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Understanding the relationship between change in crime over time and
the geography of urban areas is an important problem for urban planning.
Accurate estimation of changing crime rates throughout a city would aid
law enforcement as well as enable studies of the association between crime
and the built environment. Bayesian modeling is a promising direction since
areal data require principled sharing of information to address spatial auto-
correlation between proximal neighborhoods. We develop several Bayesian
approaches to spatial sharing of information between neighborhoods while
modeling trends in crime counts over time. We apply our methodology to
estimate changes in crime throughout Philadelphia over the 2006-15 period
while also incorporating spatially-varying economic and demographic pre-
dictors. We find that the local shrinkage imposed by a conditional autore-
gressive model has substantial benefits in terms of out-of-sample predictive
accuracy of crime. We also explore the possibility of spatial discontinuities
between neighborhoods that could represent natural barriers or aspects of the
built environment.

1. Introduction. Modeling and prediction of crime has always been of inter-
est to local authorities, police departments and governments to ensure the safety of
the population and more efficient law enforcement. Recent availability of detailed
crime data has made this effort even more accessible to statistical practitioners and
the general public.

As an example, the Philadelphia police department has released detailed in-
formation about reported crimes committed from 2006 to the present day.1 The
information about each reported crime includes the type of crime (which we will
describe in Section 2), the date and time of the crime and the GPS location of the
crime.

Using their reported crime data, many police departments have used statistical
modeling procedures and algorithms to help predict locations of crimes for better
prevention and faster intervention (Hvistendahl (2016)). The modeling of crime
locations is not only useful for law enforcement but also for marketing strategies
related both to real estate and commercial activities; for example, Trulia2 uses
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crime data as part of their evaluation of the relative safety and attractiveness of dif-
ferent neighborhoods. In this paper we will focus on estimating changes in violent
crimes over the past decade at a local neighborhood resolution which will involve
both temporal and spatial modeling of crime.

Many different approaches have been taken to the modeling of the spatial distri-
bution of crime. These approaches can be subdivided into two general categories,
either modeling crime as a spatial point process using the specific locations of each
reported crime (Flaxman (2014), Mohler et al. (2011), Taddy (2010)) or modeling
crime as areal data, that is, totals aggregated within larger regions, as in Aldor-
Noiman et al. (2016), Law, Quick and Chan (2014) and Li et al. (2014).

A common method for modeling spatial point processes is kriging or Gaus-
sian process interpolation (Cressie (1990), Stein (1999)). This can be studied ei-
ther with a classical approach, or with a Bayesian approach (Banerjee, Carlin
and Gelfand (2014)). Alternative popular models consider other frameworks such
as Gibbs point processes, Poisson processes and Cox processes; see Møller and
Waagepetersen (2007).

Common classical methods for modeling areal data are spatial autoregressive
models that include the Simultaneous Autoregressive Model (Whittle (1954)),
the spatial Durbin model (Anselin (1998)) and the Conditionally Autoregressive
Model (Besag (1974)); for a review of these and other methods see Pace and
LeSage (2010). Many of these models have also been considered and used in a
Bayesian framework (Banerjee, Carlin and Gelfand (2014)).

Our goal in this paper is the estimation of trends in violent crime over the
past decade at a high resolution local neighborhood level throughout the city of
Philadelphia. As it is well established that crime frequencies are spatially corre-
lated (Brantingham and Brantingham (1984), Herbert (1982)), we need to create a
model that allows the change in crime over time to be correlated by locally prox-
imal neighborhoods. Our model will also account for characteristics of each local
neighborhood, including the population count of the area and economic health of
residents, as measured by median income and poverty level of households.

In addition to aiding law enforcement, accurate estimation of changes in crime
at the local neighborhood level would also enable the study of the association
between crime trends and changes in the built environment. We are particularly
interested in how aspects of the built environment encourage vibrancy, a measure
of positive human activity, and how vibrancy is associated with safety in local
neighborhoods (Humphrey et al. (2017)).

The city of Philadelphia is a particularly interesting case study for estimating
trends in crime as it is a large urban area that is currently undergoing substantial
development and experiencing population growth for the first time in decades. In
addition to our primary goal of estimation of changes in crime in Philadelphia
neighborhoods, this application also provides an interesting spatiotemporal data
context for comparing different Bayesian shrinkage approaches to spatial areal
modeling.
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We will take an areal approach to modeling crime since our primary goal is
greater understanding of evolving crime dynamics at the local neighborhood level
within the city of Philadelphia. Our areal units will be U.S. Census block groups
which consist of 10–20 city blocks and which are naturally interpretable as “neigh-
borhoods.” U.S. Census block groups are also the highest resolution for which
economic data is available as covariate information.

Compared to previous areal approaches (e.g., Aldor-Noiman et al. (2016), Law,
Quick and Chan (2014) and Li et al. (2014)), we are using smaller areal units,
and we will focus not only on total crime but also on the trend in crime over
time within each local neighborhood. We have a longer time period (10 years) of
recorded crimes for estimating time trends than did Law, Quick and Chan (2014)
that worked with property crimes over a two year period.

Our methodological contribution is the development of a Bayesian spatial mod-
eling framework to explore global vs. local smoothing for our parameter estimates
while also allowing for data-driven discontinuities in our model between proximal
areal units. Using a Bayesian approach allows us to induce this smoothing through
shrinkage priors for our parameters and also enables us to estimate borders be-
tween neighborhoods that have a high probability of being barriers.

In Section 2 we provide details for the neighborhood structure of Philadel-
phia and describe the detailed crime data that we will use to estimate changes
in crime over the past decade. We also outline the demographic, economic and
land use measures we will use as neighborhood-level predictors of violent crime
in our spatial models. The code for acquiring and cleaning the data that were used
in this analysis is available as a GitHub repository at https://github.com/cecilia-
balocchi/Urban-project. In Section 3 we develop several Bayesian modeling ap-
proaches for global or local sharing of information between Philadelphia neigh-
borhoods, as well as a model extension that allows for spatial discontinuities in
our parameter estimates between proximal neighborhoods. We then compare these
modeling options in terms of both in-sample and out-of-sample predictive accu-
racy in Section 4. We visualize and discuss the results of our spatial modeling of
crime trends for Philadelphia in Section 5 and then conclude with a brief discus-
sion in Section 6.

