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Entity resolution identifies and removes duplicate entities in large, noisy
databases and has grown in both usage and new developments as a result of
increased data availability. Nevertheless, entity resolution has tradeoffs re-
garding assumptions of the data generation process, error rates, and compu-
tational scalability that make it a difficult task for real applications. In this
paper, we focus on a related problem of unique entity estimation, which is
the task of estimating the unique number of entities and associated standard
errors in a data set with duplicate entities. Unique entity estimation shares
many fundamental challenges of entity resolution, namely, that the computa-
tional cost of all-to-all entity comparisons is intractable for large databases.
To circumvent this computational barrier, we propose an efficient (near-linear
time) estimation algorithm based on locality sensitive hashing. Our estima-
tor, under realistic assumptions, is unbiased and has provably low variance
compared to existing random sampling based approaches. In addition, we
empirically show its superiority over the state-of-the-art estimators on three
real applications. The motivation for our work is to derive an accurate esti-
mate of the documented, identifiable deaths in the ongoing Syrian conflict.
Our methodology, when applied to the Syrian data set, provides an estimate
of 191,874 ± 1,772 documented, identifiable deaths, which is very close to
the Human Rights Data Analysis Group (HRDAG) estimate of 191,369. Our
work provides an example of challenges and efforts involved in solving a real,
noisy challenging problem where modeling assumptions may not hold.

1. Introduction. Our work is motivated by a real estimation problem associ-
ated with the ongoing conflict in Syria. While deaths are tremendously well doc-
umented, it is hard to know how many unique individuals have been killed from
conflict-related violence in Syria. Since March 2011, increasing reports of deaths
have appeared in both the national and international news. There are many incon-
sistencies from various media sources, which is inherent due to the data collection
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process and the fact that reported victims are documented by multiple sources.
Thus, our ultimate goal is to determine an accurate number of documented, identi-
fiable deaths (with associated standard errors) because such information may con-
tribute to future transitional justice and accountability measures. For instance, sta-
tistical estimates of death counts have been introduced as evidence in national court
cases and international tribunals investigating the responsibility of state leaders for
crimes against humanity [Grillo (2016)].

The main challenge with reliable death estimation of the Syrian dataset is
the fact that individuals who are documented as dead are often duplicated in
the datasets. To address this challenge, one could employ entity resolution (de-
duplication or record linkage), which refers to the task of removing duplicated
records in noisy datasets that refer to the same entity [Baxter et al. (2003),
Bhattacharya and Getoor (2006), Deming and Glasser (1959), Fellegi and Sunter
(1969), Gutman, Afendulis and Zaslavsky (2013), McCallum and Wellner (2004),
Sadinle (2014), Tancredi and Liseo (2011), Winkler (2005)]. Entity resolution is
fundamental in many large data processing applications. Informally, let us assume
that each entity (records) is a vector in R

D . Then given a dataset of M records
aggregated from many data sources with possibly numerous duplicated entities
perturbed by noise, the task of entity resolution is to identify and remove the du-
plicate entities. For a review of entity resolution, see Christen (2012), Liseo and
Tancredi (2013), Winkler (2006).

One important subtask of entity resolution is estimating the number of unique
entities (records) n out of M > n duplicated entities, which we call unique entity
estimation. Entity resolution is a more difficult problem because it requires one to
link each entity to its associated duplicate entities. To obtain high-accuracy entity
resolution, the algorithms must at least evaluate a significant amount of pairs for
potential duplicates to ensure a link is not missed. Due to this (and to the best of
our knowledge), accurate entity resolution algorithms scale quadratically or higher
[>O(M2)] making them computationally intractable for large data sets. Reducing
the computational cost in entity resolution is known as blocking, which via de-
terministic or probabilistic algorithms, places similar records into blocks or bins
[Christen (2012), Steorts et al. (2014)]. The computational efficiency comes at the
cost of missed links and reduced accuracy for entity resolution. Further, it is not
clear if we can use these crude but cheap entity resolution sub-routines for unbi-
ased estimation of unique entities with strong statistical guarantees.

