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The conditional independence assumption of the Felligi and Sunter (FS)
model in probabilistic record linkage is often violated when matching real-
world data. Ignoring conditional dependence has been shown to seriously
bias parameter estimates. However, in record linkage, the ultimate goal is to
inform the match status of record pairs and therefore, record linkage algo-
rithms should be evaluated in terms of matching accuracy. In the literature,
more flexible models have been proposed to relax the conditional indepen-
dence assumption, but few studies have assessed whether such accommo-
dations improve matching accuracy. In this paper, we show that incorporat-
ing the conditional dependence appropriately yields comparable or improved
matching accuracy than the FS model using three real-world data linkage
examples. Through a simulation study, we further investigate when condi-
tional dependence models provide improved matching accuracy. Our study
shows that the FS model is generally robust to the conditional independence
assumption and provides comparable matching accuracy as the more com-
plex conditional dependence models. However, when the match prevalence
approaches 0% or 100% and conditional dependence exists in the dominat-
ing class, it is necessary to address conditional dependence as the FS model
produces suboptimal matching accuracy. The need to address conditional de-
pendence becomes less important when highly discriminating fields are used.
Our simulation study also shows that conditional dependence models with
misspecified dependence structure could produce less accurate record match-
ing than the FS model and therefore we caution against the blind use of con-
ditional dependence models.

1. Introduction. Record linkage identifies and matches records belonging to
the same entity from disparate data sources (Christen (2012)). Such a task is not
trivial when there is a lack of a unique identifier across data sources. Additional
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information common in multiple data sources are needed to link records together
(Sadinle (2017)). Fields describing the identifying details of these records, such
as their name, address, phone number, and so on, are used in record linkage.
Record pairs are formed by comparing values of the fields of two records and
the comparison results are used to determine whether the two records belong to
the same entity. If they do, the record pair is called a match; otherwise, it is
called a nonmatch. Most statistical techniques used for record linkage are based
on probabilistic methods first proposed by Newcombe and Kennedy (1962) and
later formalized by Fellegi and Sunter (1969). Alternative approaches include de-
terministic methods (Gomatam et al. (2002), Tromp et al. (2011)), Bayesian meth-
ods (Fortini et al. (2001, 2002), Larsen and Rubin (2001), Larsen (2004, 2012),
Tancredi and Liseo (2011), Sadinle (2014, 2017)), unsupervised and supervised
machine learning methods such as clustering, decision trees, and support vector
machines (Bilenko and Mooney (2003b, 2003a), Abril, Navarro-Arribas and Torra
(2012), Christen (2008), Christen (2012), Han et al. (2004), Martins (2011), Torra,
Navarro-Arribas and Abril (2010), Treeratpituk and Giles (2009), Ventura and Nu-
gent (2014), Ventura, Nugent and Fuchs (2015)), and methods that link more than
two databases (Sadinle and Fienberg (2013)).

1.1. Statistical challenges in probabilistic record linkage. As an unsupervised
classification algorithm, the Fellegi and Sunter (FS) model has demonstrated rea-
sonable performance without the need for a training set and therefore has been a
core component of probabilistic linkage algorithms and has been widely used. The
FS model makes the conditional independence assumption: the individual fields’
agreement patterns are independent given the true but unknown match status. This
is a rather strong assumption, which may not always hold in practice (Winkler
(1989), Thibaudeau (1993)). For example, if two records agree on telephone num-
ber, then they are more likely to also agree on fields such as street name and zip
code, regardless of whether they are a match. Efforts addressing conditional de-
pendence have focused on the use of the log-linear latent class model due to its
flexibility to incorporate conditional dependence by adding interaction terms to the
FS model in the log-linear representation (Armstrong and Mayda (1992), Larsen
(1997), Larsen and Rubin (2001), Thibaudeau (1993), Tromp et al. (2008), Winkler
(1993), Zhu et al. (2010), Daggy et al. (2013)). Other approaches addressing the
field dependence include the Gaussian random effects latent class model (Daggy
et al. (2014)).

Despite efforts to account for conditional dependence, few studies have exam-
ined whether incorporating conditional dependence improves the record matching
accuracy. One study considered a situation with a small number of record pairs
and only three fields (Kelly (1986)); another study looked into the problem at an
extremely low match prevalence (Tromp et al. (2008)). A recent study performed
a more thorough investigation via simulation, with true match prevalence rang-
ing from low to high and strength of conditional dependence varying from weak
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to strong (Daggy et al. (2014)). Findings of these studies provided preliminary
evidence that incorporating conditional dependence might improve matching ac-
curacy. However, it is not clear whether and how such improvement is affected by
factors such as the match prevalence, discriminating power of fields, sample size,
and class-specific conditional dependence structures.

1.2. Conditional dependence in latent class analysis. The FS model belongs
to the family of statistical methodology known as latent class models (Li and Shen
(2013)), which have been widely used. One application area is the evaluation of
diagnostic test accuracy in the absence of a gold standard test, a diagnostic test
that gives 100% accurate results (Walter et al. (2012)). In these problems, one
wishes to evaluate a new diagnostic or screening test when there is no perfect
gold standard for comparison. The robustness of the latent class model that as-
sumes independence of diagnostic test results conditional on the true disease status
has been extensively studied. Findings have shown that the conditional indepen-
dence model can lead to seriously biased parameter estimates when the conditional
independence assumption is not valid (Vacek (1985), Torrance-Rynard and Wal-
ter (1997)). Researchers have proposed many approaches to address conditional
dependence. These include what have been used in the record linkage literature,
such as log-linear latent class models (Espeland and Handelman (1989), Hagenaars
(1988), Yang and Becker (1997), Xu, Black and Craig (2013)) and Gaussian ran-
dom effects latent class models (Hadgu and Qu (1998), Qu, Tan and Kutner (1996),
Uebersax (1999), Dendukuri and Joseph (2001)), as well as those that have not yet
been used in record linkage, such as the finite-mixture extended latent class mod-
els (Albert and Dodd (2004), Albert, McShane and Shih (2001), Albert (2009))
and probit latent class models (Xu and Craig (2009), Xu, Black and Craig (2013));
See Collins and Huynh (2014) for a thorough review of latent class models from
both the frequentist and Bayesian perspectives on the estimation of diagnostic test
accuracy.

In the evaluation of diagnostic test accuracy, the focus of the latent class anal-
ysis is to estimate the accuracy of each diagnostic test. Record linkage problems,
on the other hand, focus on the accurate prediction of the unknown match status of
record pairs. Record linkage methods should therefore be evaluated and compared
in terms of record matching accuracy. Despite the significant difference between
these two application areas, methodological findings obtained from diagnostic test
evaluations may still have critical implications in record linkage. When applied
to record linkage problems, parameters in latent class models represent the match
prevalence and the m- and u-probabilities (the m-probabilities are the probabilities
of the field agreement given that the record pair belongs to the same entity; the
u-probabilities are the probabilities of field agreement given that the two records
do not belong to the same entity). These probabilities are at the heart of the prob-
abilistic record linkage: the matching weights are defined as the logarithms of the
m- and u-probability ratios, and the sum of the weights across fields, known as
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the matching score, is used to declare matches and nonmatches. The m- and u-
probability ratio of a field quantifies the “discriminating power” of the field. The
larger the ratio is, the bigger contribution the field makes to the matching score.
Biases in these parameter estimates could therefore have a large impact on record
matching accuracy.

1.3. Overview of the paper. The purpose of the paper is to investigate whether
and how the matching accuracy is improved by accommodating the conditional
dependence among matching fields in latent class models compared to the condi-
tional independence FS model. The remainder of the paper is organized as follows.
Section 2 introduces a motivating example: linking patient records from two hos-
pitals. In Section 3, we present the existing record linkage approaches and extend
the existing models using the finite mixture idea from the diagnostic testing lit-
erature. Model estimation is implemented in the standard software SAS with the
NLMIXED procedure described in Section 3.3. These models are then applied
to the hospital data linkage example and their matching accuracies are compared
against the manual review results in Section 4. Two additional examples involving
deduplication of cancer registry data and disambiguation of inventor records are
used to further evaluate the influence of accounting for conditional dependence,
where results are presented in Appendix B and Appendix C. A simulation study
is conducted in Section 5 to investigate the impact of accommodating conditional
dependence on matching performance and how it may be affected by factors in-
cluding the match prevalence, discriminating power of fields, sample size, and
class-specific conditional dependence structures. These are followed by conclud-
ing remarks in Section 6.

2. A motivating example. To motivate our study, we consider a real-world
use case that links records from patient registries of two hospitals in central Indi-
ana. One hospital is a public inner city hospital system with a large underserved
population and the other is a private urban hospital system serving a larger pop-
ulation. Because of the close physical proximity of the two hospitals, many pa-
tients receive care and many physicians provide care across both hospitals. Thus,
clinical data for these care processes are fragmented across the systems. The pur-
pose of linking patient records from these two hospitals is to ensure that patients’
clinical data are complete to best inform medical decision making and care co-
ordination. These two hospitals contain approximately 1.5 million and 3.8 mil-
lion patient records, respectively. Fields used for identifying matches in these
two sets of data include first name, last name, middle initial, day, month, and
year of birth, sex, zip code, phone number, and social security number (SSN).
Fields such as first and last names, sex, and birth date are relatively complete,
while other fields contain more missing data. For example, the SSN is miss-
ing for approximately one third of the hospital records, hence producing a large
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number of record pairs with missingness on the agreement of the SSN field. In
record linkage, missing data have been addressed by imputation (Herzog, Scheuren
and Winkler (2007)), adding a third category in addition to the binary agree-
ment/disagreement pattern in the latent class modeling (Tromp et al. (2008)),
or treating fields with missingness as a disagreement (Ong et al. (2014)). We
use the third approach since it is more conservative and protects against false
matches.