2. Population, economic and crime data in Philadelphia. The population
and economic data are provided by the US Census Bureau, whereas crime data
is provided by the Philadelphia Police Department. Our definition of local neigh-
borhoods in Philadelphia will be based upon the “block group” geographical units
defined by the U.S. Census Bureau. The city of Philadelphia is divided into 384
census tracts which are divided into 1336 block groups. Shapefiles from the U.S.
Census Bureau give the boundaries and area of each census block group. Figure S1
in our Supplementary Material (Balocchi and Jensen (2019)) gives a map outlining
the 1336 block groups in Philadelphia.

https://github.com/cecilia-balocchi/Urban-project
https://github.com/cecilia-balocchi/Urban-project
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Our motivation for analyzing trends in crime at this resolution is two-fold: (a)
US census block groups consist of 10–20 city blocks which generally matches our
concept of a “neighborhood,” and (b) the block group level is the highest resolution
of the economic data that we will use as predictors of crime. The average size
of block groups in Philadelphia is 0.26 km2 with an average population of 1142
residents.

Our population data was pulled from the census website3 by setting the geogra-
phy as all blocks in Philadelphia and setting the data source as “Hispanic or Latino
Origin By Race” (which is SF1 P5 in their database). The raw demographic data
gives the population count in each block group from the 2010 census. Figure S1
in our Supplementary Material (Balocchi and Jensen (2019)) gives the population
count for each block group in Philadelphia.

The same data also has the population count in each block group divided by
ethnic categories.4 From these ethnicity counts we calculate a measure of the seg-
regation in each block group as

segregationi = 1

2

∑
r

|pi,r − pr |,

where pi,r is the proportion of ethnicity r in block group i and pr is the propor-
tion of ethnicity r across the entire city of Philadelphia. The fraction 1

2 scales this
segregation measure to be between 0 and 1.

In addition to population count and our segregation measure, we will also con-
sider several measures of the economic health of each neighborhood. Our eco-
nomic data comes from the American Community Survey from the same U.S.
Census website as our population data, specifically tables B19301 for income and
C17002 for poverty, both from 2013. This data is only available at the resolution
of census block groups. For each block group (neighborhood) in Philadelphia, we
have income per capita as one predictor of crime.

We also have information about the proportion of households in various states
of poverty. Specifically, we have the fraction of the population in seven different
brackets of income-to-poverty-line ratios: [0,0.5), [0.5,1), [1,1.25), [1.25,1.5),
[1.5,1.85), [1.85,2), [2,∞). For example, the [0.5,1) bracket represents families
that have income between 50% of the poverty line and the poverty line itself. The
poverty line is defined by the Census Bureau according to the size and composition
of a household (e.g., a family with two children has a poverty line threshold of
$23,999).

3https://factfinder.census.gov/
4The ethnic categories are: White, Black, Asian, Native Americans, Native Pacific Islanders (in-

cluding Hawaii), Other, Two or more races (non-Hispanic) and Hispanic/Latino. We combined Native
Americans, Native Pacific Islanders, and Two or more races into the Other category which leads to
five ethnicities in our analysis: 1. White, 2. Black, 3. Hispanic, 4. Asian, and 5. Other.

https://factfinder.census.gov/
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We use this poverty data to create a single measure of poverty for each block
group (neighborhood) by calculating a weighted sum of the proportion of house-
holds in each of the seven poverty brackets:

povertyi =
7∑

j=1

wjqi,j ,

where qi,1 is the proportion of households in block group i that are in the low-
est bracket [0,0.5) and qi,7 is the proportion of households in block group
i in the highest bracket [2,∞). We use linearly decreasing weights, w =
[1,5/6,4/6,3/6,2/6,1/6,0], to give higher weight to the brackets with higher
poverty. Our poverty measure varies from 0 to 1 with larger values implying higher
poverty.

In addition to the demographic and economic predictors described above, we
also derive measures of the built environment that may also be predictive of crime.
Our data on the built environment comes from the zoning designation of each lot
in Philadelphia. Zoning data from the city of Philadelphia provides the area and
registered land use designation (e.g., commercial, residential, industrial, vacant,
transportation, park, civic) of all 560,000 lots in Philadelphia.

We create several land use metrics from these zoning designations that could be
predictive of crime. First, we calculate the fraction of area in each block group i

that is designated as “Vacant,”

vacancyi = Areai (Vacant)

Areai

.

Second, we calculate the ratio of the area in each block group i that is commercial
versus residential,

comrespropi = Areai (Commercial)

Areai (Commercial) + Areai (Residential)
.

To summarize, we have created six neighborhood characteristics that we will
use as predictors of crime: population count, segregation, median household in-
come, poverty, vacant proportion and commercial vs. residential proportion. Some
block groups in Philadelphia have missing values for the economic predictors due
to a very small or zero population count. We exclude these block groups (a total of
eight) from our analysis. We additionally exclude one block group containing the
detention centers in Philadelphia.

Our crime data comes from the Philadelphia Police Department and includes all
crimes reported by the police in the city of Philadelphia from January 1, 2006 to
December 31, 2015. For each reported crime, we have the type of crime, the date
and time of the crime and the location of the crime in terms of the GPS latitude
and longitude (WGS84 decimal degrees). Each crime in our dataset is categorized
into one of several types: homicide, sex crime, armed robbery, assault, burglary,
theft, motor vehicle theft, etc.
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We make a distinction between violent and nonviolent (property) crimes in our
analysis. As defined by the Uniform Crime Reporting program of the FBI, vio-
lent crimes include homicides, rapes, robberies and aggravated assaults whereas
nonviolent crimes include burglaries, thefts and motor vehicle thefts.

Our own crime categorization differs from the FBI in two ways. We combine
“rapes” and “sex assaults” (which changed in definition in 2013) into a broader
“sex crimes” category and consider all “sex crimes” as violent crimes. The FBI
also makes a distinction between “aggravated assaults” and “other assaults,” with
the latter being where an injury does not occur but the threat of injury is present.
In contrast, we combine both “aggravated assaults” and “other assaults” into a
broader “assaults” category and consider all “assaults” as violent crimes.