The primary focus of this paper is on developing a unique entity estimation
algorithm that is motivated by the ongoing conflict in Syria and has the following
desiderata:

1. The estimation cost should be significantly less than quadratic [O(M2)]. In
particular, any methodology requiring one to evaluate all pairs for linkage is not
suitable. This is crucial for the Syrian data set and other large, noisy data sets
(Section 1.3).



UNIQUE ENTITY ESTIMATION WITH APPLICATION TO SYRIA 1041

2. To ensure accountability regarding estimating the unique number of doc-
umented identifiable victims in the Syrian conflict, it is essential to understand
the statistical properties of any proposed estimator. Such a requirement eliminates
many heuristics and rule-based entity resolution tasks, where the estimates may be
very far from the true value.

3. In most real entity resolution tasks, duplicated data can occur with arbitrarily
large changes including missing information, which we observe in the Syrian data
set, and standard modeling assumptions may not hold due to the noise inherent in
the data. Due to this, we prefer not to make strong modeling assumptions regarding
the data generation process.

1.1. Related work for unique entity estimation. The three aforementioned
desiderata eliminate all but random sampling-based approaches. In this section,
we review them briefly.

To our knowledge, only two random sampling based methodologies satisfy such
requirements. Frank (1978) proposed sampling a large enough subgraph to esti-
mate the total number of connected components based on the properties of the
subsampled subgraph. Also, Chazelle, Rubinfeld and Trevisan (2005) proposed
finding connected components with high probability by sampling random vertices
and then visiting their associated components using breadth-first search (BFS).
One major issue with random sampling is that most sampled pairs are unlikely to
be matches (no edge) providing nearly no information, as the underlying graph is
generally very sparse in practice. Randomly sampling vertices and running BFS
required by Chazelle, Rubinfeld and Trevisan (2005) are very likely to result in
singleton vertices because many records are themselves unique in entity resolution
data sets. In addition, finding all possible connections of a given vertex would re-
quire O(M) query for edges. A query for edges corresponds to the query for actual
link between two records. Subsampling a subgraph, as in Frank (1978), of size s

requires O(s2) edge queries to completely observe it. Thus, s should be reason-
ably small in order to scale. Unfortunately, requiring a small s hurts the variance
of the estimator. We show that the accuracy of both aforementioned methodolo-
gies is similar to the nonadaptive variant of our estimator which has provably large
variance. In addition, we show both theoretically and empirically that the method-
ologies based on random sampling lead to poor estimators.

While some methods have recently been proposed for accurate estimation of
unique records, they belong to the Bayesian literature and have difficulty scaling
due to the curse of dimensionality with Markov chain Monte Carlo [Steorts, Hall
and Fienberg (2016, 2015), Sadinle (2014), Tancredi and Liseo (2011), Zanella
et al. (2016)]. The evaluation of the likelihood itself is quadratic. Furthermore,
they rely on a strong assumption about the specified generative models for the
duplicate records. Given such computational challenges with the current state of
the methods in the literature, we take a simple approach, especially given the large
and constantly growing data sets that we seek to analyze. We focus on practical
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methodologies that can easily scale to large data sets with minimal assumptions.
Specifically, we propose a unique entity estimation algorithm with subquadratic
cost, which can be reduced to approximating the number of connected components
in a graph with subquadratic queries for edges (Section 3.1).

The rest of the paper proceeds as follows. Section 1.2 provides our motiva-
tional application from the Syrian conflict and Section 1.3 remarks on the main
challenges of the Syrian data set and our proposed methodology. Section 2.1 pro-
vides background on variants of locality sensitive hashing (LSH), which is essen-
tial to our proposed methodology. Section 3 provides our proposed methodology
for unique entity estimation, which is the first formalism of using efficient adaptive
LSH on edges to estimate the connected components with subquadratic computa-
tional time. (An example of our approach is given in Section 3.2.) More specif-
ically, we draw connections between our methodology and random and adaptive
sampling in Section 3.3, where we show under realistic assumptions that our es-
timator is theoretically unbiased and has provably low variance. In addition, in
Section 3.5, we compare random and adaptive sampling for the Syrian data set,
illustrating the strengths of adaptive sampling. In Section 3.6, we introduce the
variant of LSH used in our paper. Section 3.7 provides our complete algorithm for
unique entity estimation. Section 4 provides evaluations of all the related estima-
tion methods on three real data sets from the music and food industries as well as
official statistics. Section 5 reports the documented identifiable number of deaths
in the Syrian conflict (with a standard error).

