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Understanding the role of vegetation fires in the Earth system is an im-
portant environmental problem. Although fire occurrence is influenced by
natural factors, human activity related to land use and management has al-
tered the temporal patterns of fire in several regions of the world. Hence, for
a better insight into fires regimes it is of special interest to analyze where hu-
man activity has altered fire seasonality. For doing so, multimodality tests are
a useful tool for determining the number of annual fire peaks. The periodicity
of fires and their complex distributional features motivate the use of nonpara-
metric circular statistics. The unsatisfactory performance of previous circular
nonparametric proposals for testing multimodality justifies the introduction
of a new approach, considering an adapted version of the excess mass statis-
tic, jointly with a bootstrap calibration algorithm. A systematic application
of the test on the Russia–Kazakhstan area is presented in order to determine
how many fire peaks can be identified in this region. A False Discovery Rate
correction, accounting for the spatial dependence of the data, is also required.

1. Introduction and motivation. Vegetation fires are caused by several fac-
tors, and their occurrence is strongly influenced by natural factors such as fuel
availability, temperature, precipitation, wind, humidity and the location of light-
ning strikes (Westerling et al. (2003)). In general, in different areas of the world
climatic conditions favor the occurrence of fires around one specific annual period.
For instance, in most of the temperate regions north of the Tropic of Cancer, fires
occur from May to September, when dry conditions prevail (Le Page et al. (2010)).
Apart from climate, human activity also influences fire regimes, and in some cases
it can significantly alter the fire seasonality. Fire is used for many purposes related
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to land use practices with different timings throughout the year. For example, hu-
mans use fire as a tool for hunting, pasture management, clearing fields for agricul-
ture, eliminating crop and forest harvest residues and managing fuels for wildfire
risk reduction. Analysis of fire seasonality and its relationship with the temporal
patterns of fire weather conditions provides useful information concerning the ex-
tent to which fire regimes are anthropogenic (Benali et al. (2017), Le Page et al.
(2010), Magi et al. (2012)).

In this paper, a new tool for analyzing how many fire peaks can be identified is
presented. The issue of determining the number of fire peaks can be translated into
the statistical problem of testing the number of modes, defined as local maxima
of the density. When studying this random variable, fire periodicity (jointly with
the possibility of having a period with fires in December and January) must be
accounted for, motivating the use of circular statistics to analyze this kind of data
(Benali et al. (2017), Xu and Schoenberg (2011)). From a parametric approach,
Benali et al. (2017) tackled this problem using a mixture of two von Mises (circu-
lar) distributions. However, temporal patterns of fire occurrence can be very com-
plex (Keeley et al. (2009)), presenting, for example, prominent asymmetries. In
such a context, simple parametric models may not capture the data characteristics
appropriately. This fact motivates the consideration of nonparametric techniques
for determining the number of modes with a testing approach. For scalar (real-
valued) data, different alternatives have been presented in the statistical literature;
some of them are based on the idea of the critical bandwidth, defined by Silverman
(1981) and others, using as a test statistic the excess mass introduced by Müller and
Sawitzki (1991). In the circular case, just Fisher and Marron (2001) provided an
approach for testing multimodality, using the U2 of Watson as a test statistic, but
computational results show a poor calibration in practice even for “large” values
of sample size (see Section 3). The proposal for solving the multimodality testing
problem presented in this paper considers an adapted version of the excess mass
statistic for circular data. A correct calibration is guaranteed using a bootstrap pro-
cedure where resampling is based on a nonparametric estimator (a modified kernel
density estimator) of the circular density function.

The study area used herein, straddling the border between Russia and Kaza-
khstan, is one of the main agricultural regions of the world. Fire is widely used
here (Le Page et al. (2010)), both before planting and after harvesting, resulting in
a multimodal fire season pattern (Hall et al. (2016), Figure 2, Benali et al. (2017)).
The method proposed in this paper will be applied to each grid cell in the study
area (Figure 2). The analysis of the number of fire peaks in each cell is helpful
to assess human pyrogenic influence. Previous studies (see, e.g., Korontzi et al.
(2006)) have shown that in the study region, the dry season, when fire weather
severity is higher, lasts from June to September. The summer fire season coincides
with this period, but it seems that there is also another annual fire period that occurs
earlier, in early spring (March and April), when natural conditions are not particu-
larly favorable for wildfires. It is this temporal mismatch between an observed fire
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season and the natural conditions most suitable for fire that has been considered
indicative of anthropogenic vegetation burning (Benali et al. (2017), Le Page et al.
(2010)).

Another issue that needs to be taken into account for the practical application
of the statistical method is related with the spatial area division. When fire data is
distributed in space along grid cells, the nonparametric test must be applied sys-
tematically to each cell. In this context, a False Discovered Rate (FDR) procedure
is required in order to control the incorrect rejections of the null hypothesis, that is,
the identification of unimodal fire regimes as multimodal. Note also that the tem-
poral pattern of fires can be spatially correlated with the neighboring cells (Nichols
et al. (2011)). Land cover information may be useful to identify spatially adjacent
sets of cells (patches) where the temporal patterns of fire occurrence are expected
to be similar (see, e.g., Benali et al. (2017)). Then, an adaptation of the Benjamini
and Heller (2007) proposal is applied to correct the FDR as well as accounting for
the spatial dependence of the data.