For this paper, we focus entirely on the modeling of violent crimes as they have
the most direct impact on human safety and the perception of safety. However,
nonviolent crimes are also important to track for law enforcement and are a focus
of ongoing research. In the subsequent analyses in this paper, we will use “crime”
to mean only violent crimes.

In Figure 1 we give the counts of each type of violent crime within each year
in 2006–2015, aggregated over the entire city. We see generally decreasing trends
within the assault and robbery categories which are the most numerous types of
crimes. Sex crimes and homicides are also somewhat decreasing over this time
span though it is harder to see this trend given the low counts for either type of
crime.

Clearly, the impression given from Figure 1 is that violent crimes are generally
decreasing in the city of Philadelphia over the time period from 2006 to 2015.
However, are there specific neighborhoods that show substantially larger decreases
or even some neighborhoods that show increases in violent crimes in this period?

As discussed in Section 1, we will model the spatial distribution of crime with
an areal approach where our areal units are U.S. Census block groups, which we
define as the local neighborhoods of Philadelphia. Violent crimes are aggregated
within each U.S. Census block group based on the GPS coordinates of each re-
ported crime.

One issue with this approach is that some crimes occurring near to a boundary
between U.S. Census block groups could be aggregated into the incorrect areal
unit due to measurement error or ambiguity in their recorded point locations. This
possibility is one of several motivations for our hierarchical Bayesian modeling
approach that shares information between adjacent block groups when estimating
crime totals and trends in crime over time across the city of Philadelphia.

In Figure S2 of our Supplementary Material (Balocchi and Jensen (2019)), we
give the count of violent crimes per year in each block group averaged over the
years 2006–2015. One can see substantial heterogeneity across block groups in
the average counts of violent crimes per year. There are several outlying values—
particular block groups that have much higher average violent crime counts.
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FIG. 1. Counts of the different types of violent crimes in each year aggregated over the entire city
of Philadelphia.

These outlying neighborhoods motivate us to examine violent crime totals on
the log scale. In Figure S2 of our Supplementary Material (Balocchi and Jensen
(2019)), we also give the average of the logarithm of the count of violent crimes
per year in each block group, averaged over the years 2006–2015. We can see
more details of the spatial distribution of violent crime on the log scale. Modeling
crime on the log scale has the additional benefit that changes in log crime can be
interpreted as percentage changes in crime.

We also see in Figure S2 evidence of spatial correlation in violent crime totals
between proximal block groups throughout the city. This is not surprising since the
factors that lead to crime likely vary throughout the city in a (mostly) spatially con-
tinuous fashion. It is this spatial correlation that will be the focus of our modeling
work in Section 3.

To get an idea of the strength of this spatial correlation, one of the standard
statistics used for areal data is Moran’s I (Banerjee, Carlin and Gelfand (2014),
Moran (1950)), which is defined as

I = n∑
i

∑
j wij

∑
i

∑
j wij (Xi − X̄)(Xj − X̄)∑

i (Xi − X̄)2
,
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where W = (wij ) is a matrix of weights that capture the spatial proximity of the
areal regions. We set wij to be 1 if block groups i and j share a border and 0
otherwise. We use the queen contiguity method so two block groups share a border
if they share at least a point on their boundaries.

Moran’s I can be used for testing for spatial autocorrelation: under the null
hypothesis of no spatial association, we can compute exactly the mean (equal to
− 1

n−1 ) and standard error of Moran’s I. Calculating I on the total number of violent
crimes from 2006 to 2015 in our data gives an observed value of 0.335, compared
to a null mean of 0.0007 and standard error of 0.0127, which suggests a highly
significant amount of spatial autocorrelation in violent crime totals.

In the next section we develop several different Bayesian strategies for mod-
eling violent crime over time and spatially between the areal neighborhoods of
Philadelphia. We will fit our models on the violent crime data from 2006 to 2014,
leaving data from 2015 for model comparison and evaluation.

3. Modeling areal crime data over space and time. As described in Sec-
tion 2, the areal units of our analysis are the 1336 U.S. census block groups of
Philadelphia (shown in Figure S1 in our Supplementary Material (Balocchi and
Jensen (2019))).

For the remainder of this paper, we will use the terms “block group” and “neigh-
borhood” interchangeably. The input data for our analysis is the number of vi-
olent crimes, cit , reported in year t within neighborhood i. Our temporal range
is t = 1, . . . , T with T = 10, for the years 2006–2015 and our spatial range is
i = 1, . . . , n with n = 1336, for all the block groups in Philadelphia.

As seen in the violent crime totals (averaged over time) in Figure S2 of our
Supplementary Material (Balocchi and Jensen (2019)), there are some substantial
outlying neighborhoods with high violent crime totals relative to most of the city.
These outliers (and general skewness in violent crime totals) motivates us to model
violent crime totals on the logarithmic scale. This strategy has the additional ben-
efit that linear changes over time in the logarithm of violent crime totals can be
interpreted as percentage changes in raw violent crime totals.

However, because there is a small number of neighborhoods with zero crimes in
some years, we need to consider a transformation that is defined at zero. Accord-
ingly, we use the inverse hyperbolic sine transformation (Burbidge, Magee and
Robb (1988)) that is centered to give values approximately equal to the logarith-
mic transformation. Specifically, we calculate our transformed violent crime totals
as

(3.1) yit = log
(
cit +

√
c2
it + 1

) − log(2),

where cit is the total number of violent crimes reported in year t within neighbor-
hood i. A more common solution would be to add a small nonzero value to the
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counts, for example, log(cit + 1). We prefer the inverse hyperbolic sine transfor-
mation as it is numerically equivalent to the log transformation for large counts but
is a better approximation than the log(cit + 1) transformation for small counts.