1.2. The Syrian conflict. Thanks to Human Rights Data Analysis Group
(HRDAG), we have access to four databases from the Syrian conflict which cover
roughly the same period, namely March 2011–April 2014, namely, the Violation
Documentation Centre (VDC), Syrian Center for Statistics and Research (CSR-
SY), Syrian Network for Human Rights (SNHR), and Syria Shuhada website (SS).
Each database lists a different number of recorded victims killed in the Syrian con-
flict, along with available identifying information including full Arabic name, date
of death, death location, and gender.4

Since the above information is collected indirectly, such as through friends and
religious leaders, or traditional media resources, it naturally comes with many
challenges. The data set has biases, spelling errors, and missing values. In addi-
tion, it is well known that there are duplicate entities present in the data sets, mak-
ing estimation more difficult. The ambiguities in Arabic names make the situation
significantly worse as there can be a large textual difference between the full and
short names in Arabic. (It is not surprising that the Syrian data set has such biases
given that the data is collected in the midst of a conflict).

4These databases include documented identifiable victims and not those who are missing in the
conflict, hence, any estimate reported only refers to the data at hand.



UNIQUE ENTITY ESTIMATION WITH APPLICATION TO SYRIA 1043

Such ambiguities and lack of additional information make entity resolution on
this data set considerably challenging [Price et al. (2014)]. Owing to the signifi-
cance of the problem, HRDAG has provided labels for a large subset of the data
set. More specifically, five different human experts from the HRDAG manually re-
viewed pairs of records in the four data sets, classifying them as matches if referred
to the same entity and nonmatches otherwise. Our first goal is to accurately esti-
mate the number of unique victims. Obtaining a match or nonmatch label of a given
record pair may require momentous cost such as manual human supervision or in-
volving sophisticated machine learning. Given that coming up with hand-matched
data is a costly process, our second goal is to provide a proxy, automated mech-
anism to create labeled data. [More information regarding the Syrian data set can
be found in Appendix A [Chen, Shrivastava and Steorts (2018)].]

1.3. Challenges and proposed solutions. Consider evaluating the Syrian data
set using all-to-all records comparisons to remove duplicate entities. With ap-
proximately 354,000 records from the Syrian data set, we have around 63 bil-
lion pairs (6.3 × 1010). Therefore, it is impractical to classify all these pairs as
matches/nonmatches reliably. We cannot expect a few experts (five in our case)
to manually label 63 billion pairs. A simple computation of all pairwise similar-
ity (63 billion) takes more than 8 days on a heavyweight machine that can run 56
threads in parallel (28 cores in total). In general, this quadratic computational cost
is widely considered infeasible for large data sets. Algorithmic labeling of every
pair, even if possible for relatively small data sets, is neither reliable nor efficient.
Furthermore, it is hard to understand the statistical properties of algorithmic la-
beling of pairs. Such challenges, therefore, motivate us to focus on the estimation
algorithm with constraints mentioned in Section 1.