In summary, a nonparametric testing procedure for determining the number of
modes in a circular density is presented. This procedure is designed with the goal
of determining the number of fire peaks in the Russia–Kazakhstan area and treated
in a lattice division in such a way that the test is applied systematically to each
cell, requiring therefore an FDR correction.

The organization of the paper is the following: Section 2 details the circular
excess mass approach for testing the null hypothesis that the data underlying dis-
tribution has k modes. The method is validated in Section 3, presenting a complete
simulation study and comparing the new proposal with the one by Fisher and Mar-
ron (2001), regarding empirical size and power. The FDR correction, accounting
for the spatial dependence of the data, and the analysis of the number of fire peaks
in the study area is presented in Section 4. Some final comments and discussion are
given in Section 5. Details on the models employed in the simulation study, a com-
plete description of the calibration function used to generate the resamples in the
bootstrap procedure with some theoretical background, some further simulation
results showing rejection rates for different scenarios and the construction of the
land cover patches cells, where a similar fire behavior is expected, are provided as
Supplementary Material (SM, Ameijeiras-Alonso, Crujeiras and Rodríguez-Casal
(2019b)).

2. Statistical tools: A nonparametric test for circular multimodality. As
mentioned in the Introduction, the first goal is to provide a statistical tool for de-
termining the number of fire peaks in a specific region. This practical problem can
be formulated as a testing problem on the number of modes in a circular density.

Directional data, observations on directions, arise quite frequently in many natu-
ral sciences and in particular in wildfires modeling (several examples are provided
in Ameijeiras-Alonso, Crujeiras and Rodríguez-Casal (2018)). The need for cir-
cular statistics appears when the periodicity must be taken into account, and the
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sample can be represented on the circumference. As mentioned before, this is the
case of wildfires that commonly have a strong seasonal pattern.

Given a circular random variable � with probability density function f , the
goal is to test if the number of modes of f (fire peaks), namely j , is equal to a
given value k ∈ Z

+ (fire weather seasons), against if it is greater than k. In general,
rejecting H0 can suggest a strong human influence on fire seasonality in the region.
The statistical testing problem can be formulated as assessing

(2.1) H0 : j = k vs Ha : j > k.

Several methods were proposed for testing H0 in the linear setting following a
nonparametric approach (see Ameijeiras-Alonso, Crujeiras and Rodríguez-Casal
(2019a)). These procedures are not suitable for our problem since the circular na-
ture of the data is not taken into account. To the best of the authors’ knowledge,
only the proposal of Fisher and Marron (2001) is suitable for this purpose in the
circular literature, but, as it is shown (see Section 3), the performance in practice is
quite unsatisfactory. Hence, a well-calibrated test is required in the circular setting
for testing H0 with a general k. Different options for constructing a test statistic
have been inspired by testing methods for scalar data. For instance, an adapted ver-
sion of the critical bandwidth, called critical concentration (defined below), could
be employed. However, if a critical bandwidth approach is used, then at least two
turning points (mode and antimode) appear in a circular density; Hall and York
(2001) showed that a bootstrap test based on the critical bandwidth cannot be di-
rectly calibrated with more than one turning point. Therefore, the use of an excess
mass statistic (introduced by Müller and Sawitzki (1991)) is advised. Actually, for
testing the number of modes, the excess mass statistic admits a natural reformula-
tion in the circular setting. In the linear case, the asymptotic calibration results of
the excess mass statistic are provided by Cheng and Hall (1998). In what follows,
the objective is to provide the specific expression of the excess mass in the circular
setting, together with a way of calibrating its distribution in practice.

2.1. The excess mass test statistic. The proposed test statistic requires, first,
the construction of the following empirical excess mass function for k modes
which, given a sample � = (�1, . . . ,�n) from �, is defined as

En,k(Pn, λ) = sup
C1(λ),...,Ck(λ)

{
k∑

m=1

Pn

(
Cm(λ)

) − λ
∥∥Cm(λ)

∥∥}
,

where the supremum is taken over all families {Cm(λ) : m = 1, . . . , k} of disjoint
connected sets (closed arcs), ‖Cm(λ)‖ denotes the set measure (the arcs length),
Pn(Cm(λ)) = (1/n)

∑n
i=1 I(�i ∈ Cm(λ)) and I is the indicator function. An ex-

ample of the theoretical excess mass is provided in Figure 1 (left) for illustration
purposes. A way of determining the plausibility of the null hypothesis (f has k

modes) is by observing if the difference Dn,k+1(λ) = En,k+1(Pn, λ)−En,k(Pn, λ)
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FIG. 1. Left: theoretical excess mass function for two modes (in gray), that is, largest probability
of mass exceeding the level λ (horizontal line) when taking two arcs. Right: kernel density estimation
(2.4) with critical concentration parameter for one mode (2.5), f̂ν1 (dotted gray line) and calibration
function, ĝ ((2.7), solid line). The sample (n = 200) was obtained from the model M9 (described in
SM1). Dashed lines: neighborhoods where the J functions (SM2.3 in Section SM2) are defined for
θ̂1 and θ̂2.

is “large.” Using these differences for different thresholds (λ values), the test statis-
tic for (2.1) is described below and H0 is rejected when its value is large:

(2.2) �n,k+1 = max
λ

{
Dn,k+1(λ)

}
.