An alternative modeling strategy for count data does not apply a transformation
but assumes a Poisson distribution for the counts (Anderson and Ryan (2017), Law,
Quick and Chan (2014), Li et al. (2014)). The Poisson model would not work since
our data is over-dispersed, and the more flexible negative-binomial distribution
does not model mean and variance as intuitively as a normal model. In addition,
the normal model is conjugate for the prior distributions we will be considering
which eases posterior estimation.

3.1. Accounting for neighborhood level covariates. We use a standard linear
regression approach to account for the neighborhood-level economic, demographic
and land use predictors of crime. Our transformed violent crime totals yit are mod-
eled as

(3.2) yit = α + zT
i γ + eit ,

where zi is the vector of predictor variables for neighborhood i and γ is the vector
of coefficients for those predictor variables, so zT

i γ = ∑6
d=1 γdzid.

As outlined in Section 2, we have d = 6 predictor variables of crime for each
neighborhood: population count, segregation, median household income, poverty,
vacant proportion and commercial vs. residential proportion. We used square root
transformations of vacant proportion, commercial vs. residential proportion and
poverty and a logarithmic transformation of income to give a more linear relation-
ship with the outcome variable.

Although yearly demographic and economic data is available after 2013, we
avoid extrapolating values of the predictors to earlier years by modeling each pre-
dictor variable as static over the 10 year period spanned by our crime data. We
examine the estimated partial effects γ of these economic, demographic and land
use predictors in Section 5.1.

Although there is interest in the partial effects of our crime predictors, our pri-
mary interest lies in the temporal trends captured by eit and the spatial correlation
in these trends. With these time trends, we will be able to answer questions such
as, “What areas of the city are increasing or decreasing most quickly in terms of
safety?”

3.2. Time trends with no spatial correlation. We can add a global linear trend
over time into our model,

(3.3) yit = α + zT
i γ + β · t + εit where εit ∼ N

(
0, σ 2)

,

where the scalar coefficient β can be interpreted as the global percentage change
in violent crime over time across the entire City of Philadelphia and t takes on
integer values from 1 to 10 to represent the years 2006–2015.



2244 C. BALOCCHI AND S. T. JENSEN

However, this model with only a global α and β does not allow for hetero-
geneity between different neighborhoods in the overall level of violent crime or
trend in violent crime over time. We can account for this heterogeneity through
neighborhood-specific intercepts αi and slopes βi which give us the model

(3.4) yit = αi + zT
i γ + βi · t + εit where εit ∼ N

(
0, σ 2)

.

However, Model (3.4) is overparameterized. In fact, the effect of our static co-
variates is completely explained by the neighborhood-specific intercepts, αi , so the
same fit can be achieved by removing the covariates,

(3.5) yit = αi + βi · t + εit where εit ∼ N
(
0, σ 2)

.

Nonetheless, we can still estimate the partial effects of the covariates with an
equivalent two-stage approach where we first fit yit = α + zT

i γ + eit and then
fit the estimated residuals with the neighborhood-specific coefficient model, êit =
αi + βit + εit .

These neighborhood-specific model coefficients allow us to identify regions of
Philadelphia with different levels of crime as well as different trends in crime over
the past decade. This richer model is also motivated by fit to the data; a regression
model with neighborhood-specific coefficients explains significantly more varia-
tion according to an F-test.

That said, we do not expect that every single neighborhood in Philadelphia
would have unique coefficients, so we still risk overparametrization with this
model. We address this overparameterization by imposing shared prior distribu-
tions for the neighborhood-specific coefficients from our time trend model (3.5),

α ∼ N
(
α0 · 1, τ 2

α · I
)
,(3.6)

β ∼ N
(
β0 · 1, τ 2

β · I
)
,(3.7)

γ ∼ N
(
0, τ 2

γ · I
)
,(3.8)

where we denote our collection of neighborhood-specific coefficients with α =
(α1, . . . , αn) and β = (β1, . . . , βn). γ = (γ1, . . . , γd) collects the coefficients (par-
tial effects) of the predictor variables which are shared by all neighborhoods.

We complete this model formulation by placing flat priors on the global means
α0 and β0, p(α0, β0) ∝ 1, and inverse gamma priors on the variance parameters

σ 2 ∼ Inv-Gamma(aσ , bσ ),

τ 2
α ∼ Inv-Gamma(aα, bα),

τ 2
β ∼ Inv-Gamma(aβ, bβ),

τ 2
γ ∼ Inv-Gamma(aγ , bγ ).

The variance hyperparameters are tuned in an empirical Bayes fashion so that the
prior mean of the variance parameters is equal to the variance estimated from the
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model with no shrinkage, and the prior variance is small. Using noninformative
priors for these variance parameters produced nearly identical results. See Sec-
tion 4 of our Supplementary Material (Balocchi and Jensen (2019)) for details.

This Bayesian hierarchical model shares information between neighborhoods
by shrinking the neighborhood specific coefficients αi and βi toward global pa-
rameters (α0, β0) for the entire city. For this reason, we refer to this approach as
the global shrinkage model.

However, this global shrinkage model does not account for the spatial proxim-
ity between neighborhoods when sharing information. We expect close neighbor-
hoods to behave similarly while we want distant neighborhoods to be informative
but not as directly influential as adjacent ones. In other words, we may prefer a
model that imposes local shrinkage rather than global shrinkage.

A model with local sharing of information would also be better able to ad-
dress the substantial spatial correlation that we see in our application. Testing with
Moran’s I shows that the residuals from the global shrinkage model are signifi-
cantly spatially correlated. In the next subsection we will explore conditional au-
toregressive models for local sharing of information.

3.3. Time trends with a spatial conditional autoregressive model. A popular
way of incorporating spatial information is through a prior distribution that is
specified according to a Conditional Autoregressive (CAR) model, which was in-
troduced in its most general formulation by Besag (1974). The CAR model is a
Gaussian Markov random field which induces spatial dependence through an adja-
cency matrix for the areal units, which in our case are neighborhoods in Philadel-
phia.

Several variations of this CAR framework are reviewed and compared in Lee
(2011). In this paper, we will use the proper CAR formulation introduced by
Leroux, Lei and Breslow (2000).