Due to the extremely large number of record pairs, record linkage analysis usu-
ally employs a blocking scheme to decrease the number of record pairs in con-
sideration (Herzog, Scheuren and Winkler (2007)). One or more fields are taken
as blocking variables and records with agreement on blocking variables are com-
pared and evaluated for their true match status. Records with disagreement on
blocking variables are automatically considered as nonmatches. Since disagree-
ment in blocking variables may arise from erroneous values of the variables, record
linkage practitioners typically use multiple blocking schemes, starting with more
restrictive blocking variables such as the SSN, and using less restrictive block-
ing variables subsequently. In our example, we used two blocking schemes: one
with the SSN as the blocking variable, representing a rather restrictive scheme,
and the other with last name and first name (LNFN) as blocking variables, rep-
resenting a less restrictive scheme. The SSN blocking scheme produced a data
set of 590,128 record pairs (the SSN block) and the LNFN blocking scheme pro-
duced a data set of 14,665,148 record pairs (the LNFN block). After blocking, a
random sample of record pairs was selected from all record pairs resulted from
each blocking scheme and manually reviewed by five reviewers to establish the
true match status. Both samples consisted of approximately 5500 record pairs and
were selected via stratified sampling that over-sampled record pairs with more
ambiguity on the matching status, reflected by greater inconsistency in the agree-
ment status of matching fields. Once the sample of record pairs was selected, man-
ual review was implemented using a balanced incomplete block design. Each re-
viewer reviewed 40% of the record pairs so that every record pair was reviewed
by two reviewers. Discrepancies were adjudicated by a third reviewer. Approxi-
mately 7.6% of the manually reviewed record pairs in the SSN blocking scheme
and 4% in the LNFN blocking scheme yielded inconsistent results from the two re-
viewers and hence required a third adjudicator. As expected, inconsistent reviews
occurred more frequently for pairs with greater discrepancy in the agreement status
of fields.

These two blocking schemes are chosen to be presented because they repre-
sent situations with very low and very high match prevalence. Based on the man-
ual review sample, 97% of the record pairs in the SSN blocking scheme are true
matches, but only 6% of the record pairs in the LNFN blocking scheme are. In
the SSN blocking scheme, we consider fields with relatively poor discriminating
power and high conditional dependence, with the purpose to evaluate whether in-
corporating conditional dependence helps to improve the matching accuracy when
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matching fields have poor discrimination. We therefore choose fields including zip
code, telephone number, middle initial, last name and sex. In the LNFN block-
ing scheme, we consider fields with good discriminating power including SSN,
telephone number, zip code, day, month and year of birth. These two blocking
schemes allow us to examine whether incorporating conditional dependence mat-
ters when there is a dominating class and whether the discriminating power of
matching fields plays a role.

Binary agreement/disagreement pattern is considered for the comparison of
each field since the FS model is based on binary data (Fellegi and Sunter (1969)).
For first and last names, the modified Jaro–Winkler string comparator was used to
obtain the similarity measure, which was then dichotomized using a threshold of
0.8. This threshold was selected based on our empirical experience and previous
research, which showed that, at a threshold of 0.8, the modified Jaro–Winkler com-
parator achieved highest linkage sensitivity of 97% (Grannis, Overhage and Mc-
Donald (2004)). With dichotomous data on the agreement/disagreement of each
field, there are 25 = 32 unique vector patterns in the SSN blocking scheme (see
Table 2 in Appendix A) and 26 = 64 unique vector patterns in the LNFN block-
ing scheme (See Table 3 in Appendix A). Based on the manual review sample
for each blocking scheme, we estimate the true match prevalence and m- and u-
probabilities (Table 1). The conditional independence of the data is examined us-
ing the correlation residual plot, shown in Figure 1, where the correlation residual
is defined as the difference in the observed correlation and expected correlation
for each pair of fields (Qu, Tan and Kutner (1996)). The observed correlation is
calculated based on the observed frequencies of record pairs in the 2 × 2 contin-
gency table formed by a pair of fields. Following the recommendation by Subtil,
de Oliveira and Gonçalves (2012), the expected correlation is calculated based on
the expected frequencies estimated in the FS modeling framework, using the pa-
rameters established by the manual review. If fields are conditionally independent,
the differences in the observed and expected correlations will be nearly zero. On
the other hand, if two fields are conditionally dependent, the observed and ex-
pected correlations will be different, resulting in a large deviation from zero on the
correlation residual plot.

For both SSN and LNFN blocking schemes, the conditional independence as-
sumption is clearly invalid and the FS model is inadequate. This can be seen from
the considerable differences between the observed and the expected correlations
shown in the correlation residual plots. The largest correlation residual is between
telephone number and zip code for both blocking schemes. These two fields are
conditionally dependent potentially because subjects with the same phone number
are more likely to have the same zip code since they are likely the same person, or
different persons residing in the same household. In the SSN blocking scheme, cor-
relation residuals between last name and zip code and between last name and tele-
phone number are also relatively large, indicating conditional dependence among
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TABLE 1
Estimates of match prevalence and m- and u-probabilities of latent class models for the hospital

linkage data

Manual review FS FSFM LL LLFM GRE GREFM

The SSN blocking scheme
Prevalence 0.9695 0.4415 0.4364 0.9548 0.7151 0.9258 0.7768
m-probabilities

Zip code 0.4718 0.8477 0.8474 0.4686 0.5192 0.4776 0.5011
Telephone number 0.2551 0.5282 0.5338 0.2471 0.2890 0.2528 0.2758
Middle initial 0.1658 0.2057 0.2010 0.1729 0.2172 0.1782 0.2019
Last name 0.8891 0.9462 0.9443 0.8806 0.9443 0.8982 0.9224
Sex 0.9940 0.9941 0.9921 0.9958 0.9962 0.9953 0.9965

u-probabilities
Zip code 0.1877 0.1450 0.1516 0.1729 0.2945 0.1764 0.2956
Telephone number 0.0347 0.0095 0.0099 0.0582 0.1118 0.0601 0.1086
Middle initial 0.0214 0.1346 0.1389 0.0203 0.0375 0.0142 0.0411
Last name 0.2534 0.7874 0.7903 0.3696 0.6395 0.3497 0.6316
Sex 0.5776 0.9701 0.9718 0.6608 0.9418 0.7977 0.9257

Deviance 10,706.5 1782.9 163.8 29.92 447.6 47.4

The LNFN blocking scheme
Prevalence 0.0620 0.0598 0.0597 0.0601 0.0596 0.0601 0.0596
m-probabilities

Birth year 0.9877 0.9779 0.9781 0.9761 0.9796 0.9761 0.9796
SSN 0.5070 0.5290 0.5291 0.5257 0.5295 0.5254 0.5293
Birth day 0.9556 0.9756 0.9756 0.9747 0.9779 0.9747 0.9779
Telephone number 0.1921 0.2010 0.2007 0.1987 0.2002 0.1984 0.1999
Zip code 0.3626 0.3978 0.3972 0.3936 0.3958 0.3931 0.3953
Birth month 0.9650 0.9891 0.9891 0.9893 0.9909 0.9893 0.9909

u-probabilities
Birth year 0.0203 0.0185 0.0185 0.0183 0.0186 0.0183 0.0186
SSN 0.0019 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
Birth day 0.0333 0.0322 0.0322 0.0319 0.0322 0.0319 0.0322
Telephone number 0.0000 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005
Zip code 0.0093 0.0117 0.0117 0.0118 0.0119 0.0118 0.0119
Birth month 0.0755 0.0816 0.0816 0.0813 0.0817 0.0813 0.0817

Deviance 297,041.4 147,527.4 19,866.76 15,056.4 18,534.8 13,770.56

these fields. Subjects with the same last name (and SSN) are likely the same per-
son or different persons in the same household (family members may share SSN),
and hence are more likely to have the same telephone number or zip code. This
is likely one of the reasons for the conditional dependence between SSN and zip
code and between SSN and telephone number in the LNFN blocking scheme.
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FIG. 1. Correlation residual plot of the hospital linkage data for (a) the SSN blocking scheme (fields
include zip code (Zip), telephone number (Tel), middle initial (MiddleInitial), last name (LastName),
and sex) and (b) the LNFN blocking scheme (fields include year of birth (BirthYear), social security
number (SSN), day of birth (BirthDay), telephone number (Tel), zip code (Zip), and month of birth
(BirthMonth)). For each pair of fields, the plot shows the difference between observed correlation
and expected correlation, calculated based on the observed frequencies and expected frequencies
estimated by the FS model. Nonzero correlation residuals indicate the inadequacy of the FS model.

3. Probabilistic record linkage.

3.1. Existing approaches. Let Y = (Y1, Y2, . . . , YJ ) be the agreement vector
of the J fields for a record pair, where Yj = 1 if the two records agree on the
j th field and 0 otherwise. Let M denote the true match status of the record pair,
which takes values 0 (true nonmatch) and 1 (true match). Based on the observed
agreement pattern Y , the contribution of the record pair to the likelihood is

(1) P(Y ) = P(Y |M = 1)P (M = 1) + P(Y |M = 0)P (M = 0),

where P(M = 1), denoted as π , is the prevalence of the true matches and P(Y |M)

is the conditional distribution of the agreement vector Y given the true match sta-
tus M .

There are various ways to characterize the conditional distribution P(Y |M).
The FS model of record linkage assumes that the agreement patterns on multiple
fields of the same record pair are independent conditional on the true match status.
In other words, P(Y |M) = ∏J

j=1 P(Yj |M), where the conditional probabilities
P(Yj |M) define the m- and u-probabilities mj = P(Yj = 1|M = 1) and uj =
P(Yj = 1|M = 0).