2.2. Results for scalar random variables. As previously mentioned, the test
statistic in (2.2) was originally proposed for scalar random variables. For the linear
case, the asymptotic behavior of the excess mass for k = 1 was provided by Cheng
and Hall (1998) who claimed that their results could also be extended for a general
value of k. From now on, a sub or superindex l is used for the linear counterparts.
Under some assumptions, which include fl being continuously differentiable and
the existence of a finite number of stationary points that are the modes and anti-
modes (denoted as x1, . . . , x2k−1), jointly with some regularity conditions on fl

in a neighborhood of these points, the distribution of �l
n,k+1 only depends on the

following values:

(2.3) dl
i = |f ′′

l (xi)|
fl(xi)3 , with i = 1, . . . ,2k − 1.

If fl has k modes, Cheng and Hall (1998) also indicated that the distribution of
�l

n,k+1 can be approximated by �l∗
n,k+1 calculated from bootstrap resamples gen-

erated from a ‘calibration distribution’ with k modes. For guaranteeing a correct
asymptotic behavior, this calibration function, namely ĝl , must satisfy that its as-

sociated values of d̂ l
i = |ĝ′′

l (x̂i)|/ĝl(x̂i)
3 in its modes and antimodes, denoted as x̂i ,

converge in probability to the value of dl
i in (2.3), as n → ∞, for i = 1, . . . ,2k − 1
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(see Section SM2, Ameijeiras-Alonso, Crujeiras and Rodríguez-Casal (2019b)).
These ideas can be adapted to the circular case with the complexity of defining an
adequate calibration function to generate bootstrap samples. In what follows, the
construction of this calibration function is illustrated.

2.3. The calibration function. The construction of an adequate calibration
function ĝ must be done in the following way: (i) preserving the structure of
the data under the assumption that f has k modes and antimodes; (ii) verify-
ing that d̂i = |ĝ′′(θ̂i)|/ĝ(θ̂i)

3 converges in probability to di = |f ′′(θi)|/f (θi)
3, for

i = 1, . . . ,2k, as n → ∞, where θi and θ̂i are, respectively, the modes and anti-
modes of f and ĝ; (iii) satisfying some regularity conditions (see C.1, C.2 and
C.3). Assuming that f has k modes, the required regularity conditions are:

C.1 f is bounded, and it has a continuous derivative;
C.2 when θ ∈ [0,2π), f ′(θ) = 0 holds only for f (θ) = 0 or in the modes and

antimodes, namely, θi with i = 1, . . . ,2k;
C.3 f ′′ exists and is Hölder continuous within a neighborhood of θi .

REMARK 1. Condition (i) is not strictly necessary and, following Cheng and
Hall (1998), a parametric approach could be employed for obtaining the calibration
density. The main issue is that while for the linear test of unimodality only an
estimator of d1 is needed, for the circular case an estimator of d2 (for the antimode)
is also required. So, providing the parametric test in the circular case is almost as
“complicated” as the linear test for bimodality. Note also that if such a parametric
distribution is found, the second-order limit properties of the test will depend on
the form of the density function.

The calibration function ĝ is obtained as follows. First, for estimating the un-
known circular density f in (i), given the random sample of angles �, the kernel
density estimator is employed. This estimator is defined as

f̂ν(θ) = 1

n

n∑
i=1

K(θ;�i, ν), with θ ∈ [0,2π),

where K(·;�i, ν) is a kernel function, centered in �i and concentration parameter
ν (see, e.g., Oliveira, Crujeiras and Rodríguez-Casal (2012)). The chosen kernel
function is the wrapped normal density with mean direction �i and concentration
parameter ν ∈ (0,1). This specific kernel leads to the following representation for
the kernel density estimator:

(2.4) f̂ν(θ) = 1

2πn

n∑
i=1

(
1 + 2

∞∑
p=1

νp2
cos

(
p(θ − �i)

))
with θ ∈ [0,2π).

The kernel density estimator preserves the structure of the sample, depending
the number of modes on the concentration parameter ν. With this particular kernel,
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the number of modes of f̂ν is always a nondecreasing function of ν (Huckemann
et al. (2016)). Hence, with the aim of preserving the structure of the data under
the k-modality hypothesis, that is, objective (i), an analog of the critical bandwidth
of Silverman (1981), namely the critical concentration νk , can be employed as the
concentration parameter for (2.4),

(2.5) νk = max{ν : f̂ν has at most k modes}.
A representation of the kernel density estimation, employing ν1 as the concentra-
tion parameter, can be observed in Figure 1 (right, dotted gray line). A unimodal
estimation can be observed, and a second mode will appear between π/2 and π if
a higher value of ν is taken. With this concentration parameter, f̂νk

should provide
a correct estimation of the density function and also of the modes and antimodes
locations. Nonetheless, a reasonable estimator of f ′′(θi) is also needed in order to
ensure (ii), that is, d̂i converges in probability to di , as n → ∞. In that case, for
correctly estimating f and f ′′ different concentration parameters are required. f ′′
can be properly estimated taking the value of ν, which minimizes the asymptotic
mean integrated squared error expression of f̂ ′′

ν , replacing f by a mixture of M

von Mises (a similar procedure for estimating f was proposed by Oliveira, Cru-
jeiras and Rodríguez-Casal (2012)). If νPI denotes this parameter, then di can be
estimated from the sample with

(2.6) d̂i = |f̂ ′′
νPI

(θ̂i)|
f̂νk

(θ̂i)3
, with i = 1, . . . ,2k.