Our Contributions: We formalize unique entity estimation as approximating the
number of connected components in a graph with subquadratic � O(M2) com-
putational time. We then propose a generic methodology that provides an estimate
in sample (with standard errors). Our proposal leverages locality sensitive hashing
(LSH) in a novel way for the estimation process, with the required computational
complexity that is less than quadratic. Our proposed estimator is unbiased and has
provably low variance compared to random sampling based approaches. To the
best of our knowledge, this is the first use of LSH for unique entity estimation in
an entity resolution setting. Our unique entity estimation procedure is broadly ap-
plicable to many applications, and we illustrate this on three additional real, fully
labeled, entity resolution data sets, which include the food industry, the music in-
dustry, and an application from official statistics. In the absence of ground truth
information, we estimate that the number of documented identifiable deaths for
the Syrian conflict is 191,874, with standard deviation of 1772, reported casual-
ties, which is very close to the 2014 HRDAG estimate of 191,369. This clearly
demonstrates the power of our efficient estimator in practice, which does not rely
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on any strong modeling assumptions. Out of 63 billion possible pairs, our esti-
mator only queries around 450,000 adaptively sampled pairs [� O(M)] for labels,
yielding a 99.99% reduction. The labeling was done using support vector machines
(SVMs) trained on a small number of hand-matched, labeled examples provided
by five domain experts. Our work is an example of the efforts required to solve a
real noisy challenging problem where modeling assumptions may not hold.

2. Variants of Locality Sensitive Hashing (LSH). In this section, we first
provide a review of LSH and min-wise hashing, which is crucial to our proposed
methodology. We then introduce a variant of LSH—Densified One Permutation
Hashing (DOPH), which is essential to our proposed algorithm for unique entity
estimation in terms of scalability. We first provide a brief literature review of LSH.

2.1. Review of Locality Sensitive Hashing (LSH). In this section, we first pro-
vide a review of locality sensitive hashing and min-wise hashing, which is crucial
to our proposed methodology.

Locality sensitive hashing (LSH) is a well-known probabilistic method of di-
mension reduction, which is widely used in computer science and in database en-
gineering as a way of rapidly finding approximate nearest neighbors [Gionis et al.
(1999)]. More recently, locality sensitive hashing has been utilized has a form of
blocking in entity resolution, where one tries to achieve scalability and avoid all-
to-all record comparisons by placing records into “partitions” or “blocks” either
using deterministic or probabilistic methods.

Unlike other conventional forms of dimension reduction or blocking for entity
resolution, LSH uses all the features of a record, and can be adjusted to ensure
that blocks are manageably small, but then do not allow for further record linkage
within blocks. For example, Vatsalan et al. (2014) introduced novel data structures
for sorting and fast approximate nearest-neighbor look-up within blocks produced
by LSH. Their approach gave a good balance between speed and recall, but their
technique is very specific to nearest neighbor search. In other related work, Steorts
et al. (2014) proposed clustering-based blocking schemes that are variants on LSH.
The first, transitive locality sensitive hashing (TLSH) is based upon the community
discovery literature such that a soft transitivity (or relaxed form of transitivity) can
be imposed across blocks. The second, k-means locality sensitive hashing (KLSH)
is based upon the information retrieval literature and clusters similar records into
blocks using a vector-space representation and projections [KLSH had been used
before in information retrieval but never with entity resolution [Paulevé, Jégou and
Amsaleg (2010)]]. Steorts et al. (2014) showed that both KLSH and TLSH gave
improvements over popular methods in the literature such as traditional blocking,
canopies [McCallum, Nigam and Ungar (2000)], and k-nearest neighbors cluster-
ing.

There are many variants of LSH and one popular form is min-wise hashing. All
LSH methods are defined by a type of similarity and a type of dimension reduc-
tion [Broder (1997a)]. Recently, Shrivastava and Li (2014a) showed that min-wise
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hashing based approaches are superior to random projection based approaches
when the data is very sparse and feature poor. Furthermore, improvements in
computational speed can be obtained by using the recently proposed densification
scheme known as densified one permutation hashing (DOPH) [Shrivastava and
Li (2014a, 2014b)]. Specifically, the authors proposed an efficient substitute for
min-wise hashing, which only requires one permutation (or one hash function) for
generating many different hash values needed for indexing. In short, the algorithm
is linear (or constant) in the tuning parameters, making it very computationally
efficient.