Due to the potential violation of the conditional independence assumption in
real-world record linkage applications, the FS model typically provides an inad-
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equate fit to the data. A frequently used approach to relax the conditional inde-
pendence assumption is the log-linear (LL) latent class model. It has been shown
that the FS model can be equivalently parameterized using the log-linear modeling
framework as follows (Clogg (1995)):

log
(
P(Y |M)

) = λ + λMI (M = 1) +
J∑

j=1

λj1I (Yj = 1)I (M = 1)

+
J∑

j=1

λj0I (Yj = 1)I (M = 0),

where I (·) is an indicator function. Using this formulation, we can easily extend
the conditional independence by including interaction terms between agreement
patterns in two or more fields (with or without interacting with M). For example,
if fields 2 and 3 are conditionally dependent in the true match class, we can include
their interaction term in the model as follows:

log
(
P(Y |M)

) = λ + λMI (M = 1) +
J∑

j=1

λj1I (Yj = 1)I (M = 1)

+
J∑

j=1

λj0I (Yj = 1)I (M = 0)

+ λ23
1 I (Y1 = 1)I (Y2 = 1)I (M = 1).

More recently, the Gaussian random effects (GRE) model was applied to the
record linkage literature to accommodate the conditional dependence (Daggy et al.
(2014)). They introduced a random effect T that followed a standard normal dis-
tribution and assumed that the binary agreement pattern Yj for an individual field
was independent Bernoulli with proportion �(ajM + bjMT ), conditional on the
true match status M and random effect T . Under the GRE model, the m- and u-
probabilities can be calculated as follows:

mj = �

(
aj1√

1 + b2
j1

)
, uj = �

(
aj0√

1 + b2
j0

)
.

3.2. Latent class models with a finite mixture (FM) extension. The GRE model
incorporates possible conditional dependence among fields using a continuous
mixture model framework. It uses a normal random effect to represent the het-
erogeneity across record pairs in the same match class. In the diagnostic testing
literature, Albert and colleagues proposed an alternative approach to incorporating
conditional dependence with a finite mixture model framework to handle situations
where some truly diseased and nondiseased individuals were always diagnosed
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correctly and others were subject to diagnostic error (Albert, McShane and Shih
(2001), Albert and Dodd (2004, 2008)). This model has been used to extend both
the conditional independence models and the GRE models. It has been shown to
produce better goodness-of-fit to the data than the conditional independence mod-
els and provide less biased parameter estimates when the conditional independence
model did not provide a satisfactory fit.

In record linkage, latent class models can be similarly extended using the finite
mixture model framework. We assume that record pairs in the match class contain
two subclasses, one with high data quality whose field agreements are consistent
with the underlying truth, and the other with relatively lower data quality whose
field agreements are subject to error. Likewise, the nonmatch class also contains
two subclasses of record pairs, one with field agreements of record pairs consistent
with the unobserved truth and the other with field agreements subject to error.
Specifically, for each record pair, let L be an indicator of whether field agreement
pattern is always consistent with its latent truth. For a record pair, if its agreement
vector Y contains both 1’s and 0’s (some fields agree while others do not), then L =
0. On the other hand, if the vector Y contains all 1’s or all 0’s, the record pair could
potentially belong to the subclass whose vector pattern is always consistent with
the true match status. Altogether, the population of record pairs is hypothesized to
contain four potential classes based on M (0 or 1) and L (0 or 1). The probability
of the observed agreement pattern Y is given by

P(Y ) = πη1P(Y |M = 1,L = 1) + π(1 − η1)P (Y |M = 1,L = 0)

+ (1 − π)η0P(Y |M = 0,L = 1)

+ (1 − π)(1 − η0)P (Y |M = 0,L = 0),

where η1 = P(L = 1|M = 1) and η0 = P(L = 1|M = 0) are the proportions of
true matches and true nonmatches whose field agreements are always consistent
with the truth. The conditional probability of Y given M and L is:

P(Y |M = 1,L = 1) =
{

1 if Y1 = Y2 = · · · = YJ = 1,

0 otherwise,

P (Y |M = 0,L = 1) =
{

1 if Y1 = Y2 = · · · = YJ = 0,

0 otherwise,

and the probabilities P(Y |M,L = 0) can be modeled using any approaches includ-
ing the FS, LL and GRE models. For example, the m- and u-probabilities of the
finite mixture extended FS model, denoted as the FSFM model, can be computed
as follows:

mj = η1 + (1 − η1)P (Yj = 1|M = 1,L = 0),

uj = (1 − η0)P (Yj = 1|M = 0,L = 0).

These probabilities can be similarly calculated for the finite mixture extended LL
and GRE models, denoted as the LLFM and GREFM models, respectively.
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3.3. Model estimation. With J fields, there are K = 2J possible unique vector
patterns. The log-likelihood of the data is given by

(2) l =
K∑

k=1

fk ln
{
P(Y k)

}
,

where fk is the frequency of record pairs with vector pattern Y k and P(Y k) is the
probability of the vector pattern in (1).

The maximum likelihood estimates (MLE) of parameters are obtained by max-
imizing the log-likelihood function (2). In record linkage, the expectation max-
imization (EM) algorithm is commonly used to obtain the MLE of the model
parameters (Winkler (1988)). Recently, the Newton Raphson type routines im-
plemented in the SAS NLMIXED procedure have been used to find the MLE in
record linkage (Daggy et al. (2013)). We adopt this approach for parameter estima-
tion of the finite mixture extension of the latent class models. For the GRE model
and its finite mixture extension, we will use the adaptive Gaussian quadrature ap-
proach to estimate the log-likelihood. Estimation of the matching score requires
some additional programming using the NLMIXED procedure. SAS codes for fit-
ting the latent class models for the real-world linkage example are available at
http://pages.iu.edu/~huipxu/publications.html.

3.4. Classification of record pairs. Once parameter estimates of the latent
class models are obtained, the match score, defined as log2{P(Y |M = 1)/

P (Y |M = 0)}, can be estimated for each record pair and used for the classifica-
tion of record pairs. High match scores indicate a greater likelihood to be a match
and low match scores indicate a greater likelihood to be a nonmatch. In prac-
tice, record linkage practitioners typically use a two-threshold scheme. Record
pairs with a match score above the upper threshold are classified as matches and
those with a match score below the lower threshold are classified as nonmatches
(Fellegi and Sunter (1969)). Record pairs with match scores falling in between
the two thresholds require human review to evaluate their match status. In situa-
tions where human review is not possible due to the limited resources or privacy
concern, a one-threshold scheme has also been used to classify record pairs as
matches if their match scores are above the threshold and as nonmatches other-
wise (Grannis et al. (2003)). For ease of comparison, we will evaluate the models
using the one-threshold scheme in our paper.

4. Hospital data linkage. In this section, we will apply latent class models
to the hospital data linkage example described in Section 2 and compare their per-
formance based on the true match status established through manual review. We
first fit the FS model to the data, ignoring its invalid conditional independence as-
sumption. Further examination of the correlation residual plot in Figure 1 shows

http://pages.iu.edu/~huipxu/publications.html
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that the correlation residuals are relatively large among the following fields in the
SSN blocking scheme: telephone number, zip code, last name and the middle ini-
tial. In the LNFN blocking scheme, the correlation residuals are well above the 5%
level among three fields: telephone number, zip code and the SSN. The conditional
dependence will be addressed using both the LL model with pairwise interactions
and the GRE model with nonzero bjM among these fields. Finite mixture exten-
sions of the FS, LL and GRE models are also fit to accommodate the conditional
dependence among fields. Parameter estimates of the match prevalence, m- and u-
probabilities are shown in Table 1, with goodness of fit of the models presented us-
ing the deviance. In addition, we compute the marginal probabilities P(Y ) for each
vector pattern and present the expected frequencies estimated from each model
along with the observed frequencies in Table 2 and Table 3 in Appendix A. Large
differences between the observed and expected frequencies indicate the lack of fit
of models.

To evaluate the matching accuracy of the latent class models, we construct the
Receiver Operating Characteristic (ROC) curve and compute the area under the
curve (AUC) based on the true match status established in the manual review sam-
ple. Specifically, we first calculate the match score for each record pair in the man-
ual review sample. We then compute the true positive rate and false positive rate for
each threshold of the match score by comparing the model estimated match status
with the true match status. The true positive rate is the proportion of truly matched
record pairs that are correctly classified as matches and the false positive rate is
the proportion of truly nonmatched record pairs that are incorrectly classified as
matches. The ROC curves are shown in Figure 2.

FIG. 2. ROC curves of latent class models of the hospital linkage data for (a) the SSN blocking
scheme and (b) the LNFN blocking scheme.
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4.1. The SSN blocking scheme. Applying the FS model effectively disregards
the conditional dependence of fields. This results in a substantial underestimation
of the match prevalence. According to Table 1, the SSN blocking scheme contains
approximately 97% true matches, while the match prevalence is only estimated to
be 44% by the FS model. Ignoring the conditional dependence among fields also
leads to severely overestimated m-probabilities, especially for fields that are highly
conditionally dependent. For example, the m-probability for zip code is 0.47 based
on the manual review sample, implying that 47% of the truly matched record pairs
agree on zip code. However, the estimated m-probability for zip code has more
than doubled the true value. On the other hand, the u-probability for last name is
0.25, implying that 25% of the truly nonmatched record pairs agree on last name.
This u-probability estimate has more than tripled based on the FS model. The lack
of fit of the FS model can also be seen from its large deviance of 10,706.5 and the
substantial differences between its expected frequencies and the observed frequen-
cies. For example, the vector pattern with disagreement in all five fields contains
more than 5000 record pairs, while the FS model estimates only approximately
1500 record pairs for this vector pattern (see Table 2 in Appendix A).