To construct the calibration function ĝ from f̂ν , satisfying (ii) and (iii), two
modifications are needed. First, it is necessary to remove the t saddle points de-
noted as ζp , for p ∈ {1, . . . , t}; this is done below with the L function. Second,
the density estimator is modified with the function J in a neighborhood of the es-
timated turning points in order to guarantee that |ĝ′′(θ̂i)|/(ĝ(θ̂i))

3 is equal to the
value of d̂i in (2.6), for i ∈ {1, . . . ,2k}. Then, the calibration function is obtained
by modifying the kernel density estimator with the critical concentration in the sta-
tionary points, using a similar procedure as in Ameijeiras-Alonso, Crujeiras and
Rodríguez-Casal (2019a). In particular, the employed calibration function is

(2.7) ĝ(θ;νk, νPI,ς) =

⎧⎪⎪⎨⎪⎪⎩
J (θ; θ̂i , νk, νPI, ςi) if θ is in a neighborhood of θ̂i ,

L(θ; z(2p−1), z(2p)) if θ is in a neighborhood of ζ̂p,

f̂νk
(θ) in other case.

Functions J and L are applied in each i ∈ {1, . . . ,2k} and p ∈ {1, . . . , t}, respec-
tively. The complete characterization of ĝ is provided in Section SM2 (Ameijeiras-
Alonso, Crujeiras and Rodríguez-Casal (2019b)) and an example of its representa-
tion is given in Figure 1 (right, continuous line) where the effect of the J function
can be observed.
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Using the calibration function defined in (2.7), the proposal in this paper for
testing the null hypothesis (2.1) is to consider a bootstrap procedure in order to
calibrate the excess mass statistic defined in (2.2). Given the sample �, B resam-
ples �∗b (b = 1, . . . ,B) of size n are generated from ĝ(·;νk, νPI,ς). If �∗

n,k+1 is
the excess mass statistic obtained from the generated resamples, for a significance
level α, the null hypothesis is rejected if P(�∗

n,k+1 ≤ �n,k+1|�) ≥ 1 − α.

3. Simulation study. The aim of the following simulation study is to analyze
the performance of the testing method, using the bootstrap procedure proposed in
Section 2. The empirical size and power of the new method are also compared with
the proposal introduced by Fisher and Marron (2001) for testing multimodality for
circular data. For testing k-modality, they suggest using the U2 statistic of Watson
(1961) as a test statistic, that is,

U2 = n

∫ 2π

0

[
Fn(x) − F0(x) −

∫ 2π

0

(
Fn(y) − F0(y)

)
dF0(y)

]2
dF0(x),

estimating F0 (circular distribution function) employing a kernel distribution esti-
mation with k modes. In this simulation study, the distribution function associated
with f̂νk

is used to estimate F0, and its associated distribution is used for generating
the bootstrap resamples to calibrate the test statistic.

Samples of size n = 50, n = 200 and n = 1000 (n = 100 instead of n = 1000
in power studies) were drawn from 25 different distributions, 10 of them unimodal
(MU1–MU10), 10 bimodal (MB1–MB10) and five trimodal (MT1–MT5), includ-
ing unimodal (reflective) symmetric models, mixtures of them and asymmetric
models. These distributions models are described in Section SM1 (Ameijeiras-
Alonso, Crujeiras and Rodríguez-Casal (2019b)). For each model (MU1–MU10,
MB1–MB10 and MT1–MT5) and sample size, 500 sample realizations were gen-
erated. Conditionally, on each sample and for each test, 500 resamples of size n

were drawn using the calibration function of each test (ĝ for the new proposal
and f̂νk

for the U2 statistic). Results are reported for significance levels α = 0.01,
α = 0.05 and α = 0.10.

Table 1 includes the representative models (MU1–MU6, MB1–MB6 and MT1–
MT4) where the main behavior can be seen (see below). Further tables of rejec-
tion with some extra models (MU7–MU10, MB7–MB10 and MT5) and the power
results of the Fisher and Marron (2001) proposal are provided in Section SM3
(Ameijeiras-Alonso, Crujeiras and Rodríguez-Casal (2019b)). Results are orga-
nized as follows: Tables 1 and 2 shows empirical sizes (1(a) and 2(a)) and power
(1(c) and 2(b)) for testing H0 : j = 1. Tables 1 and 3 show the same results, em-
pirical sizes (1(b) and 3(a)) and power (1(d) and 3(b)), for H0 : j = 2.

From Tables 1(a), (b), 2(a) and 3(a), the poor calibration of the Fisher and Mar-
ron (2001) proposal can be observed. Even for sample size equal to 1000 the per-
centage of rejections is sometime under the significance level, as in the distribu-
tions where unimodality is tested: MU1, MU5, MU6, MU7, MU8 or MU10; or the
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TABLE 1
Percentage of rejections for testing H0 : j = 1 vs. Ha : j > 1 ((a) and (c)) and H0 : j = 2 vs.