2.2. Shingling. In entity resolution tasks, each record can be represented as
a string of information. For example, each record in the Syrian data set can be
represented as a short text description of the person who died in the conflict. In
this paper, we use a k-grams based shingle representation, which is the most com-
mon representation of text data and naturally gives a set token (or k-grams). That
is, each record is treated as a string and is replaced by a “bag” (or “multiset”) of
length-k contiguous substrings that it contains. Since we will use a k-gram based
approach to transform the records, our representation of each record will also be
a set, which consists of all the k-contiguous characters occurring in record string.
As an illustration, for the record BAKER, TED, we separate it into a 2-gram rep-
resentation. The resulting set is the following:

BA, AK, KE, ER, RT, TE, ED.

In another example, consider Sammy, Smith, whose 2-gram set representation is

SA, AM, MM, MY, YS, MS, SM, MI, IT, TH.

We now have two records that have been transformed into a 2-gram representation.
Thus, for every record (string) we obtain a set ⊂ U , where the universe U is the set
of all possible k-contiguous characters.

2.3. Locality sensitive hashing. In this paper, we leverage LSH, which comes
with sound mathematical formalism and guarantees. LSH is widely used in com-
puter science and database engineering as a way of rapidly finding approximate
nearest neighbors [Gionis et al. (1999), Indyk and Motwani (1999)]. Specifically,
the variant of LSH that we utilize is scalable to large databases, and allows for
similarity based sampling of entities in less than a quadratic amount of time.

In LSH, a hash function is defined as y = h(x), where y is the hash code and
h(·) the hash function. A hash table is a data structure that is composed of buckets
(not to be confused with blocks), each of which is indexed by a hash code. Each
reference item x is placed into a bucket h(x).

More precisely, LSH is a family of functions that map vectors to a discrete set,
namely, h : RD → {1,2, . . . ,M}, where M is in finite range. Given this family of
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functions, similar points (entities) are likely to have the same hash value compared
to dissimilar points (entities). The notion of similarity is specified by comparing
two vectors of points (entities), x and y. We will denote a general notion of simi-
larity by SIM(x, y). In this paper, we only require a relaxed version LSH, and we
define this below. Formally, a LSH is defined by the following definition below.

DEFINITION 1 (Locality Sensitive Hashing (LSH)). Let x1, x2, y1, y2 ∈ R
D

and suppose h is chosen uniformly from a family H. Given a similarity metric,
SIM(x, y), H is locality sensitive if SIM(x1, x2) ≥ Sim(y2, y3) then PrH(h(x1) =
h(x2)) ≥ PrH(h(y1) = h(y2)), where PrH is the probability over the uniform sam-
pling of h.

The above definition is sufficient condition for a family of functions to be LSH.
While many popular LSH families satisfy the aforementioned property, we only
require this condition for the work described herein. For a complete review of
LSH, we refer to Rajaraman and Ullman (2012).

2.4. Minhashing. One of the most popular forms of LSH is minhashing
[Broder (1997b)], which has two key properties—a type of similarity and a type of
dimension reduction. The type of similarity used is the Jaccard similarity and the
type of dimension reduction is known as the minwise hash, which we now define.

Let {0,1}D denote the set of all binary D dimensional vectors, while R
D refers

to the set of all D dimensional vectors (of records). Note that records can be repre-
sented as a binary vector (or set) representation via shingling, BoW, or combining
these two methods. More specifically, given two record sets (or equivalently binary
vectors) x, y ∈ {0,1}D , the Jaccard similarity between x, y ∈ {0,1}D is

J = |x ∩ y|
|x ∪ y| ,

where | · | is the cardinality of the set.
More specifically, the minwise hashing family applies a random permutation

π , on the given set S, and stores only the minimum value after the permutation
mapping, known as the minhash. Formally, the minhash is defined as hmin

π (S) =
min(π(S)), where h(·) is a hash function.

Given two sets S1 and S2, it can be shown by an elementary probability argu-
ment that

(1) Prπ
(
hmin

π (S1) = hmin
π (S2)

) = |S1 ∩ S2|
|S1 ∪ S2| ,

where the probability is over uniform sampling of π . It follows from equation (1)
that minhashing is a LSH family for the Jaccard similarity.
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REMARK. In this paper, we utilize a shingling based approach, and thus, our
representation of each record is likely to be very sparse. Moreover, Shrivastava
and Li (2014c) showed that minhashing based approaches are superior compared
to random projection based approaches for very sparse data sets.