Next, we incorporate the conditional dependence using a finite mixture extended
FS model. The FSFM model provides a much better fit to the data with a substan-
tially smaller deviance of 1782.9. The expected frequencies are closer to the ob-
served frequencies than the FS model. Despite the much improved model fit, how-
ever, there is little improvement in the estimates of match prevalence and m- and
u-probabilities. Using the LL and GRE models, the model fit is further improved
with deviances of 163.8 and 447.6, respectively. The expected and observed fre-
quencies are similar for all vector patterns. More importantly, the estimated match
prevalence and m- and u-probabilities are very close to their true values estimated
based on the manual review. The match prevalence is estimated to be above 90%
for both LL and GRE models, less than 5% away from the true value. As the LL
and GRE models are further extended using a finite mixture model framework, the
model fit continues to improve with deviance lower than 50 and the differences
between the expected and observed frequencies become smaller. Surprisingly, the
estimated match prevalence, the m- and u-probabilities move away from the true
values despite the better fit of the two models. An explanation could be that the
conditional dependence structures imposed by the finite mixture extended models
may not be correct.

With regard to the matching accuracy, the Receiver Operating Characteristic
(ROC) curves in Figure 2 show that the four models, the LL and GRE models and
their finite mixture extensions, produce similar matching accuracies with AUCs
of approximately 90%. The matching accuracies of the FS and FSFM models are
lower with AUCs of approximately 85%. These results show that for the SSN
blocking scheme, incorporating the conditional dependence improves the model fit
dramatically. It also leads to improved parameter estimation and better matching
accuracy.
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4.2. The LNFN blocking scheme. The estimated match prevalence and m- and
u-probabilities based on the FS model are very similar to the true values based
on the manual review, despite the tremendous lack of fit indicated by the large
deviance of 297,041.4 (Table 1). Conditional dependence models including the LL
and GRE models, as well as the finite mixture extended models including FSFM,
LLFM and GREFM models, all produce comparable parameter estimates, which
are also similar to the true values. More complex models yield better goodness of
fit to the data with smaller deviances and smaller differences between the observed
and expected frequencies (see Table 3 in Appendix A). In addition, all six models
have very high matching accuracy with an AUC well above 99% and their ROC
curves are indistinguishable from each other.

4.3. Summary of results. Incorporating conditional dependence in the two
blocking schemes of the hospital linkage example shows comparable or improved
matching accuracy relative to that of the FS model. In the SSN blocking scheme,
conditional dependence models produce much improved model fit and higher
matching accuracy. In the LNFN blocking scheme, conditional dependence mod-
els provide improved model fit and comparable matching accuracy. Comparison
of data from the two blocking schemes reveals that fields used for matching in
the SSN blocking scheme have relatively poor discriminating power and there ex-
ists strong conditional dependence in the dominating class. The ratios of m- and
u-probabilities, known as the positive likelihood ratios, are lower than 10 for all
fields in the SSN blocking scheme. In comparison, the m- and u-probability ratios
are well above 10 into hundreds and even thousands for some fields in the LNFN
blocking scheme, indicating extremely discriminating fields. The high field dis-
crimination leads to high matching accuracy for all latent class models, even for
the FS model whose conditional independence assumption is inappropriate.

As mentioned in Section 2, 7.6% and 4% of the manual review sample in the
SSN and LNFN blocking schemes respectively had inconsistent reviews. A third
adjudicator was employed to determine the match status. In order to examine
whether these inconsistent reviews impact the results, three additional analyses
were performed, where match status of record pairs with inconsistent reviews were
determined differently. In Scenario 1, we assumed that the match status determined
by the adjudicator was incorrect for all such record pairs. In Scenario 2, all these
record pairs were assumed to be nonmatches. In Scenario 3, all these record pairs
were assumed to be matches. ROC curves for each latent class model against true
match status determined under the three scenarios are shown in Figure 4 in Ap-
pendix A. Based on these figures, we could again see that conditional dependence
models produce improved matching accuracy compared to the FS model for the
SSN blocking scheme, while all models yield comparable matching accuracy for
the LNFN blocking scheme. This indicates that inconsistent reviews had little im-
pact on the results.
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In addition to the hospital linkage example, two additional real-world data link-
age examples presented in Appendix B and Appendix C yield similar findings. In
these two examples, accommodating conditional dependence also results in com-
parable or improved matching accuracy relative to that of the FS model. Utilization
of poorly discriminating fields results in suboptimal matching performance of the
FS model, which is improved by accommodating conditional dependence. When
highly discriminating fields are used for matching, all models yield similar match-
ing accuracy.

Based on these results, we hypothesize that incorporating the conditional de-
pendence enables us to recover the true model parameters and enhance the match-
ing accuracy in situations where matching fields have poor discriminating power.
When the discriminating power of matching fields is high, incorporating the con-
ditional dependence may not further improve matching accuracy relative to the FS
model, despite the more satisfactory model fit. These hypotheses will be evalu-
ated using a simulation study, where multiple factors including the discriminating
power of matching fields are examined for their impact on whether and when it is
important to accommodate conditional dependence.

5. Simulation study. The real-world examples in Section 4, Appendix B and
Appendix C show that conditional dependence latent class models provide better
fit to the data and yield matching accuracies at least as good as or better than that
of the FS model assuming conditional independence. In this section, we perform
a simulation study to examine when conditional dependence models will provide
improved matching accuracy and what factors might play a role. Data will be sim-
ulated to represent the agreement or disagreement of the matching fields. These
data can be thought of as vector patterns obtained after applying a specific block-
ing scheme in the real applications and are used directly in the latent class analy-
sis. We will consider four scenarios in our simulation. Scenarios I, II and III have
six fields with moderate power for discriminating matches from nonmatches (m-
probabilities are 0.45, 0.25, 0.85, 0.95, 0.98, 0.99, and u-probabilities are 0.2, 0.05,
0.2, 0.3, 0.1, 0.05), but scenario I has field dependence in both match and nonmatch
classes, scenario II has dependence only in the match class, whereas scenario III
has dependence only in the nonmatch class. Scenario IV has fields with greater dis-
criminating power compared to the first three scenarios (m-probabilities are 0.85,
0.9, 0.85, 0.95, 0.98, 0.99, and u-probabilities are 0.05, 0.1, 0.02, 0.05, 0.02, 0.01),
with conditional dependence in both match and nonmatch classes.

For each scenario, we consider two values for the sample size (N = 500,000 and
5000 record pairs) and nine values for the true match prevalence (2%, 5%, 10%,
30%, 50%, 70%, 90%, 95%, 98%). For each combination of scenario, sample size,
and true match prevalence, we generate 500 Monte Carlo data sets based on the
finite mixture extended GRE model with η1 = 0.05 and η0 = 0.2, which are chosen
based on the results of the hospital linkage example in Section 4. For all scenarios,
we generate conditional dependence among the first four fields. For scenario I, the
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first four fields are correlated with bj1 = 1,2,0.5,1.5 among true matches and
bj0 = 0.5,1,2,0.5 among true nonmatches. This results in a relatively stronger
field dependence in the match class than in the nonmatch class, with tetrachoric
correlation ranging from 0.32 to 0.74 among matches and from 0.2 to 0.63 among
nonmatches. For scenario II, we generate the same dependence in the match class
as in Scenario I but no dependence in the nonmatch class. For scenario III, we
generate the same dependence in the true nonmatch class as in Scenario I but no
dependence in the match class. Scenario IV is set up to have the same dependence
in both match and non-match classes as in Scenario I.

For each simulated data set, we fit the FS, FSFM, LL, LLFM, GRE and GREFM
models. Due to the structured field dependence of the simulated data, we include
the pairwise interactions only among the first four fields in the LL and LLFM
models, and assume nonzero bjd ’s only for the first four fields in the GRE and
GREFM models. The correlations are considered in both match and nonmatch
classes for both scenarios I and IV, in the match class only for scenario II and in the
nonmatch class only for scenario III. Among the six models examined, the LLFM
and GREFM models are the only two that can adequately account for the field
dependence. We summarize estimates of match prevalence, m- and u-probabilities,
and matching accuracy in terms of AUC across the 500 replicates. The average
AUCs are shown in Figure 3. The biases in estimated prevalence and m- and u-
probabilities are presented in the figure in Supplementary Material Xu et al. (2019).
The magnitude of biases is represented using blue (under-estimation) to red (over-
estimation) spectrum with lighter color for smaller bias and darker color for larger
bias.

For scenario I with N = 500,000, none of the models produce bias when the
true match prevalence is close to 50%. When the true match prevalence deviates
from 50% in either direction, models that do not address the conditional depen-
dence adequately start to show bias and the magnitude of the bias becomes greater
as the true match prevalence moves further away from 50%. This is particularly
true for the FS model. When the true match prevalence is close to 0%, the match
prevalence is over-estimated while the m- and u-probabilities are generally under-
estimated. On the other hand, the match prevalence is under-estimated and m- and
u-probabilities are generally over-estimated when the true match prevalence ap-
proaches 100%. In terms of the matching accuracy, when the true match prevalence
is near 50%, all six models produce indistinguishable ROC curves with similar
AUCs of approximately 99.9% (Figure 3 panel A). These models continue to have
similar matching accuracy when the true match prevalence deviates from 50% un-
til it approaches either 0% or 100%. A difference in matching accuracy is observed
with the FS and FSFM models and is most notable when the true match prevalence
is less than 10% or greater than 90%. Specifically, the FS model is less accurate
than the LL, LLFM, GRE and GREFM models when the true match prevalence is
2%, 5%, 10% and 98%, and the FSFM model is less accurate when the true match
prevalence is 2%, 5% or 98%, with a greater difference at more extreme match
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FIG. 3. The average AUC (bottom panel) over 500 simulated data sets for latent class models in
Scenario I (panel A), II (panel B), III (panel C) and IV (panel D) with N = 500,000 record pairs.
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prevalences. It is worth noting that the FSFM model generally gives the same or
better accuracy compared to the FS model; however, at 2% prevalence it produces
lower accuracy than the FS model. These results show that the FS model provides
reasonable matching accuracy when the true match prevalence is close to 50%.
Consideration of the conditional dependence models is important in the more ex-
treme situations when the majority of the data are matches or nonmatches but the
importance diminishes as the match prevalence is around 50%.

