayesian backfitting MCMC algorithm, as detailed by
Chipman, George and McCulloch (2010). The primary modification is that all conjugate up-
dates are modified to their multivariate forms. We assume an i.i.d. error structure, although
this is easily modified, and we also use a multiplicative parameterization of the scale param-
eter to facilitate faster MCMC mixing (Gelman (2006), Hahn, Murray and Carvalho (2017)).
Thus, our model is

yi = α(ti) + ηf (ti, xi) + εi, εi(t)
i.i.d.∼ N

(
0, σ 2)

,

f (ti , xi) =
m∑

j=1

g(ti, xi;Tj ,Mj), Mj = {
μ1j (t), . . . ,μbj j (t)

}
,

μhj (t) ∼ GP
(
0,C

(
t, t ′

))
,

η ∼ N
(
τ0, γ

2)
,

γ 2 ∼ IG
(

1

2
,

1

2

)
,

σ 2 ∼ νλ/χ2
ν .

Recall that μhj (t) is the function at terminal node l of tree j . As described previously, this
function has a Gaussian process prior with squared exponential covariance function with
length scale l. Because we have already introduced η as a leading multiplicative scale pa-
rameter, we set the variance parameter of the covariance function to be 1/m and calibrate the
prior folded-Cauchy location τ0 to the marginal standard deviation of y.

We use the same prior for over trees Tj , as in Chipman, George and McCulloch (2010)
and Hahn, Murray and Carvalho (2017), and so we omit many details here and refer the
interested reader there. Specifically, these papers parametrize tree depth in terms of the pair
(α,β); we set (α = 0.95, β = 2) which puts high probability on trees of depth 2 and 3 and
minimizes probability on trees with depth 1 or greater than 4. For σ 2, we follow Chipman
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et al.’s recommendation for a rough overestimation of σ̂ . We choose ν = 3 and q = 0.90
and estimate σ̂ by regressing y onto x (including the index variable as a covariate), then we
choose λ s.t.; the qth quantile of the prior is located at σ̂ , that is, P(σ ≤ σ̂ ) = q .

The posterior conditional distributions are as follows. For simplicity of notation, we as-
sume times t are on a common discrete grid, where T is again the range of t values in the
data set (although this is not a requirement of the method). We update σ 2 as

σ 2 | • ∼ νλ + RSS

χ2
ν+N+1

where RSS = ∑
i,t

(
yi(t) − ηf (ti, xi)

)2
,

where N is the count of observations across all time points, N = ∑n
i=1 Ni where Ni is the

number of time points for observation i and χ2
ν+N+1 is a draw from a chi-squared random

variable.
The update for each μh = [μ(1)

h , . . . ,μ
(T )
h ] is

μh | • ∼ N(m̃, �̃) where �̃ = (� + K)−1 and m̃ = �̃(�ȳl + Kμ0),

where � = N−1
l is the inverse of the diagonal matrix of sample sizes for each time point for

observations in leaf l, K = �−1
0 , and ȳl is the vector of sample means for observations in leaf

l at each time point.
The update for η is Gaussian,

μh | • ∼ N
(
m̃, ṽ2)

where

ṽ2 =
(

1

γ 2 + 1

σ 2

∑
i,t

f (ti, xi)
2
)−1

m̃ = ṽ2
(

τ0

γ 2 + 1

σ 2

∑
i,t

yif (ti , xi)

)
.

Finally, the update for γ 2 is

γ 2 | • ∼ IG
(

1,
η2 + 1

2

)
.

For updating the trees Tj , the marginal likelihood is the corresponding multivariate ex-
tension to the marginal likelihood in regular BART. We again let Rij represent the partial
residuals, as defined in equation (A.1), and let Rl denote the vector containing residuals for
data points in leaf l. We then obtain the marginal likelihood for the b terminal nodes as

p
(
Rh | Tj ,Mj ,σ

2) =
∫
μh

∏
l∈1:b

N
(
Rh | Wlμh,σ

2I
) · N(μh | μ0,�0)∂μh,

where Wl is a (tmax × n) matrix where elements indicate times at which each yi is observed.
This Gaussian integral is easily computed in closed form.

A.3. Additional detail on hyperparameter tuning for length scale. Here, we provide
additional detail regarding tuning the expected number of crossings E[NT (0)] for calcu-
lating the covariance’s length-scale parameter. We select the optimal E[NT (0)] by begin-
ning with a grid of candidate values ec ∈ {e1, . . . , eC}. For each candidate ec, we fit the
BART with Targeted Smoothing model and calculate WAIC (Watanabe (2013)), yielding a
grid of WAIC values � = {ω1, . . . ,ωC}.