2.4.1. Densified One Permutation Hashing (DOPH). LSH has been utilized
for more than two-decades, where one can use LSH to reduce the computational
cost of entity resolution. More specifically, the main idea is to only match records
which have the same hash values, known as blocking or indexing. One major issue
with LSH is that the step of creating blocks (hash buckets) is expensive because
it requires several hash computations [Liang et al. (2014), Steorts et al. (2014)].
However, it was recently shown that the several minwise hashes of data can be
computed in data reading time using the technique of Densified One Permuta-
tion Hashing (DOPH). Subsequent works [Shrivastava and Li (2014a, 2014b)] im-
proved the statistical properties of DOPH. Wang, Shrivastava and Ryu (2017) il-
lustrated that using DOPH one can get significant improvements over LSH, which
leads to the fastest approximate near-neighbor search algorithm. In this paper, we
use the most recent variant of DOPH, which is significantly faster in practice com-
pared to minwise hashing. Since we use a shingle based representation for textual
data, DOPH is ideal for our proposed algorithm because the cost for blocking is
the same as the data reading cost, which is about 100 times faster than traditional
minwise hashing. Throughout the rest of the paper, when we refer to minwise hash-
ing will refer to the DOPH algorithm for computing minhashes. Further details of
LSH and DOPH can be found in the aforementioned papers. In addition, we spec-
ify another reason for using LSH as the only blocking mechanism which suits our
purpose in Section 3.6.4.

3. Unique entity estimation. In this section, we provide notation used
throughout the rest of the paper and provide an illustrative example. We then pro-
pose our estimator, which is unbiased and has provably low variance. In addition,
random sampling is a special case of our procedure as explained in Section 3.5.
Finally, we present our unique entity estimation algorithm in Section 3.3.

3.1. Notation. The problem of unique entity estimation can be reduced to ap-
proximating the number of connected components in a corresponding graph. Given
a data set with size M , we denote the records as

R = {Ri | 1 ≤ i ≤ M, i ∈ Z}.
Next, we define

Q(Ri,Rj ) =
{

1, if Ri,Rj refer to the same entity,

0, otherwise.
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FIG. 1. A toy example of mapping records to a graph, where vertices represent records and edges
refer to the relation between records.

Let us represent the data set by a graph G∗ = (E,V ), with vertices E,V . Let
vertex Vi correspond to record Ri and vertex Vj correspond to record Rj . Then
let edge Eij represent the linkage between records of Ri and Rj (or vertex Vi and
Vj ). More specifically, we can represent this by the following relationship:

V = {Ri | 1 ≤ i ≤ M, i ∈ Z}
and

E = {
(Ri,Rj ) | ∀1 ≤ i, j ≤ M,Q(Ri,Rj ) = 1

}
.

3.2. Illustrative example. In this section, we provide an illustrative example
of how six records are mapped to a graph G∗. Consider record 3 (John) and record
5 (Johnathan) which correspond to the same entity (John Schaech). In G∗, there
is an edge E35 that connect these records, denoted by V3 and V5. Now consider
records 2, 4, and 6, which all refer to the same entity (Nicholas Cage). In G∗, there
are edges E24,E26, and E46 that connect these records, denoted by V2,V4, and V6.
Observe that each connected component in G∗ is a unique entity and also a clique.
Therefore, our task is reduced to estimating the number of connected components
in G∗ (see Figure 1).

3.3. Proposed unique entity estimator. In this section, we propose our unique
entity estimator and provide assumptions that are necessary for our estimation pro-
cedure to be practical (scalable).