In order to examine how the conditional dependence in each class affects the
model performance, we compare scenario I to scenarios II and III. In scenario II
where fields are correlated only in the match class, all models yield similar match-
ing accuracy close to 100%, except at the very high match prevalence of 98%
when data are dominated by true matches (Figure 3 panels B and C). Specifically,
at 98% prevalence, ignoring the conditional dependence produces biased param-
eter estimates and compromised matching accuracy. The FSFM model provides
relatively better matching accuracy than the FS model, but the accuracy is not as
good as the LL and GRE models and their finite mixture extensions. In scenario III
where fields are correlated only in the nonmatch class, ignoring the conditional de-
pendence produces biased parameter estimates when data are predominantly non-
matches with a true match prevalence 2–10%. The LL, LLFM, GRE and GREFM
models all provide accurate matching regardless of the true match prevalence. The
FS and FSFM models provide similar matching accuracy except when the true
match prevalence decreases to 2–10%. These findings demonstrate the importance
of addressing the conditional dependence when it exists in the vast majority of the
data. In other words, we need to consider conditional dependence models if the
conditional dependence exists in the dominating class of the data. On the other
hand, if the conditional dependence exists only in the nondominating class, fit-
ting conditional dependence models does not substantially improve the matching
accuracy over the FS model.

We now look at the scenario IV to examine whether findings are similar when
fields with higher discriminating power are used for record linkage. We again see
that, when the true match prevalence is close to 50%, none of the models pro-
duces bias. When the true match prevalence approaches 0% or 100%, bias starts
to appear for the FS and FSFM models. However, the magnitude of the bias is
less severe compared to scenario I, especially for the prevalence estimate. Among
all parameters, the u-probabilities of the FS and FSFM models show the greatest
amount of bias when the true match prevalence is 95%–98%. However, these bi-
ases do not result in compromised matching accuracy as all models show similar
AUCs (Figure 3 panel D). With a match prevalence close to 100%, nonmatches
only constitute a small portion of the data. Hence bias in the u-probabilities only
affects a small percentage of the data and does not have much impact on the overall
matching accuracy.

Note that the simulation results shown above only present the averages across
500 simulated data sets because the variability of the parameter estimates and
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AUCs are quite small with standard deviations in the order of 10−3. In addi-
tion, simulation results for the smaller sample size of N = 5000 record pairs are
not presented because they show the same results except that the parameter and
AUC estimates exhibit greater variability. Also note that we only consider situa-
tions with moderately and highly discriminating fields in our simulations because
record linkage practitioners would choose such fields from a set of candidates to
link records. In situations where fields have poor discriminating power, estimates
of match prevalence and m- and u-parameters based on the FS model are biased
even when the true match prevalence is close to 50%, although the bias is not as
severe as in situations when the true match prevalence is close to 0% or 100%
(based on additional simulations, results not shown in manuscript but available
from http://pages.iu.edu/~huipxu/publications.html). The FS model always pro-
vides inferior matching accuracy relative to the conditional dependence models,
regardless of the true match prevalence. In our specific simulation, the AUCs of
the FS model range from 5% lower when the true match prevalence is close to
50% to 15% lower when the true prevalence is close to 0% or 100%.

6. Discussion. The FS model is widely used in probabilistic record match-
ing, despite its often invalid assumption of conditional independence. Prior litera-
ture has recognized the limitations of the FS model—biased parameter estimation
when the conditional independence assumption fails. However, little investigation
has been performed to evaluate the extent to which the record matching accuracy
is impacted by the assumption. In this paper, we apply latent class models to the
motivating hospital linkage example, with conditional dependence structure in-
formed by the true match status of manually reviewed record pairs. In the SSN
blocking scheme where fields have poor discriminating power, conditional depen-
dence models yield improved matching accuracy compared to the FS model. In the
LNFN blocking scheme where fields with good discriminating power are used for
matching, incorporating conditional dependence results in comparable matching
accuracy relative to the FS model. These findings are confirmed by the extensive
simulation study, demonstrating that models incorporating the correct conditional
dependence yield matching accuracies as good as or better than that of the FS
model. In some situations, the simple FS model performs similarly to models with
more complex conditional dependence structures. However, it is important to note
that addressing conditional dependence is important when the true match preva-
lence approaches 0% or 100% and the conditional dependence exists in the dom-
inating class. When conditional dependence lies in the nondominating class only
or when the match prevalence is near 50%, it becomes less important to consider
conditional dependence models as all models produce comparable matching accu-
racy. Note that one may still prefer conditional dependence models in cases with
extremely large sample sizes, where a slight improvement in matching accuracy
could translate to a large number of record pairs being correctly classified.

http://pages.iu.edu/~huipxu/publications.html
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Our study further shows that the need to address conditional dependence at a
match prevalence close to 0% or 100% diminishes if the discriminating power
of matching fields is high, as seen in the LNFN blocking scheme of the hospi-
tal linkage example. This finding is consistent with Fellegi and Sunter’s claim in
their seminal work, where they stated that they believe the FS model is robust to
departures from the conditional independence assumption if sufficient identifying
information is used for linkage operation (Fellegi and Sunter (1969)). When fields
have high discriminating power, the FS model can provide a matching accuracy
comparable to the better fitting conditional dependence models. In the literature,
it has been well recognized that the gain in predictive accuracy from building in-
creasingly more complex models decreases dramatically and simple models can
account for over 90% of the achievable predictive power in many situations (Hand
(2006)). In supervised classifications, the simple naive Bayes rule with conditional
independence assumption can often perform surprisingly well and may even have
better performance than complex rules (Hand and Yu (2001)). These authors com-
mented that one of the reasons is the low variance in the probability estimates of
the naive Bayes rule. Although the naive Bayes rule produces biased probability
estimates, the bias may be inconsequential for classification as long as the rank
order is preserved. The same arguments can be made with regard to the often satis-
factory performance of the FS model for the unsupervised classification of record
linkage problems.

In contrast, if fields have poor discriminating power, as seen in the SSN block-
ing scheme of the hospital linkage example, it is important to consider conditional
dependence even if the true match prevalence is close to 50%. This is due to the in-
ferior matching accuracy of the FS model, regardless of the true match prevalence.
These findings highlight the importance of using highly discriminating fields for
record linkage whenever possible. These results are also consistent with previous
research that assessed the discriminating power of matching fields using real-world
record linkage problems (Cook, Olson and Dean (2001), Quantin et al. (2004)). In
particular, our work adds to the literature that fields with high discriminating power
are critical especially in situations when the match prevalence is extreme and de-
pendence exists in the dominating class. In addition, these findings explain why
the FS model produces matching accuracy inferior to that of conditional depen-
dence models only in the SSN blocking scheme of the hospital linkage example but
comparable matching accuracy in the LNFN blocking scheme: The SSN blocking
scheme uses fields with poor discriminating power where strong correlation exists
in the class that makes up 97% of the record pairs. The LNFN blocking scheme,
on the other hand, uses highly discriminating fields. Hence all models produce
comparable results. This also explains why, in Daggy et al. (Daggy et al. (2014)),
the FS model produced a negligible misclassification rate at low match prevalence
even when strong conditional dependence existed in both match and nonmatch
classes in their simulation study: Several fields in the simulations were extremely
discriminating with u-probabilities of 0.001 and m-probabilities of 0.95. Had these
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u-probabilities been larger and m-probabilities been smaller, the misclassification
rate of the FS model would have been much higher.

Lastly, we caution that not all conditional dependence models will necessarily
improve the matching accuracy when conditional dependence exists. The finite
mixture extended FS model addresses the conditional dependence; however, in
our simulations, it sometimes produces less accurate record matching than the FS
model, despite a better fit to the data. This finding suggests that a conditional de-
pendence model with misspecified dependence structure could potentially produce
inferior matching accuracy than the FS model, consistent with earlier findings on
the impact of incorrect conditional dependence structures for record linkage (Li
et al. (2018)). This is also consistent with findings by Albert and Dodd (2004) re-
garding diagnostic test accuracy evaluation—conditional dependence models lack
robustness and thus parameter estimates can be seriously biased with misspeci-
fied conditional dependence structure. We therefore caution against a blind use of
conditional dependence models, even if there is a need to address the conditional
dependence. Studies have successfully used multiple diagnostic tools to identify
the conditional dependence (Garrett and Zeger (2000), Qu, Tan and Kutner (1996),
Sepúlveda, Vicente-Villardón and Galindo (2008)). However, recent research has
found that these approaches may not be able to identify the appropriate dependence
structure in situations when the conditional independence model is highly biased
(Subtil, de Oliveira and Gonçalves (2012)). These authors further demonstrated
that the dependence would be correctly identified if the true values of parameters
were used to estimate the expected correlations. Moreover, to decide whether to
address conditional dependence in record linkage, one needs to have an approxi-
mate estimate of the true match prevalence. This can be difficult to obtain since the
FS model can give severely biased estimate of the match prevalence in some situ-
ations. Owing to these issues, we recommend human review of a sample of record
pairs to establish the true match status whenever feasible for practical applications.
This will help in both choosing a model with appropriate dependence structure and
establishing an estimate for match prevalence. If human review is not available, a
sensitivity analysis should be conducted to apply latent class models with various
structures to address the conditional dependence.