Ha : j > 2 ((b) and (d)), with 500 simulations (1.96 times their estimated standard deviation in
parenthesis) and B = 500 bootstrap samples. For models under the null (a): MU1–MU6 and (b):

MB1–MB6; and under the alternative hypothesis (c): MB1–MB4 and (d): MT1–MT4
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models where bimodality is assessed: MB2, MB4, MB5 or MB8. For other scenar-
ios, as in models MU2 and MU3 (unimodality) and MB1 and MB6 (bimodality),
the percentage of rejections is above α.

For the new proposal, as shown in Tables 1(a), (b), 2(a) and 3(a), a reason-
able level accuracy is obtained in general, except for model MU2. Even for small
sample sizes (n = 50), when the null hypothesis of unimodality is tested, the per-
centage of rejections is close to the significance level α. Exceptions to this general
behavior include MU2 and also the models MU5 (n = 50), MU6 (n = 50), MU7
(n = 50), MU8 (n = 200) and MU10 (n = 200), where the percentage of rejections
is slightly below the significance level. To test bimodality, when the sample size
is equal to or larger than n = 200, our proposal seems to calibrate correctly, ex-
cept for model MB1 where the percentage of rejections is slightly below α. When
the sample size is not large enough, our new proposal presents a conservative per-
formance in the leptokurtic models, such as model MU2. In this last model, this
behavior is corrected when considering a larger sample size (n = 2000).

As mentioned before, the test size of Fisher and Marron (2001) can exceed the
significance level, as shown for models MU2 and MU3, where the percentage of
rejections under the null for α = 0.05 (when n = 1000) is greater than 0.6. For that
reason, their proposal should not be employed in practice. For the reader interested
in analyzing the behavior of the Fisher and Marron (2001) method under the al-
ternative, Tables 2(b) and 3(b), in Section SM3 (Ameijeiras-Alonso, Crujeiras and
Rodríguez-Casal (2019b)), include the associated power results. Power results in
Tables 1(c), (d), 2(b) and 3(b) show that the new proposal, which seems to be the
only one which is well calibrated, appears to have also good power in terms that
the percentage of rejections increases with the sample size. The method rejects
the null hypothesis on the bimodal model MB1 and the trimodal models MT1
and MT5. This new proposal also detects the small blips, for example, on mod-
els MB4, MB7 (bimodal) and MT4 (trimodal). However, in other distributions it
has some difficulties when the small blips represent a low percentage of the data
and the sample size is small (e.g., model MB2). In the difficult cases with almost
overlapping peaks, when the sample size is small, the new method presents some
limitations to detect the rejection of unimodality (with n = 50 in MB3) and the
rejection of bimodality (with n = 100 in MT2 and with n = 50 in MT3). However,
as expected, the percentage of rejections increases with n.

4. Data analysis: Detection of fire season multimodality. As explained in
Section 1, occurrence of a larger number of fire activity peaks than of fire weather
severity peaks has been considered an indicator of anthropogenic vegetation burn-
ing. Although a general k is allowed in the testing problem, reflecting the possible
occurrence of more than one peak of weather-driven fires, it should be noted that
only one fire season under favorable meteorological conditions is expected in the
Russia–Kazakhstan border, as shown in the Central Eurasia panel of Figure 3 in
Benali et al. (2017). Thus, using the data described in Section 4.1, our goal is to
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assess if there are one or more fire activity peaks in the study area. As shown in
Section 3, the simulation study supports, in the finite-sample case, that the pro-
posal introduced in Section 2 presents a correct behavior in terms of calibration
and power. Thus, if just one cell is considered, this problem can be tackled em-
ploying the new procedure for testing H0 : j = 1. However, since the goal is to
analyze the number of fire activity peaks in the entire Russia–Kazakhstan border
region and this area is divided in a cell grid, the proposed procedure can be ap-
plied systematically in each cell. As mentioned, an FDR procedure is required to
control incorrect rejections of the null hypothesis. To perform such correction, the
spatial correlation between the test p-values computed at different cells must be
considered. These two issues are solved in Section 4.2, and the results obtained
are provided in Section 4.3.

4.1. Fire data. The dataset analysed was obtained from the MODerate resolu-
tion Imaging Spectroradiometer (MODIS), launched by the National Aeronautics
and Space Administration (NASA) on board the Terra (EOS AM) and the Aqua
(EOS PM) satellites at a 1 km2 resolution at nadir. The MODIS algorithm (see
Giglio et al. (2003) for further details) identifies the location of fires burning at the
time of satellite overpass, based on the contrasting responses of the middle-infrared
and longwave infrared bands in areas containing hot targets. Cloud and water pix-
els are previously excluded from analysis using multiple numerical thresholds on
visible and near-infrared reflectance and thermal infrared temperature values. The
size of the smallest flaming fire having at least a 50% chance of being detected by
the MODIS algorithm, under both ideal daytime and nighttime conditions, is ap-
proximately 100 m2. The combination of Terra and Aqua overpasses provide, on
average, four daily overpasses depending on the location in the globe. Integrating
the information from all available MODIS overpasses, from 10 July 2002 to 9 July
2012, the day of the year and the location of each active fire (thermal anomaly)
was recorded. Note that a single wildfire may create more than one active fire in
different days. The main issue is that distinguishing which different active fires
correspond to the same wildfire is not an easy task. Some models were simulated,
trying to replicate the real-data scenario (data may be repeated, but not so fre-
quently, with the corresponding day’s delay). In general, under the hypothesis of
unimodality similar results to those reported in this paper are obtained.