The WAIC values contain Monte Carlos variation; to overcome this, we fit a cubic spline
model to �. Let ζ be the standard deviation of the residuals from this model fit. We select
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FIG. 6. Example of tuning the expected number of crossings. The jagged dashed line illustrates the Monte Carlo
variation present in WAIC estimates. The solid line shows the spline fit. The horizontal dotted line shows the
minimum WAIC value plus one standard deviation from the spline fit. The solid vertical line gives the minimum
candidate expected number of crossings value where there is a WAIC value less than one plus the standard
deviation.

the smallest number of expected crossings ec, where the corresponding ωc is within ζ of
min(�). This approach encourages smoothing while maintaining performance. Figure 6 gives
a visualization of this tuning. Other methods, such as cross validation, could easily be used
for tuning the expected number of crossings; we find this data-driven approach to be efficient
while still yielding good results.

A.4. Simulation details. Here, we provide more detail for the second simulation de-
scribed in Section 4. We simulate data as follows. Let t be a grid of times on the unit in-
terval and spaced in increments of 0.1. We generated n = 1000 ten-dimensional covariates

xi = {xi1, . . . , xi10} where xij
i.i.d.∼ U(0,1). The first five covariates in each xi impact the

response; the rest are noise.
We generate data using a weighted combination of two risk functions, where f1(t) =

0.075t is the baseline risk function and f2(t) = 0.75 · max(0.75, t)ρ is a second risk function
which controls a large “kick” at t = 0.75. We let ρ = 1 + log(0.1)/ log(0.75), so that the
f2(t) risk at t = 1 is five times the baseline risk.

The weights w(xi) for combining f1(t) and f2(t) are dependent on the covariates xi .
We generate data for three scenarios–letting weights w(xi) depend on covariates in either
linearly, linearly with interactions or nonlinearly with interactions. These scenarios represent
increasing degrees of difficulty in learning the underlying function:

• Linear:

w(xi) = sigmoid
[
5(xi1 − xi2 + xi3 − xi4)

]
.

• Linear with interaction:

w(xi) = sigmoid
[
5(xi1 − xi2) + 5(xi1 − 0.5)(xi2 − 0.5)

+ 5(xi3 − xi4) + 5(xi3 − 0.5)(xi4 − 0.5)
]
.

• Nonlinear with interaction:

w(xi) = sigmoid
[
5
(
max(xi1, xi2)

) − 5
(
max(xi3, xi4)

)]
.
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FIG. 7. Estimated stillbirth risk curves from the Random Forest model, using the same five hypothetical patients
and full case-control sample as Figure 5. The posterior mean and credible intervals are highlighted (dark line
and shading), while the other methods’ posterior means are in dashed lines for comparison. Each column is a
hypothetical patient. Patient 1 is a low-risk patient (young, primiparous, no medical history, normal weight gain
and birth weight). Patient 2 introduces hypertension; Patient 3 introduces both diabetes and hypertension. Patient
4 is multiparous with very low birth weight and Patient 5 has a combination of risk factors (older, diabetes,
hypertension, medical history, induced labor). Random Forest gives curves generally similar in shape to BART,
and does not induce smoothness.

We then generate the simulated hazard function data according to h(t), rescale responses
so that the overall survival probability is roughly 0.5 and simulate event times for each ob-
servation:

h(t) = 0.25xi5 + w(xi)f2(t) + (
1 − w(xi)

)
f1(t).

A.5. Stillbirth results using random forest. Here we illustrate the Random Forest fit
for the stillbirth dataset. We do not include Random Forest in the set of models for stillbirth
analysis; while Wager, Hastie and Efron (2014) provide variance estimation for Random For-
est, Chipman, George and McCulloch (2010) demonstrated that BART tends to outperform
Random Forest. In addition, Random Forest does not induce smoothness, as we see in Fig-
ure 7.

SUPPLEMENTARY MATERIAL

R package to implement methods (DOI: 10.1214/19-AOAS1268SUPPA; .zip). The R
package tsbart implements the BART with Targeted Smoothing method.

R package to implement methods (DOI: 10.1214/19-AOAS1268SUPPB; .zip). The
package tsbart-analysis contains code to replicate figures and tables in the paper.
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