The finite mixture extension of the conditional dependence models appears to
perform similarly to the corresponding models without the finite mixture extension
in simulation studies in terms of both parameter estimates and matching accuracy.
This is due to the relatively low percentages of record pairs whose field agreement
pattern is always consistent with the underlying true match status, which were set
to be 5% in the match class and 20% in the nonmatch class. When these per-
centages are higher, additional simulations (results not shown but reproducible
with a SAS program available at http://pages.iu.edu/~huipxu/publications.html)
show that the conditional dependence models with the finite mixture extension
provide less biased parameter estimates than models without the finite mix-
ture extension, but the matching accuracy is still comparable. This again con-
firms our previous finding that improved model fit does not necessarily lead

http://pages.iu.edu/~huipxu/publications.html
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to improved matching accuracy. Furthermore, comparison between LL models
and GRE models shows that both models produce comparable results. How-
ever, as reported by Daggy et al. (Daggy et al. (2014)), GRE models are com-
putationally more intensive. They are also more likely to have numerical insta-
bility. In practice, GRE models can be a useful tool when the conditional de-
pendence is prevalent among many fields as they involve fewer parameters than
LL models. We recommend using multiple starting values if GRE models are
used since the convergence of these models is strongly dependent on the starting
values.

APPENDIX A

This section shows the model estimated frequencies for each vector pattern of
the SSN and LNFN blocking schemes of the hospital linkage data. Also shown are
the ROC curves of the latent class models where the true match status of record
pairs with inconsistent manual reviews was assumed under three scenarios.

FIG. 4. ROC curves of latent class models of the hospital linkage data, where the match status of
record pairs with discrepant evaluation between two reviewers was derived assuming that the third
adjudicator was incorrect (Scenario 1), all were nonmatches (Scenario 2) and all were matches
(Scenario 3).
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TABLE 2
Expected frequencies estimated by the latent class models for the SSN blocking scheme of the

hospital linkage data

Manual review Expected frequency
Total
fre-

quency
Vector
pattern

Non-
matchMatch FS FSFM LL LLFM GRE GREFM

00000 53 158 5345 1541.3 5345.0 5329.6 5345.0 5226.6 5345.0
00001 1811 190 48,981 50,619.6 47,035.5 48,984.5 48,975.9 49,238.7 48,979.6
00010 242 42 2898 5773.4 2830.2 2916.8 2910.7 2886.7 2877.3
00011 807 118 198,301 198,489.4 200,776.9 198,333.3 198,281.2 198,852.8 198,368.7
00100 4 2 92 240.3 111.8 103.1 102.4 122.0 112.2
00101 134 1 5831 7957.1 7764.7 5534.1 5809.2 5560.2 5783.8
00110 33 3 243 906.8 471.2 239.0 237.8 191.1 244.3
00111 61 6 36,498 32,324.6 33,792.1 36,748.5 36,526.9 36,074.6 36,480.4
01000 1 0 24 20.1 14.6 33.2 33.2 52.7 32.9
01001 17 3 1508 1370.2 1418.5 1735.3 1499.7 1357.3 1490.3
01010 21 1 144 148.3 155.6 98.7 132.1 125.7 123.9
01011 38 9 17,005 17,434.6 17,609.0 16,774.7 17,028.2 17,142.6 17,158.0
01100 0 0 3 3.7 2.9 1.3 1.1 1.7 1.8
01101 1 0 257 305.2 290.5 319.8 274.6 294.6 251.8
01110 3 0 16 32.7 33.3 18.1 16.8 20.6 16.9
01111 14 2 4352 4330.6 3846.4 4327.9 4323.3 4337.4 4232.0
10000 18 9 409 287.0 160.1 412.8 351.7 461.9 335.3
10001 256 44 13,218 12,875.9 13,059.7 13,428.1 13,305.6 12,872.0 13,360.3
10010 115 14 1195 1429.6 1123.4 1176.5 1194.2 1217.0 1262.9
10011 356 41 111,353 109,129.7 111,260.7 111,118.4 111,335.7 110,587.1 111,071.6
10100 1 0 13 47.4 28.6 11.0 17.3 12.6 12.7
10101 25 1 1872 2460.8 2426.6 1957.8 1854.0 2381.7 1854.3
10110 19 0 108 270.4 222.7 110.6 108.4 112.6 99.6
10111 37 0 23,019 25,022.7 22,967.0 22,971.8 23,020.1 23,559.7 23,188.9
11000 11 3 97 32.1 43.1 95.0 129.9 136.6 124.5
11001 86 10 5544 5039.0 5222.9 5107.6 5485.0 5113.2 5487.5
11010 76 12 736 529.7 698.2 754.6 740.2 720.5 729.7
11011 225 32 85,415 87,453.1 85,419.6 85,874.1 85,424.6 86,180.5 85,425.6
11100 0 0 4 8.1 9.6 4.4 3.6 6.2 4.8
11101 13 1 906 1296.3 1170.0 1046.4 915.9 1266.7 927.3
11110 13 1 80 136.2 156.8 102.4 82.7 112.6 83.3
11111 31 5 24,661 22,612.1 24,661.0 24,458.6 24,661.0 23,902.3 24,661.0

APPENDIX B

In this section, we will further evaluate whether incorporating conditional de-
pendence might improve the matching accuracy using a publicly available data
set for the deduplication of personal data records from the Epidemiological Can-



1776
H

.X
U

E
T

A
L

.

TABLE 3
Expected frequencies estimated by the latent class models for the LNFN blocking scheme of the hospital linkage data

Manual review Expected frequency
Vector
pattern

Total
frequencyMatch Nonmatch FS FSFM LL LLFM GRE GREFM

000000 0 482 11,905,306 11,881,099 11,905,306 11,889,364 11,905,306 11,889,456 11,905,306
000001 2 39 1,039,570 1,055,810 1,035,579 1,052,341 1,038,721 1,052,279 1,038,733
000010 0 6 134,229 140,017 134,703 135,919 131,238 135,889 131,227
000011 0 0 12,734 12,511 16,077 12,076 15,249 12,073 15,236
000100 0 0 1168 5136 5148 1271 1234 1252 1211
000101 0 2 118 483 632 120 148 117 145
000110 0 1 4302 61 80 4638 4499 4662 4514
000111 9 28 502 23 19 434 539 436 540
001000 0 16 382,209 394,884 380,910 392,160 382,915 392,113 382,921
001001 29 15 51,476 39,316 50,983 41,327 49,952 41,362 49,950
001010 0 1 4657 4684 5919 4502 5623 4501 5618
001011 6 1 3409 3210 3532 2233 2210 2233 2209
001100 0 1 54 182 234 45 55 44 54
001101 14 3 227 1080 750 275 238 250 216
001110 9 8 189 10 8 163 199 163 200
001111 51 5 881 704 357 906 788 912 793
010000 1 1 1704 3096 3020 2300 2437 2267 2410
010001 2 0 492 394 504 334 380 331 376
010010 6 0 799 37 48 1060 1150 1088 1168
010011 16 1 303 82 77 166 187 168 189
010100 2 0 48 2 2 2 3 38 53
010101 2 0 25 30 19 10 8 14 14
010110 14 3 190 0 0 317 383 304 373
010111 6 0 118 20 9 93 93 91 91
011000 1 0 169 155 196 130 144 129 142
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TABLE 3

(Continued)

Manual review Expected frequency
Vector
pattern

Total
frequencyMatch Nonmatch FS FSFM LL LLFM GRE GREFM

011001 7 1 4113 4763 5253 5036 4320 5030 4313
011010 5 0 84 36 34 65 71 66 72
011011 3 0 2395 3141 2580 2776 2383 2776 2381
011100 0 0 8 13 8 4 3 6 5
011101 0 0 271 1196 659 381 328 404 347
011110 1 0 27 9 4 37 36 37 35
011111 0 0 1197 790 325 2490 2134 2487 2131
100000 3 12 216,212 224,110 215,230 221,982 217,269 221,952 217,284
100001 33 3 30,843 24,589 31,959 26,664 31,222 26,697 31,229
100010 0 0 3109 2675 3363 2558 3197 2557 3195
100011 20 2 2796 3327 3550 2171 2062 2169 2058
100100 0 0 86 110 137 27 32 26 31
100101 28 0 248 1186 821 290 255 263 231
100110 17 0 423 10 7 97 117 97 117
100111 62 0 918 778 397 954 844 959 847
101000 15 2 11,616 9514 12,222 10,234 11,746 10,245 11,744
101001 2589 10 271,855 188,050 231,342 271,294 268,289 272,525 269,489
101010 6 1 1069 1454 1536 892 826 890 823
101011 720 14 69,634 123,814 113,424 75,007 74,899 74,871 74,778
101100 2 0 90 524 361 120 104 109 94
101101 151 0 7525 47,149 28,966 11,090 11,118 10,027 10,072
101110 20 0 332 344 175 396 344 397 344
101111 357 0 40,208 31,151 14,268 36,447 36,758 36,625 36,930
110000 30 0 1117 116 146 100 102 100 101
110001 9 0 4072 5262 5843 5334 4682 5323 4666
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TABLE 3
(Continued)

Manual review Expected frequency
Vector
pattern

Total
frequencyMatch Nonmatch FS FSFM LL LLFM GRE GREFM

110010 14 0 620 39 36 51 52 52 52
110011 0 0 2394 3473 2874 2941 2583 2938 2577
110100 1 0 85 15 9 4 3 5 5
110101 1 0 298 1323 734 403 355 428 376
110110 9 0 490 10 4 34 31 34 30
110111 1 0 1376 874 362 2639 2315 2633 2307
111000 1 0 1385 2325 2574 2214 1909 2207 1899
111001 269 0 204,020 210,460 209,662 205,346 206,766 204,755 206,198
111010 0 0 850 1535 1267 1221 1053 1218 1048
111011 150 0 117,785 139,049 103,277 113,229 114,085 113,018 113,882
111100 0 0 93 584 323 167 145 177 153
111101 28 0 19,407 52,954 26,378 15,541 15,722 16,455 16,610
111110 0 0 450 386 159 1095 944 1092 939
111111 120 0 100,768 34,986 100,768 101,632 102,348 101,333 102,062
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cer Registry of North Rhine-Westphalia in Germany (Schmidtmann et al. (2009)).
The comparison patterns in the data set were formed based on a sample of
100,000 records collected between 2005 and 2008 and are available at https:
//archive.ics.uci.edu/ml/datasets/Record+Linkage+Comparison+Patterns. Due to
the large number of possible pairs, six blocking schemes were utilized, resulting in
5,749,132 record pairs, of which 20,931 pairs were matches. The true match status
was ascertained by applying two record linkage software packages, where record
pairs classified as a match or a potential match by one or both software pack-
ages were subjected to an extensive manual review involving three experienced
documentarists and four further staff members (Sariyar, Borg and Pommerening
(2011)). Seven fields were available in the data set, including first name, last name,
sex, birth day, birth month, birth year and postal code. The agreement of the last
name and first name was measured as a value between 0 and 1, indicating the pho-
netic similarity of the names. Binary agreement in last name and first name was
then derived based on the dichotomization with 0.9 as the threshold, while for the
other five fields, exact agrement was derived.