Since MODIS data are recorded in a discretized time scale, in order to apply the
testing procedure, it is necessary to recover the continuous underlying structure.
For that purpose, denote by (X1, . . . ,Xn) the days of the year when the n active
fires were detected with Xi ∈ {1, . . . ,366}. The dataset used for the study of the
number of fire peaks is the following:

�i = 2π(Xi + Ei )/366; with i = 1, . . . n,

Ei being generated from the uniform distribution U(−1,0). This means that it is
assumed that fires occurred at any time of the day. Provided that there are not
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FIG. 2. Number of fires detected by the MODIS in the different cells of the studied region from from
10 July 2002 to 9 July 2012 (in translucent gray scale, as reflected in the right legend). In white, cells
with low fire incidence or outside the study area. In black, surface water.

repeated observations, as this can considerably alter the test statistic, other ways
of modifying the data can be considered, but, in general, this perturbation does not
show relevant impacts in the results.

Once this modification is done, the area analyzed is divided into grid cells of
size 0.5◦ (areas of approximately 55.5 km latitude and 32 km longitude at 55◦
North). Then, from the resulting cells those with low fire incidence, that is, cells
having fewer than 10 active fires in more than seven out of 10 years, were excluded
from the study. This leaves 1500 grid cells in the area, each one having between
55 and 3630 fires. Figure 2 shows a map including the study area and a summary
of the total fire counts in the study period.

4.2. Spatial false discovered rate. The proposed testing procedure (see Sec-
tion 2) will be applied systematically over these cells. Thus, it is clear that an
FDR correction must be applied. Also, the subdivision of the study area into grid
cells is not necessarily designed for producing “independent” areas, in the sense
that occurrence of fires in a cell may not be independent of occurrence in neigh-
boring cells. So, the spatial dependence must be taken into account in the FDR
correction procedure. This was done following the ideas by Benjamini and Heller
(2007), Procedure 3, with some modifications. Their method allows controlling
the FDR accounting for the spatial dependence of the data and employing prior
information about the aggregation of different locations (where the size and shape
of the different groups do not need to be equal). This is the case in our study, as
it is expected that the temporal patterns of fires will be similar in regions that are
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close and with the same type of land use (Benali et al. (2017)). Once this aggre-
gation is done, Benjamini and Heller (2007) propose testing first on those large
units (patches) while allowing a single p-value for each patch. Then, if the null
hypothesis is rejected in the patch, it controls the dependence of the aggregate and
the cells’ p-values in order to correct them in the multiple testing problem and to
detect properly the rejected locations.

The method employed here can be outlined as follows: in an initial step (Step 1),
the testing procedure (introduced in Section 2) is applied locally, to each cell, ob-
taining the corresponding p-value. Second (Step 2), land cover patches are defined
in order to create groups of cells that are spatially adjacent and have the same land
cover type. Finally (Step 3), a hierarchical testing procedure (similar to that one of
Benjamini and Heller (2007)) is applied. This final step consists of, first, deciding
in which of the previous patches the null hypothesis is rejected (patch testing; Step
3a) and, second, within each rejected patch, determining in which of its cells H0
is rejected (trimming procedure; Step 3b). Further details in the specific problem
and solution are provided below.

Step 1. Local application of the test. In each of the 1500 grid cells, the method
proposed in Section 2 was applied (with B = 5000 bootstrap replicates) to obtain
the corresponding p-values when it is tested if there is one or more fire activity
peaks.

Step 2. Land cover patches. The land cover patches were created to identify
areas expected to display “similar” fire season modality patterns. From the 0.5◦-
cells, the patches were constructed considering the contiguous cells and using
the information of the land cover data provided by the European Space Agency
Climate Change Initiative project (Land Cover version 1.6.1, data from 2008 to
2012, available at http://www.esa-landcover-cci.org). Land cover is defined as the
physical material at the surface of the earth, including various types of vegetation,
bare rock and soil, water, snow and ice and artificial surfaces. Patch construction
is detailed in Section SM4 (Ameijeiras-Alonso, Crujeiras and Rodríguez-Casal
(2019b)), where the specific land cover for each cell is also given (see Figure 6,
left). The 80 different patches obtained in the study area are represented in Fig-
ure 3.