Let θ denote a vector of elements that are potentially spatially correlated, such
as our neighborhood-specific intercepts α or slopes β . Leroux, Lei and Breslow
(2000) defines the distribution of each θi , given the other θ−i , as a normal distribu-
tion centered at a weighted average of a global mean and the θj ’s from bordering
neighborhoods,

(3.9) θi | θ−i , θ0, τ
2 ∼ N

(
ρ

∑
j wij θj + (1 − ρ)θ0

ρ
∑

j wij + (1 − ρ)
,

τ 2

ρ
∑

j wij + (1 − ρ)

)
,

where wij are adjacency weights that are equal to one if the neighborhoods i and
j share a border and equal to 0 otherwise.

We collect these adjacency weights wij into an adjacency matrix W that we
assume (for now) to be known since we can easily use the shapefiles from the
US Census Bureau to determine which of the 1336 neighborhoods (census block
groups) share a border.
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For now, we consider these adjacency weights wij to be fixed. However, in
Section 3.4 we will extend our model to allow those weights to vary since some
borders may represent barriers between neighborhoods (e.g., highways or rivers),
in which case we would not want to share information across that particular border.

The parameter ρ ∈ [0,1] represents the strength of the spatial correlation be-
tween the components of θ , where larger values of ρ correspond to a stronger
influence of bordering neighborhoods. In the special case of ρ = 0, the CAR prior
(3.9) reduces to the global shrinkage prior (3.6)–(3.7).

It can be proved (Banerjee, Carlin and Gelfand (2014), Chapter 3) using Brook’s
lemma (Brook (1964)) that the joint distribution of θ is uniquely determined by the
set of conditional distributions defined in 3.9:

(3.10) θ |θ0, τ
2 ∼ N

(
θ0 · 1, τ 2 · [

ρ(DW − W) + (1 − ρ)I
]−1)

,

where 1 is a vector of 1’s and DW − W is the Laplacian matrix based on our
neighborhood adjacency matrix W. For values of ρ in [0,1), the joint distribution
is proper, while for ρ = 1 the distribution is degenerate (Lee (2011)). By adding the
constraint

∑
i (θi − θ0) = 0, we can get a distribution for a n-dimensional vector,

concentrated in a (n−1)-dimensional subspace; this is known as the intrinsic CAR
by Besag, York and Mollié (1991).

We will employ this CAR model as prior distributions for the vectors of time
trend coefficients α and β . We assume α and β are a priori independent. In vector
form the CAR model (3.9) corresponds to the following prior distributions for α
and β:

α ∼ N
(
α0 · 1, τ 2

α · �)
,(3.11)

β ∼ N
(
β0 · 1, τ 2

β · �)
,(3.12)

where �−1 = ρ(DW − W) + (1 − ρ)I.
We use the same prior distributions for α0 and β0 and our variance parameters

as in the global shrinkage model in the previous subsection. For the additional
spatial parameter ρ, we choose a Beta(10,10) prior distribution which has mean
equal to 0.5 and a small variance in order to avoid the endpoints of the interval
[0,1].

The posterior distributions for the spatial CAR model and the global shrink-
age model (Section 3.2) can be implemented via a Gibbs sampler (Geman and
Geman (1984)). Implementation details are given in our Supplementary Material
(Balocchi and Jensen (2019)).

3.4. Allowing neighborhood border weights to vary. For most types of areal
data, the weights W that encode the spatial connection between the areal units are
considered to be fixed and known. In our data context, the areal units are neighbor-
hoods and the weights W encode which neighborhoods share a border and hence
induce shrinkage on each other in our spatial CAR models outlined in Section 3.3.
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However, within any large city, some borders between neighborhoods consist of
natural or artificial barriers such as rivers, highways or train tracks. These barriers
could reduce the similarity in crime trends between neighborhoods, and so we
would not want to shrink estimates across those barriers. The implication of these
barriers for the spatial CAR models in Section 3.3 are that some weights wij = 1
should really be wij = 0 since those neighborhoods share a border that is actually
a barrier.

Attempting to set which borders should actually be barriers manually would be
tedious for a large city and also require extensive domain knowledge and subjective
decision making. We instead prefer to infer these barriers from the data by allowing
a subset of weights wij to be random variables in our model.

Specifically, we consider the set of indices of pairs of neighborhoods which
share a border according to the geography of Philadelphia. The matrix W is sym-
metric, so the random variables wij and wji are considered to be the same object.
We model the wij for neighborhood pairs that share a border as Bernoulli random
variables with an prior probability φ of wij = 1. Any weights wij = 0 according
to the geography of Philadelphia will remain fixed at wij = 0 since we do not want
to form connections between nonproximal neighborhoods.

We expect a priori that the probability φ will be close to one, since relatively
few borders between neighborhoods actually should be barriers. For this reason,
we choose the prior for φ to be a Beta(9,1) distribution which has mean close to
one and small variance.

Moreover, we expect that the spatial distribution of the neighborhood-specific
crime levels (αi) may be different from the neighborhood-specific trends in crime
over time (βi), so we allow for different barriers when we model the distribution
of α and β . In particular, we consider two random matrices, Wα and Wβ , where a
subset of the elements of these matrices are random as described above: wα

ij |φα ∼
Bernoulli(φα) and w

β
ij |φβ ∼ Bernoulli(φβ) for neighborhood pairs (i, j) that share

a border.
These two weight matrices then determine the local shrinkage of our spatial

CAR model from the previous subsection:

α
∣∣Wα ∼ N

(
α0 · 1, τ 2

α · �α

)
,(3.13)

β
∣∣Wβ ∼ N

(
β0 · 1, τ 2

β · �β

)
,(3.14)

where �−1
α = ρ · (DWα − Wα)+ (1 −ρ)I and �−1

β = ρ · (DWβ − Wβ)+ (1 −ρ)I.
Allowing variable border weights can lead to overparametrization since we are

adding as many parameters as the number of borders, which makes the shrinkage
imposed by prior parameters φα and φβ important. A more sophisticated approach,
which is the focus of ongoing work, would be to partition our areal units into
clusters with barriers represented as cluster boundaries.