In our analysis, we focus on two blocking schemes: one requiring agreement
in date of birth (DOB) and the other requiring equality of last name and sex (LN-
SEX). The DOB blocking scheme involves 331,637 record pairs, of which 20,766
(6.26%) pairs are matches. The LNSEX block includes 732,897 record pairs, of
which 20,463 (2.79%) pairs are matches. Examination of the true matches and true
nonmatches reveals that last name and sex are correlated among the nonmatches in
the DOB blocking scheme, while in the LNSEX blocking scheme, day, month and
year of birth were correlated among the matches. We therefore fit the LL model
with pairwise interactions between last name and sex in the nonmatch class for the
DOB blocking scheme, allowing fields to be independent in the match class. The
conditional dependence will also be modeled using the GRE model with nonzero
bjM = b for last name and sex in the nonmatch class. For the LNSEX blocking
scheme, conditional dependence will be accommodated using the LL model with
pairwise interactions among birth day, month and year and using the GRE model
with nonzero bjM for these three fields in the match class only.

Model deviance and estimates of model parameters are shown in Table 4. For
the DOB blocking scheme, accommodation of the conditional dependence, which
lies in the nonmatching class or the dominating class, results in substantial im-
provement in model fit, as seen by remarkably smaller deviance of the conditional
dependence models relative to the FS model. The estimated frequencies based on
conditional dependence models are much closer to the observed frequencies, as
shown in Table 5. Model parameter estimates, on the other hand, are very simi-
lar across models. In addition, all models provide excellent discrimination with an
AUC above 99.9%.

For the LNSEX blocking scheme, accommodation of the conditional depen-
dence, which lies in the nondominating class, results in better model fit than the

https://archive.ics.uci.edu/ml/datasets/Record+Linkage+Comparison+Patterns
https://archive.ics.uci.edu/ml/datasets/Record+Linkage+Comparison+Patterns
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TABLE 4
Estimates of match prevalence and m- and u-probabilities of latent class models for the

deduplication of Cancer Registry Data

Manual review FS FSFM LL LLFM GRE GREFM

The DOB blocking scheme
Prevalence 0.0626 0.0625 0.0626 0.0625 0.0626 0.0625 0.0626
m-probabilities

First name 0.9905 0.9915 0.9912 0.9915 0.9906 0.9915 0.9906
Last name 0.9922 0.9928 0.9927 0.9931 0.9923 0.9931 0.9923
Sex 0.9873 0.9876 0.9873 0.9874 0.9874 0.9874 0.9874
Postal code 0.9575 0.9583 0.9578 0.9585 0.9572 0.9585 0.9572

u-probabilities
First name 0.0092 0.0092 0.0092 0.0092 0.0091 0.0092 0.0091
Last name 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004
Sex 0.5048 0.5048 0.5048 0.5049 0.5048 0.5049 0.5048
Postal code 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

Deviance 3321.7 882.7 36.1 0.9 36.1 0.9

The LNSEX blocking scheme
Prevalence 0.0279 0.0279 0.0280 0.0279 0.0280 0.0279 0.0280
m-probabilities

First name 0.9910 0.9915 0.9898 0.9915 0.9899 0.9915 0.9898
Birth day 0.9968 0.9979 0.9973 0.9959 0.9951 0.9971 0.9965
Birth month 0.9977 0.9986 0.9982 0.9968 0.9962 0.9979 0.9976
Birth year 0.9961 0.9974 0.9967 0.9956 0.9948 0.9968 0.9962
Postal code 0.9585 0.9592 0.9568 0.9592 0.9566 0.9592 0.9567

u-probabilities
First name 0.0145 0.0145 0.0145 0.0145 0.0144 0.0145 0.0145
Birth day 0.0327 0.0327 0.0327 0.0327 0.0327 0.0327 0.0327
Birth month 0.0824 0.0824 0.0824 0.0824 0.0824 0.0824 0.0824
Birth year 0.0239 0.0239 0.0238 0.0239 0.0238 0.0239 0.0238
Postal code 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035

Deviance 119.18 84.38 79.78 54.38 98.18 67.98

FS model. However, the improvement is rather modest. Estimated parameter val-
ues of all six models are similar to the true values and all models yield excellent
discrimination with an AUC above 99.9%.

These results show that accommodating conditional dependence leads to com-
parable matching accuracy relative to that of the FS model while improving model
fit. Both blocking schemes use fields such as first name, last name and postal codes
with high discriminating power, resulting in high matching accuracy for all latent
class models, even for the FS model whose conditional independence assumption
is inappropriate.
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TABLE 5
Expected frequencies estimated by the latent class models for cancer registry data deduplication

Observed
frequency Expected frequency

Vector
pattern Matches Total FS FSFM LL LLFM GRE GREFM

The DOB blocking scheme
0000 0 153,560 152,211.9 153,560 153,551.3 153,560 153,551.3 153,560
0001 1 252 249.74 54.39 251.77 250.04 251.77 250.04
0010 0 153,843 155,189.4 153,843 153,851.5 153,843 153,851.5 153,843
0011 11 253 255.8 451.53 253.4 254.95 253.4 254.95
0100 2 60 68.99 14.85 69 61.95 69 61.95
0101 3 4 2.18 5.11 2.22 5.98 2.22 5.98
0110 22 86 77.44 136.11 76.2 83.34 76.2 83.34
0111 159 163 165.5 156.03 165.6 161.69 165.6 161.69
1000 0 66 1409.19 307.01 66.25 66 66.25 66
1001 5 5 4.06 5.08 1.82 4.9 1.82 4.9
1010 13 2790 1442.76 2547.96 2789.87 2789.99 2789.87 2789.99
1011 133 136 142.1 136.05 139.09 136.08 139.09 136.08
1100 31 31 11.15 26.76 10.67 29.77 10.67 29.77
1101 221 221 241.76 225.8 245.94 220.36 245.94 220.36
1110 814 816 841.12 816.33 837.21 817.9 837.21 817.9
1111 19,351 19,351 19,323.87 19,351 19,325.15 19,351 19,325.15 19,351

The LNSEX blocking scheme
00000 0 606,312 606,116.49 606,311.99 606,155.4 606,311.9 606,139.9 606,312
00001 0 2132 2157.01 2145.87 2122.59 2117.13 2141.65 2136.03
00010 0 14,747 14,825.63 14,751.2 14,822.81 14,761.26 14,821.8 14,753.9
00011 0 46 52.76 53.33 51.95 52.7 52.44 53.28
00100 0 54,422 54,455.17 54,341.53 54,457.6 54,368.3 54,453.87 54,353.4
00101 0 180 193.79 196.45 190.72 192.95 192.46 195.18
00110 0 1277 1331.99 1350.73 1331.71 1343.88 1331.56 1346.48
00111 0 4 5.09 6.93 5 6.46 5.04 6.67
01000 0 20,483 20,514.38 20,428.05 20,515.85 20,446.36 20,514.47 20,437.3
01001 0 78 73.01 73.86 71.85 72.61 72.51 73.39
01010 0 502 501.79 507.91 501.7 505.5 501.64 506.41
01011 2 2 2.02 3.17 1.98 2.86 1.99 3.01
01100 1 1856 1843.09 1870.46 1843.18 1861.42 1842.98 1865.12
01101 1 9 6.99 9.26 6.88 8.77 6.93 9.05
01110 22 86 52.15 87.39 52.15 83.8 52.14 86.01
01111 158 162 166.64 159.88 166.66 162 166.65 160.74
10000 0 8775 8933.71 8889.07 8899.11 8864.69 8917.99 8880.12
10001 14 62 31.79 32.13 60.14 55.88 35.38 34.23
10010 0 312 218.52 220.95 217.85 220.97 218.4 221.84
10011 4 6 0.83 1.14 7.03 9.6 8.61 8.64
10100 0 837 802.63 813.79 799.63 808.13 801.45 811.68
10101 4 7 2.96 3.58 8.26 10.71 9.87 9.3
10110 5 32 21.34 30.62 21.2 28.51 21.22 29.44
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TABLE 5
(Continued)

Observed
frequency Expected frequency

Vector
pattern Matches Total FS FSFM LL LLFM GRE GREFM

10111 39 39 40.27 40.68 39.02 36.83 38.52 37.87
11000 1 269 302.37 305.97 301.25 304.17 301.96 305.21
11001 1 2 1.15 1.52 3.22 5.13 4.48 3.56
11010 0 13 8.54 14.37 8.46 12.91 8.45 13.6
11011 26 26 27 26.46 25.83 23.22 25.31 24.46
11100 9 41 29.29 40.72 29.14 38.59 29.19 39.82
11101 49 49 50.17 49.75 49.21 47.15 48.94 48.58
11110 812 814 820.9 813.24 820.98 817.49 820.98 815.64
11111 19,315 19,315 19,307.52 19,315 19,308.67 19,315.06 19,308.22 19,315

APPENDIX C

Another publicly available data set will be used to evaluate whether incorporat-
ing conditional dependence might improve the matching accuracy. This data set
involves the disambiguation of inventor records in the United States Patent and
Trademark Office (USPTO) database. A total of 98,762 inventor records corre-
sponding to a sample of 824 inventors in the optoelectronics industry were manu-
ally disambiguated, where a random sample of 150,000 record pairs was selected
from all pairwise comparisons and used as the training data for the classification
models by Ventura, Nugent and Fuchs (2015) (available at http://www.cmu.edu/
epp/disambiguation). There were eight fields in the data, where agreement for last
name, first name, and middle initial of the inventor, city, and assignee was mea-
sured using the similarity scores based on the Jaro–Winkler string comparator.
Binary agreement status was then derived according to the dichotomization of the
similarity scores at the 0.8 threshold.