Since we do not observe the edges of G∗ (the linkage), inferring whether there is
an edge between two nodes (or whether two records are linked) can be costly, that
is, O(M2). Hence, one is constrained to probe a small set S ⊂ V × V with |S| �
O(M2) of pairs and query if they have edges. The aim is to use the information
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about S to estimate the total number of connected components accurately. More
precisely, given the partial graph G′ = {V,E′}, where E′ = E ∩ S , one wishes to
estimate the connected components n of G∗ = {V,E}.

One key property of our estimation process is that we do not make any modeling
assumptions of how duplicate records are generated, and it is not immediately clear
how we can obtain unbiased estimation. For sake of simplicity, we first assume the
existence of an efficient (subquadratic) process that samples a small set (near-linear
size) of edges S , such that every edge in the original graph G∗ has (reasonably
high) probability p of being in S . Thus, set S , even though small, contains p

fraction of the actual edges. For sparse graphs, as in the case of duplicate records,
such a sampler will be far more efficient than random sampling. Based on this
assumption, we will first describe our estimator and its properties. We then show
why our assumption about existence of adaptive sampler is practical by providing
an efficient sampling process based on LSH (Section 3).

REMARK. It is not difficult to see that random sampling is a special case when
p = |S|

O(M2)
which, as we show later, is a very small number for any accurate esti-

mation.

Our proposed estimator and corresponding algorithm obtains the set of vertex
pairs (or edges) S through an efficient (adaptive) sampling process and queries
whether there is an edge (linkage) between each pair in S . Respectively, after the
ground truth querying, we observe a subsampled graph G′, consisting of vertices
returned by the sampler. Let n′

i be the number of connected component of size
i in the observed graph G′, that is, n′

1 is the number of singleton vertices, n′
2 is

the number of isolated edges, etc. in G′. It is worth noting that every connected
component in G′ is a part of some clique (maybe larger) in G∗. Let n∗

i denote the
number of connected components (clique) of size i in the original (unobserved)
graph G∗.

Observe that under the sampling process, any original connected component,
say C∗

i (clique), will be subsampled and can appear as some possibly smaller con-
nected component in G′. For example, a singleton set in G∗ will remain the same
in G′. An isolated edge, on the other hand, can appear as an edge in G′ with prob-
ability p and as two singleton vertices in G′ with probability 1 − p. A triangle
can decompose into three possibilities with probability shown in Figure 2. Each of
these possibilities provides a linear equation connecting n∗

i to n′
i . These equations

up to cliques of size three are

E
[
n′

3
] = n∗

3 · p2 · (3 − 2p),(2)

E
[
n′

2
] = n∗

2 · p + n∗
3 · (

3 · (1 − p)2 · p)
,(3)

E
[
n′

1
] = n∗

1 + n∗
2 · (

2 · (1 − p)
) + n∗

3 · (
3 · (1 − p)2)

.(4)
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FIG. 2. A general example illustrating the transformation and probabilities of connected compo-
nents from G∗ to G′.

Since we observe n′
i , we can solve for the estimator of each n∗

i and compute the
number of connected components by summing up all n∗

i .
Unfortunately, this process quickly becomes combinatorial, and in fact, is at

least #P hard [Provan and Ball (1983)] to compute for cliques of larger sizes.
A large clique of size k can appear as many separate connected components
and the possibilities of smaller size components it can break into are exponential
[Aleksandrov (1947)]. Fortunately, we can safely ignore large connected compo-
nents without significant loss in estimation for two reasons. First, in practical entity
resolution tasks, when M is large and contains at least one string-valued feature, it
is observed that most entities are replicated no more than three or four times. Sec-
ond, a large clique can only induce large errors if it is broken into many connected
components due to undersampling. According to Erdős and Rényi (1960), it will
almost surely stay connected if p is high, which is the case with our sampling
method.