To implement this extended model with some variable border weights, a step
is added to our Gibbs sampler that samples each border weight conditional on the
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current values of the other model parameters. Details are given in our Supplemen-
tary Material (Balocchi and Jensen (2019)).

The idea of detecting discontinuities at boundaries is often referred to as
wombling, after the seminal work of Womble (1951), and has been very popular in
the disease mapping literature. However, most papers have approached detection
of boundaries as a selection problem that is performed after inference (see, e.g.,
Boots (2001), Li, Banerjee and McBean (2011), Li et al. (2012), Lu and Carlin
(2005), Lee and Mitchell (2013)).

In contrast, we incorporate the possibility of discontinuities at boundaries di-
rectly into our model through variable Wα and Wβ which allows us to incorporate
potential barriers into our estimation of neighborhood-specific parameters α and
β . Lee and Mitchell (2012) and Lu et al. (2007) take a similar approach in the
context of disease mapping but with a more elaborate model for P(wij = 1) that is
a function of dissimilarity between covariate values in units i and j .

In Section 4 the different models presented in this section are compared in terms
of their accuracy of their in-sample and out-of-sample predictive accuracy. We
then visualize the estimated trends in crime over time in Philadelphia and discuss
several insights from our results in Section 5.

4. Comparison of predictive accuracy. In the previous section we outlined
a no shrinkage model (Section 3.2) and several hierarchical Bayesian models for
estimating the neighborhood-level trend in crime over time, including a global
shrinkage model (Section 3.2), a spatial CAR models for local shrinkage (Sec-
tion 3.3) and finally an extension of the spatial CAR model to allow a subset of
border weights to vary (Section 3.4).

We now compare each of these model alternatives based on several measures
of the accuracy of their predictions on both in-sample and out-of-sample hold-out
data. Recall that we have 10 years of crime data for the city of Philadelphia, from
the beginning of 2006 to the end of 2015. We estimate each model using the crime
data for the first nine years (2006–2014).

We assess the in-sample accuracy of each model by computing the mean
squared error of the predictions of violent crime totals for 2014, which is a year
that was included in model estimation,

(4.1) MSEin = 1

1336

1336∑
i=1

(yi,2014 − ŷi,2014)
2.

We assess the out-of-sample accuracy of each model by computing the mean
squared error of the predictions of violent crime totals for 2015, which is a year
that was not included in model estimation,

(4.2) MSEout = 1

1336

1336∑
i=1

(yi,2015 − ŷi,2015)
2.
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TABLE 1
Comparison of predictive accuracy between the different models outlined in Section 3. The mean

squared error for both in-sample and out-of-sample predictions are provided, as well as the
percentage change in MSEout relative to model (3.5) without shrinkage. We also provide the

Moran’s I measure of spatial correlation calculated on the estimated time trends βi from each
model

Model MSEin MSEout % change MSEcv Moran’s I

Global α,β 0.3558 0.3694 +182.4 0.3043 –
Separate αi,βi Models

No Shrinkage (3.5) 0.0567 0.1308 – 0.1001 0.17
Global Shrinkage (3.6)–(3.7) 0.0698 0.1080 −17.4 0.0928 0.17
Spatial CAR (3.11)–(3.12) 0.0703 0.1052 −19.5 0.0922 0.61
Variable Borders (3.13)–(3.14) 0.0706 0.1069 −18.2 0.0927 0.49

To ensure our evaluation is not overly dependent on any idiosyncratic aspects
of the 2015 data, we also calculate the cross-validated, out-of-sample accuracy of
each model by calculating the mean square error MSEt

out when using year t as the
hold out data in the same way that 2015 is used as the hold out data in (4.2), that
is,

(4.3) MSEcv = 1

10

10∑
t=1

MSEt
out where MSEt

out = 1

1336

1336∑
i=1

(yi,t − ŷi,t )
2.

In Table 1 we compare the predictive accuracy of four different models with
neighborhood-specific coefficients outlined in Section 3: 1. the time trend model
(3.5) without shrinkage between neighborhoods, 2. the global shrinkage model
with priors (3.6) and (3.7), 3. the local shrinkage model with spatial CAR priors
(3.11) and (3.12) and 4. the local shrinkage spatial CAR model with variable bor-
ders (3.13) and (3.14). For additional reference we also provide the mean square
error for fitting a single trend (“Global α,β”) across the entire city.

We see in Table 1 that the model with a global trend over time (“Global α,β”)
for the entire city has very poor predictive accuracy compared to the models that
allow neighborhood-specific time trends (“Separate αi, βi”).

Among the neighborhood-specific time trend models, the global shrinkage
model has substantially lower out-of-sample mean square errors than the base-
line time trend model without any shrinkage between neighborhoods. The best
in-sample mean squared error was achieved by the model without shrinkage, as
we expect from the least square method, though at a cost of having the worst out-
of-sample accuracy.

The model with local shrinkage via the spatial CAR prior further reduces the
out-of-sample mean square errors compared to the global shrinkage model. The
model that allows variable borders does not further improve the out-of-sample
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mean squared errors, though we explore in Section 5.3 that it helps with the inter-
pretation.

Table 1 also provides Moran’s I measure of spatial autocorrelation, calculated
on the posterior mean of the neighborhood-specific time trends (βi’s). We see that
the spatial CAR model induces a larger spatial correlation in the βi ’s than the
models with global shrinkage or without shrinkage. The local shrinkage model has
a Moran’s I value of 0.61 (s.e. = 0.016) which suggests there is substantial spatial
autocorrelation in the change in crime within Philadelphia.

In summary, allowing for local shrinkage of the neighborhood-specific crime
trend coefficients via the spatial CAR priors (3.11) and (3.12) leads to the best
out-of-sample predictive accuracy. In Section 5 we visualize the parameters of this
model and discuss the implications of these results for crime in Philadelphia.

Although the variable border model extension does not improve out-of-sample
predictive accuracy, we will also see in Section 5 that visualizing the borders that
have been turned into barriers by this model provide insight into discontinuities in
crime trends in the city of Philadelphia.