Among the 150,000 record pairs, 19,896 pairs are true matches, resulting in
a match prevalence of 13.3%. Further examination of the field agreement status
among true matches and true nonmatches determined by manual review reveals
that first name and last name show a strong negative correlation in the nonmatch
class. Specifically, approximately 92% of the true nonmatches disagree on last
name and agree on first name. Another 7.5% of the record pairs agree on last name
while disagree on first name. No record pairs have disagreement on both last and
first names. We therefore perform two analyses, both of which include first name
and last name as matching fields. Three additional fields are included. In Analy-
sis I, we include country, state and assignee that have relatively poor discriminating
power. In Analysis II, we include middle name, city and suffix with good discrimi-
nating power. The strong conditional dependence between first name and last name

http://www.cmu.edu/epp/disambiguation
http://www.cmu.edu/epp/disambiguation
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TABLE 6
Estimates of match prevalence and m- and u-probabilities of latent class models for the USPTO

inventor records disambiguation data

Manual review FS FSFM LL LLFM

Analysis I
Prevalence 0.1326 0.2012 0.2012 0.1367 0.1367
m-probabilities

First name 1.0000 0.6748 0.6748 0.9922 0.9922
Last name 1.0000 1.0000 1.0000 0.9304 0.9304
Country 0.9932 0.9723 0.9723 1.0000 1.0000
Assignee 0.8371 0.6003 0.6003 0.8678 0.8678
State 0.9294 0.6377 0.6377 0.9756 0.9756

u-probabilities
First name 0.9246 1.0000 1.0000 0.9254 0.9254
Last name 0.0791 0.0000 0.0000 0.0858 0.0858
Country 0.9548 0.9568 0.9568 0.9536 0.9536
Assignee 0.1204 0.1185 0.1185 0.1122 0.1122
State 0.0665 0.0659 0.0659 0.0551 0.0551

Deviance 41,224.4 7687.2 1528.2 1528.2

Analysis II
Prevalence 0.1326 0.1290 0.1290 0.1358 0.1358
m-probabilities

First name 1.0000 0.9878 0.9878 1.0000 1.0000
Last name 1.0000 0.9989 0.9989 1.0000 1.0000
Middle name 0.8495 0.8597 0.8597 0.8308 0.8308
City 0.8055 0.8288 0.8288 0.7873 0.7873
Suffix 0.1945 0.2002 0.2002 0.1899 0.1899

u-probabilities
First name 0.9246 0.9267 0.9267 0.9243 0.9243
Last name 0.0791 0.0831 0.0831 0.0757 0.0757
Middle name 0.0450 0.0468 0.0468 0.0450 0.0450
City 0.0083 0.0082 0.0082 0.0083 0.0083
Suffix 0.0019 0.0018 0.0018 0.0019 0.0019

Deviance 65,146.1 65,146.1 1716.5 1716.5

in the nonmatch class is accommodated using the LL model for both analyses. The
GRE model is not used due to the numerical instability since the tetrachoric corre-
lation underlying the binary agreement status is nearly on the boundary.

The match prevalence and the m- and u-probabilities estimated by latent class
models are shown in Table 6. The LL model provides substantially better fit than
the FS model for both analyses, with expected frequencies generally closer to the
observed frequencies (Table 7). In Analysis I where the three additional fields have
poor discrimination, parameter estimates are much less biased in the LL model
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TABLE 7
Expected frequencies estimated by the latent class models for the USPTO inventor records

disambiguation data

Observed frequency Expected frequency
Vector
pattern Matches Total FS FSFM LL LLFM

Analysis I
00000 0 0 327.48 0 0 0
00001 0 0 19.12 0 0 0
00010 0 0 42.52 0 0 0
00011 0 0 2.48 0 0 0
00100 0 0 6752.06 0 0.04 0.04
00101 0 0 399.03 0 1.44 1.44
00110 0 0 876.72 0 0.24 0.24
00111 0 0 83.48 0 9.47 9.47
01000 0 574 32.23 368.7 376.18 376.18
01001 0 0 1.88 114.09 21.95 21.95
01010 0 91 4.18 68.94 47.55 47.55
01011 0 0 0.24 21.33 2.78 2.78
01100 0 7313 664.46 5946.77 7723.31 7723.31
01101 0 525 101.05 1840.08 470.02 470.02
01110 0 1117 86.28 1112 979.35 979.35
01111 0 196 422.79 344.08 183.66 183.66
10000 0 4793 4251.93 4264.46 4612.68 4612.68
10001 0 0 248.25 300.7 269.2 269.2
10010 0 386 552.09 573.41 583.05 583.05
10011 0 0 32.23 40.43 34.03 34.03
10100 0 94,829 87,666.04 94,392.93 94,699.85 94,699.84
10101 0 5992 5299.33 6655.91 5709.06 5709.06
10110 0 11,915 11,383.03 12,692.2 11,999.67 11,999.67
10111 0 1900 1879.2 894.96 1896.28 1896.28
11000 7 33 418.42 169.17 56.69 56.69
11001 0 0 24.43 52.35 3.31 3.31
11010 129 138 54.33 31.63 7.17 7.17
11011 0 0 3.17 9.79 0.42 0.42
11100 754 1114 8627.03 2728.56 1224.89 1224.89
11101 2480 2505 2845.27 844.28 2509.39 2509.39
11110 515 556 1120.18 510.22 548.36 548.36
11111 16,011 16,023 15,779.06 16,023 16,029.98 16,029.98

Analysis II
00000 0 0 8289.56 8289.56 0 0
00001 0 0 15.3 15.3 0 0
00010 0 0 68.39 68.39 0 0
00011 0 0 0.13 0.13 0 0
00100 0 0 407.3 407.3 0 0
00101 0 0 0.76 0.76 0 0
00110 0 0 3.5 3.5 0 0
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TABLE 7
(Continued)

Observed frequency Expected frequency
Vector
pattern Matches Total FS FSFM LL LLFM

00111 0 0 0.04 0.04 0 0
01000 0 9501 755.67 755.67 9279.29 9279.29
01001 0 13 2.52 2.52 17.64 17.64
01010 0 112 28.04 28.04 77.23 77.23
01011 0 0 5.48 5.48 0.15 0.15
01100 0 183 64.57 64.57 437.21 437.21
01101 0 0 6.99 6.99 0.83 0.83
01110 0 7 134.21 134.21 3.64 3.64
01111 0 0 33.52 33.52 0.01 0.01
10000 0 113,064 104,752.38 104,752.38 113,263.87 113,263.86
10001 0 223 193.37 193.37 215.35 215.35
10010 0 880 865.88 865.88 942.68 942.68
10011 0 5 2.08 2.08 1.79 1.79
10100 0 5572 5148.93 5148.93 5336.66 5336.66
10101 0 5 10.11 10.11 10.15 10.15
10110 0 66 54.24 54.24 44.42 44.42
10111 0 0 3.03 3.03 0.08 0.08
11000 364 810 9858.85 9858.85 593.98 593.98
11001 0 0 109.33 109.33 139.28 139.28
11010 2516 2522 1853.46 1853.46 2198.27 2198.28
11011 115 115 444.54 444.54 515.46 515.46
11100 2207 2224 2714.65 2714.65 2915.98 2915.98
11101 1299 1299 563.7 563.7 683.75 683.75
11110 10,940 10,944 10,885.35 10,885.35 10,791.76 10,791.76
11111 2455 2455 2724.09 2724.09 2530.5 2530.5

than in the FS model. In Analysis II where the additional fields have good discrim-
ination, all models produce similar parameter estimates with little bias. In terms of
matching accuracy, the AUC was 96% for the FS model and 99% for the LL model
for Analysis I, implying lower accuracy of the FS model (see Figure 5). In Analy-
sis II, however, the AUC was 99.9% for all models, suggesting little difference in
matching accuracy.

Accommodating conditional dependence in this example results in comparable
or improved matching accuracy relative to that of the FS model while improving
model fit. Specifically, conditional dependence models produce higher matching
accuracy in Analysis I, where fields used for matching have relatively poor dis-
criminating power and there exists strong conditional dependence in the dominat-
ing class. The ratios of the m- and u-probabilities for the three additional fields are
1, 7 and 14 for country, assignee and state. In comparison, all latent class mod-
els produce comparable matching accuracy in Analysis II, where fields have much
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FIG. 5. ROC curves of latent class models of the USPTO inventor records disambiguation data.

greater discrimination, with ratios of the m- and u-probabilities being 19, 97 and
102 for middle name, city and suffix. These highly discriminating fields lead to
high matching accuracy for all latent class models.

SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/19-AOAS1256SUPP; .pdf). The sup-
plement includes an additional figure, presenting the average biases of the esti-
mated match prevalence, m- and u-probabilities in the simulation study using a
heat map.
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