Step 3. Hierarchical testing procedure. Some notation is required for this part.
Let j = 1, . . . , J be the different patches created in Step 2, l = 1, . . . ,Lj be the
cells within the patch j and p̃lj the p-value obtained in Step 1 for the cell l within
the patch j. Then, zlj = �−1(1 − p̃lj) is the corresponding z-score for the cell l in
patch j, where � is the cumulative distribution of a standard normal distribution.
Note that since a bootstrap procedure is used to compute the p-values p̃lj, they can
be equal to zero or one and, in that case, the z-score is nonfinite. In order to correct
that, if p̃lj is equal to zero, following the ideas of Jeffreys (1946) prior, if B is the
number of bootstrap resamples, the p-value is replaced by a random value from
the distribution Beta(1/2,B + 1/2) and, if it is equal to one, a random value from
Beta(B +1/2,1/2) is taken. Once the z-scores for each cell in the different patches

http://www.esa-landcover-cci.org
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FIG. 3. In a gray (translucent) scale, each different shade of gray represents a different land cover
patch (distinguished by a superimposed number). In white, cells with low fire incidence or outside
the study area. In black, surface water.

are calculated, a hierarchical method is used. The testing procedure is divided into
two steps: first it tests, at significance level αc, in which land cover patches the null
hypothesis can be rejected (Step 3a) and, second, tests H0, at level αr , for the cells
within the rejected patches (Step 3b).

Step 3a. Patch testing. In this stage, land cover patches where the null hypothesis
is rejected are identified. This step consists in computing a global p-value for each
patch and then, since each patch has a different number of cells, the weighted FDR
procedure of Benjamini and Hochberg (1997), at level αc, is applied in order to
correct for multiple testing. The global p-value of the patch j is calculated as p̆j =
�̃(Z̄j/σ̂Z̄j

), that is, the right tail probability of the standard normal distribution
calculated in the standardized z-score average of the cells in a land cover patch.
More precisely:

1. In each patch j, with j ∈ {1, . . . , J } the z-score average is calculated as Z̄j =
(1/Lj)

∑Lj

l=1 zlj, where zlj are the z-scores defined above.

2. The standard error is computed: σ̂Z̄j
= (σ̂j/Lj)

√
Lj + 2

∑Lj

l=1
∑l−1

m=1 ρ̂j
l,m,

where ρ̂j
l,m = 1 − γ̂ (slj − smj)/σ̂j is the estimated correlation between cells l and m

within the patch j. The value γ̂ (slj − smj) is an estimation of the semivariogram
evaluated at the distance (of the centroids in the map) between cells l and m

and σ̂j the estimated variance of the cells in patch j. Differently from Benjamini
and Heller (2007), the semivariogram estimator is obtained, by (weighted) least
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squares on an exponential family, in order to ensure that such an estimator is in-
deed a valid semivariogram (something that may be not satisfied by nonparametric
estimators) and to control the parameters of interest. Specifically, in an exponen-
tial family two parameters drive the behavior of the spatial covariance, the point
variance and the range. Hence, the estimated variance is obtained from this para-
metric procedure. It should be noted that least squares procedures for variogram
estimation require the use of a nonparametric pilot estimator. In this case, the ro-
bust version of the empirical variogram was used (see Cressie (1993), Ch. 2).

3. The weighted FDR procedure, at level αc, is applied on the p-values p̆j, being
the weight proportional to the patches size. Given the ordered p-values p̆(1) ≤ · · · ≤
p̆(J ), unimodality is rejected in the k patches with the smallest p-values, being
k = max{υ : p̆(υ) ≤ (

∑υ
j=1 L(j)/

∑J
j=1 L(j))αc} and L(j) the number of cells in the

land cover patch associated with p̆(j).

Step 3b. Trimming procedure. Once a decision about which patches are candi-
dates for rejecting the null hypothesis is made (and hence exhibiting a multimodal
fire pattern), specific cells where this rejection holds are identified. It should be
noted that the cell test statistic is correlated with the test statistic at the patch level.
This means that an FDR correction cannot be directly applied over all the cells be-
longing to the same patch. A correction is proposed by Benjamini and Hochberg
(1997). First, the conditional p-value of a cell, within a patch that was rejected,
is calculated, p̂lj. Then, over these p-values the two-stage procedure, introduced
by Benjamini, Krieger and Yekutieli (2006), at level αr is applied to enhance the
power. This last method, in its first stage, consists in estimating the sum of weights
of null cells, using for that purpose the classical FDR procedure at level αr . In a
second stage, this quantity is used to determine the number of rejected cells within
the patch. To be more precise and to summarize Step 3b, the following steps are
detailed:

4. The conditional p-value of each cell l is calculated within the patch that was
rejected j, denoted as p̂lj. These p-values are computed as follows:

p̂lj =
∫ ∞
zlj

(
Ĵ0

J
�̃

(
�̃−1(u1) − ρ̂lju√

1 − ρ̂2
lj

)

+
(

1 − Ĵ0

J

)
�̃

(
�̃−1(u1) − ρ̂lju − μ̂j√

1 − ρ̂2
lj

))
φ(u)du

×
(

Ĵ0

J
u1 +

(
1 − Ĵ0

J

)
�̃

(
�̃−1(u1) − μ̂j

))−1
,

being φ a standard normal density and noting that
(a) u1 = (

∑k
j=1 L(j)/

∑J
j=1 L(j))αc is the cutoff point of the largest p-value re-

jected in Step 3a.
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(b) Ĵ0 = (J − k)/(1 − αc) is the estimated sum of weights of null patches.
(c) μ̂j = ((

∑J
j=1

∑Lj

l=1 zlj)/(
∑J

j=1 Lj))/σ̂Z̄j
is the estimation of the standardized

expectation of the patch test statistic under the alternative.
(d) ρ̂lj = (1 + ∑Lj

m=1,m �=l
ρ̂j
l,m)σ̂j/(Ljσ̂Z̄j

) is the estimated correlation between
the z-score in a given cell and the average z-score of the patch.