5. Interpretation of model parameters. In Section 5.1 we examine the esti-
mated partial effects for the static predictor variables created from the data outlined
in Section 2. We then visualize and compare the estimated neighborhood-specific
levels (αi’s) and time trends (βi’s) on crime from our different models in Sec-
tion 5.2. In Section 5.3 we examine the results from our model extension outlined
in Section 3.4 that allows a subset of neighborhood borders in Philadelphia to be
estimated as barriers. Finally, in Section 5.4 we discuss the neighborhoods with
the most extreme levels and changes in crime over time over the past 10 years in
Philadelphia.

5.1. Partial effects of static predictors. Figure 2 gives the estimated partial ef-
fects γd for each static predictor variable d from the four models outlined in Sec-
tion 3. We provide additional numerical details in Table S1 of our Supplementary
Material (Balocchi and Jensen (2019)).

We see that among the six predictor variables created in Section 2, only the
segregation measure is not a significant predictor of crime. All predictor variables
are on the same scale, and so we can directly compare the values of their partial
effects.

We see that the strongest predictors of crime are total population and the com-
mercial versus residential proportion, with more populated and more commercial
neighborhoods being associated with higher crime. Income and poverty are also
significantly predictive of violent crimes, but we must be more cautious about
interpreting these partial effects given the high collinearity between income and
poverty. Each of these observations on the partial effects γ is relatively consistent
across the four models outlined in Section 3.
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FIG. 2. Estimated partial effects γd from four different models indicated in the legend. For the no
shrinkage model we plot the maximum likelihood estimate and 95% confidence interval. For three
Bayesian shrinkage models we plot the posterior mean and 95% posterior interval.

5.2. Visualizing neighborhood-specific coefficients. Our primary interest in
terms of interpretation are the estimated neighborhood-specific coefficients, αi’s
and βi ’s, that represent the level of violent crimes and change in violent crimes
over time in Philadelphia, respectively.

In Figures 3 and 4 we give maps where each block group in Philadelphia is
colored by the estimated neighborhood-specific levels of crime α̂i and changes
in crime over time β̂i , respectively, from the four models outlined in Section 3.
We see substantial heterogeneity between neighborhoods in Philadelphia, both in
terms of the their estimated crime levels (α̂i’s) and changes in crime over time
(β̂i’s). Regardless of the model, most neighborhoods in the city show decreasing
trends in crime over time (negative β’s) with a small subset of neighborhoods
showing an increasing trend.

The shrinkage imposed by the global shrinkage model is more visually striking
for the change in violent crime over time than the overall level of crime. The maps
of the α̂i ’s from the no shrinkage and global shrinkage models are almost indistin-
guishable in Figure 3, whereas the map of the β̂i ’s from the global shrinkage model
has been shifted substantially compared to the no shrinkage map in Figure 4. This
observation suggests that there is more substantial heterogeneity between neigh-
borhoods in terms of their overall level of crime compared to their change in crime
over time.

This heterogeneity in the mean level of crime is expected as it is influenced
by many years of transformation in the city of Philadelphia that led to its current
built and social environment. Differences in these overall spatial crime patterns can
be addressed by urban planners whose effects are long-lasting (Johnson, Bowers
et al. (2008)). In contrast, differences in the trend over time identify shorter-term
patterns which can be addressed with interventions by local police departments.
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FIG. 3. Maps of Philadelphia colored by the estimated intercept from our four different models.
Top-left: Maximum likelihood estimates of αi from the no shrinkage model (3.5). Top-right: Posterior
means of αi from the global shrinkage model (3.6)–(3.7). Bottom-left: Posterior means of αi from the
spatial CAR model (3.11)–(3.12). Bottom-right: Posterior means of αi from the spatial CAR model
with variable borders (3.13)–(3.14). The black lines represent borders turned into barriers. These
maps were created with the R package ggmap (Kahle and Wickham (2013)).

The overall level of crime also seems to have a greater inherent spatial corre-
lation between proximal neighborhoods than the change in crime over time. The
Moran’s I values calculated from the estimated α̂i’s are I = 0.33 for both the no
shrinkage and global shrinkage models, compared to the value of I = 0.17 from
the estimated β̂i ’s for those same models in Table 1. This is clear also from the
maps from the no shrinkage model (top left) in Figures 3 and 4; the estimated β̂i ’s
are more “spotty” and less smooth than the corresponding map of the α̂i’s.
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FIG. 4. Maps of Philadelphia colored by the estimated slope on time from our four different models.
Top-left: Maximum likelihood estimates of βi from the no shrinkage model (3.5). Top-right: Posterior
means of βi from the global shrinkage model (3.6)–(3.7). Bottom-left: Posterior means of βi from the
spatial CAR model (3.11)–(3.12). Bottom-right: Posterior means of βi from the spatial CAR model
with variable borders (3.13)–(3.14). The black lines represent borders turned into barriers. These
maps were created with the R package ggmap (Kahle and Wickham (2013)).

However, once we build spatial correlation into our model via the spatial CAR
prior (3.11)–(3.12), the resulting β̂i ’s are more spatially correlated than the result-
ing α̂i’s, as can be seen in the lower left of Figures 3 and Figures 4 as well as
the corresponding Moran’s I = 0.53 for the α̂i’s vs. I = 0.61 for the β̂i ’s. Note
that all these reported Moran’s I values have a standard error approximately equal
to 0.016, and so they are all significantly different from the null hypothesis of no
spatial autocorrelation.
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FIG. 5. Histograms of the posterior probabilities of each border being turned into a barrier. Left:
Probabilities for barriers for the αi ’s; the threshold to identify the borders turned into barriers is 0.6
(red line). Right: Probabilities for barriers for the βi ’s; the threshold to identify the borders turned
into barriers is 0.5 (red line).

Although the smoother maps from the spatial CAR model (lower left of Fig-
ures 3 and 4) ease interpretation by identifying larger regions of the city with simi-
lar crime dynamics, there is the potential to overshrink certain neighborhoods that
should actually stand out from their neighbors. In any large city natural or artifi-
cial barriers, such as rivers, highways or rail lines, create discontinuities between
neighborhoods which should not be smoothed over. In Section 5.3 we examine the
results from our model extension that allows a subset of borders between neigh-
borhoods to be turned into barriers.