5. Given these Lj p-values in the patch j, a two-stage procedure is applied at level
αr :
(a) The classic FDR procedure is applied at level α′

r = αr/(1 + αr). Given the
ordered p-values p̂(1)j ≤ · · · ≤ p̂(Lj)j, let k1j = max{υ : p̂(υ)j ≤ (υ/Lj)α

′
r}.

(b) The classic FDR procedure is applied again at level α′
r , being in this case

the sum of weights of null cells, Ĵ0j = Lj−k1j. Reject the unimodality in the
k2j cells with the smallest p-values, being k2j = max{υ : p̂(υ)j ≤ (υ/Ĵ0j)α

′
r}.

4.3. Results. In what follows, the application of the new testing proposal,
jointly with the FDR correction, to the active fire dataset is presented. As a
first step, the p-values, applying the new procedure provided in Section 2 (with
B = 5000 bootstrap replicates), were computed in all the cells of the study area.
In a second step, the different land cover patches were created using the land
cover database and the spatial distribution of the cells. Finally, the hierarchical
testing procedure was applied. First, to determine in which of the previously cre-
ated patches the null hypothesis is rejected at significance level αc = 0.01. Sec-
ond, within the rejected patches, it was determined which cells can be definitely
rejected at the trimming significance level αr = 0.01. H0 was rejected in all the
patches. The rejected cells are shown in light gray (marked with an X) in Figure 4.

Analyzing the fire modality map (Figure 4), results suggest that a multimodal
pattern prevails in most of the study area. A large area where unimodality is not
rejected stands out in the eastern part, mostly dominated by grassland cover. These
findings are in agreement with previous results that have associated a multimodal
pattern with the occurrence of croplands (Benali et al. (2017), Korontzi et al.
(2006), Le Page et al. (2010), Magi et al. (2012)) and steppe covers (Loboda et al.
(2012)). In croplands, the multimodal fire seasonality is a consequence of April
and May burning in preparation for spring planting of grain crops, and posthar-
vest crop residue burning, typically in August–September. In steppes, burning oc-
curs in the summer and fall, probability due to a combination of human and cli-
mate factors (Loboda et al. (2012)). Recognition that multimodal fire regimes are
more widespread than previously thought, and typically associated with anthro-
pogenic burning, is important for various reasons. It will contribute to improve the
parametrization of dynamic global vegetation models used to predict environmen-
tal impacts of changes in land use and climate, to refine estimates of the seasonality
of greenhouse gas emissions from vegetation fires and to support fire management
activities that aim at reducing the exposure of human populations and the losses of
valuable resources and assets.
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FIG. 4. Results after applying the procedure described in Section 4.2, with αc = 0.01 and
αr = 0.01, in the study area. In light gray (marked with an X), cells where H0 is rejected (multi-
modal). In dark gray, cells where there is no evidence to reject H0 (unimodal). In white, cells with
low fire incidence or outside the study area. In black, surface water.

5. Conclusions. A new and effective nonparametric method for testing circu-
lar multimodality is presented with the objective of assessing the number of fire
activity peaks and their mismatch with fire weather seasonality. Uncoupling of
temporal patterns of fire activity from favorable climatic conditions, and coupling
with land use dynamics, in the form of a substantial time lag between the peaks
of the fire season and the fire weather season (Le Page et al. (2010)), or as the
occurrence of a bimodal fire season in climates with a single dry season (Benali
et al. (2017)) is considered indicative of an anthropogenic fire regime.

For a better understanding of vegetation fires in the Earth system, future re-
search may include the use of multimodality test as a preliminary tool in different
regions of the world for exploring when the fire season peaks occur and their as-
sociated mass. This would allow reviewing different studies in the environmental
science literature with nonparametric techniques. For instance, one could deter-
mine when the principal fire season peaks are produced in each 0.5◦ cell (Le Page
et al. (2010)), the delay of the anthropogenic fire season peaks with respect to the
peak of dry season (Magi et al. (2012)) or the mass associated to each peak for
better understanding the importance of the different human pyrogenic activities
(Korontzi et al. (2006)).

Related with the proposed multimodality test and due to the growing interest in
the last few years in more flexible models in circular data (see Ley and Verdebout
(2017), Ch. 2), the new proposal can be used as a preliminary tool for determining
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if a multimodal model is needed. Also, this test could be used for determining the
minimum number of components in a mixture of parametric unimodal distributions
when the objective is modeling fire data.

When the FDR, accounting for the spatial dependence of the data, needs to
be considered, the proposed method provides a useful algorithm for any context
where prior information about the neighboring locations is known.

SUPPLEMENTARY MATERIAL

Supplementary material of fire seasonality identification with multimodal-
ity test (DOI: 10.1214/19-AOAS1273SUPP; .pdf). This Supplementary Material
provides details on the models employed in the simulation study; a complete de-
scription of the calibration function used to generate the resamples in the boot-
strap procedure with some theoretical background; some further simulation results
showing rejection rates for different scenarios; and the construction of the land
cover patches cells where a similar fire behavior is expected.
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