5.3. Borders turned into barriers. In Section 3.4 we extended the spatial CAR
model to allow a subset of the weights wij to vary which allows the borders (wij =
1) between some neighborhoods to be changed into barriers (wij = 0); the latter
prevent shrinkage between two bordering neighborhoods. Our model has separate
weight matrices Wα and Wβ , so a particular border can be turned into a barrier
either for the level of crime (αi’s) or the change in crime over time (βi’s) or both.
Using this model, we estimate the posterior probability that we change a border
into a barrier for each border between proximal neighborhoods in Philadelphia.

Figure 5 gives the distribution of the estimated posterior probability of a border
being turned into barrier for each border encoded in the weight matrices Wα and
Wβ . These distributions seem to have two components: a main mode representing
the behavior of the majority of the borders which has a low probability of being
turned into a barrier, and a “tail” component which has a higher probability of
being turned into a border.

It is clear that many more borders have a high probability of being a barrier for
the level of crime (αi’s) compared to the change in crime over time (βi ’s). In other
words, our variable border model is detecting more discontinuities between bor-
dering neighborhoods in the level of crime compared to the change in crime over
time. In Section 5 of our Supplementary Material (Balocchi and Jensen (2019)),
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we explore an alternative model that only allows variable borders for the mean
level of crime.

In the lower right panels of Figures 3 and 4, we provide maps of Philadelphia
where we have highlighted any borders between neighborhoods that have been
inferred by our model to have a high probability of being barriers. These particular
highlights are based on posterior probabilities larger than 60% for Wα and larger
than 50% for Wβ .

We see in the lower right panel of Figure 3 that barriers have been detected
around several parks including Fairmount Park, Wissahickon Valley Park and Pen-
nypack Creek Park (indicated by the black numbers 1, 2 and 3, respectively, in the
lower right panel of Figure 3). In these cases our model has automatically detected
several natural geographic structures within Philadelphia as locations which have
discontinuities in the level of crime.

We also see that some estimated barriers have isolated particular neighborhoods
from their proximal neighbors. For example, the neighborhood of Bridesburg (in-
dicated by the black number 4 in the lower right panel of Figure 4) seems to have a
much more positive trend on crime over time than its surrounding neighborhoods.

As barriers highlight the boundaries of regions that display differences in ei-
ther in the level of crime or the trend in crime over time, these barriers can be
used by police departments and city planners for delineating the possible limits of
effectiveness for interventions or as potential targets for interventions themselves.

5.4. Neighborhoods with most extreme crime trends. To further understand
which regions of Philadelphia have the most extreme levels of crime and trends
in crime over time, we can examine the most extreme intercepts (αi’s) and slopes
(βi’s) found by our fitted models. Specifically, we focus on the estimated αi’s and
βi ’s from the local shrinkage spatial CAR model (3.11)–(3.12) that had the best
out-of-sample predictive performance in Table 1.

Figure 6 provides maps that highlight the most extreme (largest 50 and smallest
50) neighborhoods in terms of the estimated level of crime (α̂i’s) and in terms of
the estimated change in crime over time (β̂i’s).

We see that the region of University City in West Philadelphia (black number
1 in the top panel of Figure 6) is an interesting transitional area that contains both
neighborhoods with the highest and lowest levels of crime in the city. We also
see that the area of Frankford (black number 2 in the top panel of Figure 6) has
neighborhoods with high levels of crime. This area is a major transportation hub
for the Northeast region of Philadelphia.

The SW region of Philadelphia, specifically the Elmwood and Eastwick neigh-
borhoods (black number 3 in the bottom panel of Figure 6) have seen some of
the largest reductions in crime over the past decade in Philadelphia. We also see
some regions of the city that are showing increases in crime over that same time
period, such as the Wissinoming and Tacony neighborhoods, (black number 4 in
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FIG. 6. Top: The 50 neighborhoods with the largest α̂i ’s (red) and 50 neighborhoods with the
smallest α̂i ’s (green). Bottom: The 50 neighborhoods with the largest β̂i ’s and 50 neighborhoods
with the smallest β̂i ’s. These maps were created with the R package ggmap (Kahle and Wickham
(2013)).
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the bottom panel of Figure 6) that are just to the northeast of the high crime neigh-
borhoods of Frankford (black number 2 in the top panel of Figure 6).

In Section 5 of our Supplementary Material (Balocchi and Jensen (2019)), we
provide additional visualizations of the neighborhood-specific parameters that are
significantly different from the overall mean across the city as well as the widths
of the credible intervals for these parameters.

6. Discussion. Reliable estimation of the change in crime over time at the
local neighborhood level is a crucial step toward a better understanding of the
determinants of public safety in large urban areas. With a focus on the city of
Philadelphia, we have explored several Bayesian approaches to modeling crime
trends within the areal units of neighborhoods while sharing information either
globally or locally across the city.

Imposing local shrinkage between proximal neighborhoods via a spatial con-
ditional autoregressive (CAR) prior gives the best out-of-sample predictions of
violent crime compared to models that impose global shrinkage or no shrinkage
at all between neighborhoods. We also explore allowing the weight matrix of our
spatial CAR model to vary in order to detect neighborhood borders that represent
spatial discontinuities in the level of crime or change in crime over time. In this
way, we automatically detect several natural barriers in the geography of Philadel-
phia. Our model estimates also identify the regions of Philadelphia with the most
extreme levels of violent crime as well as the largest increases and reductions in
crime over the period of 2006–2015.

Acknowledgments. We thank Rachel Thurston and Theresa Smith for helpful
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SUPPLEMENTARY MATERIAL

Supplementary material for “Spatial modeling of trends in crime over
in Philadelphia” (DOI: 10.1214/19-AOAS1280SUPP; .pdf). We provide maps
outlining the block group structure, population count and distribution of violent
crimes in Philadelphia. We give implementation details for our fitted models. We
compare results under an alternative choice of prior distributions and under an al-
ternative model that only allows variable borders for the mean level of crime. We
provide additional numerical details about our estimated partial effects. We also
provide visualizations of the significance and widths of credible intervals for the
neighborhood-specific parameters.
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