Assumption: As argued above, we safely assume that the cliques of sizes equal
to or larger than 4 in the original graph would retain their structures, that is, ∀i ≥
4, n∗

i = n′
i . With this assumption, we can write down the formula for estimating

n∗
1, n∗

2, n∗
3 by solving equations (2)–(4) as

n∗
3 = E[n′

3]
p2 · (3 − 2p)

, n∗
2 = E[n′

2] − n∗
3 · (3 · (1 − p)2 · p)

p
(5)

n∗
1 = E

[
n′

1
] − n∗

2 · (
2 · (1 − p)

) − n∗
3 · (

3 · (1 − p)2)
.(6)

It directly follows that our estimator, which we call the Locality Sensitive Hashing
Estimator (LSHE) for the number of connected components is given by

LSHE = n′
1 + n′

2 · 2p − 1

p
+ n′

3 · 1 − 6 · (1 − p)2 · p
p2 · (3 − 2p)

+
M∑
i=4

n′
i .(7)



UNIQUE ENTITY ESTIMATION WITH APPLICATION TO SYRIA 1051

3.4. Optimality properties of LSHE. We now prove two properties of our
unique entity estimator, namely, that it is unbiased and that is has provably lower
variance than random sampling approaches. Here, we have assumed independence
of sampling. Our sampler relying on LSH, described in Section 3.6, will have even
better variance due to favorable correlations. Please see Chen, Xu and Shrivas-
tava (2018), Luo and Shrivastava (2018, 2017), Spring and Shrivastava (2017a) for
more details. Those discussions are out of the scope of this paper.

THEOREM 1. Assuming that for all i ≥ 4, n∗
i = n′

i , we have

E[LSHE] = n,(8)

V[LSHE] = n∗
3 · (p − 1)2 · (3p2 − p + 1)

p2 · (3 − 2p)
+ n∗

2
(1 − p)

p
.(9)

The above estimator is unbiased and the variance is given by equation (9).

Theorem 2 shows that the variance of our estimator is monotonically decreasing
with p.

THEOREM 2. V[LSHE] is monotonically decreasing when p increases in
range (0,1].

The statement of Theorem 2 directly follows from Lemma 1.

LEMMA 1. The first-order derivative of V[LSHE] is negative when p ∈ (0,1].
Note that when p = 1, V[LSHE] = 0 which means the observed graph G′ is

exactly the same as G∗. For detailed proofs see Appendix B [Chen, Shrivastava
and Steorts (2018)].

3.5. Adaptive sampling versus random sampling. Before we describe our
adaptive sampler, we briefly quantify the advantages of an adaptive sampling over
random sampling for the Syrian data set by computing the differences between
their variances. Let p be the probability that an edge (correct match) is sampled.
On the Syrian data set, our proposed sampler, described in next section, empirically
achieves p = 0.83, by reporting around 450,000 sampled pairs [O(M)] out of the
63 billion possibilities [O(M2)]. Substituting this value of p, the corresponding
variance can be calculated from equation (9) as

n∗
3 · 0.07 + n∗

2 · 0.204.

Turning to plain random sampling of edges, in order to achieve the same sample
size above leads to p as low as 4.5×105

6.3×1010 � 6.9 × 10−6. With such minuscule p, the
resulting variance is

n∗
3 · 6,954,620,166 + n∗

2 · 144,443.
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Thus, the variance for random sampling is roughly 7 × 105 times the number of
duplicates in the data set and 1 × 1011 the number of triplets in the data set.

In Section 4, we illustrate that two other random sampling based algorithms
of Chazelle, Rubinfeld and Trevisan (2005) and Frank (1978) also have poor accu-
racy compared to our proposed estimator. The poor performance of random sam-
pling is not surprising from a theoretical perspective, and illustrates a major weak-
ness empirically for the task of unique entity estimation with sparse graphs, where
adaptive sampling is significantly advantageous.

3.6. The missing ingredient: (K,L)-LSH algorithm. Our proposed methodol-
ogy, for unique entity estimation, assumes that we have an efficient algorithm that
adaptively samples a set of record pairs, in sub-quadratic time. In this section, we
argue that using a variant of LSH (Section 2.1) we can construct such an efficient
sampler.

As already noted, we do not make any modeling assumptions on the genera-
tion process of the duplicate records. Also, we cannot assume that there is a fixed
similarity threshold, because in real data sets duplicates can have arbitrarily large
similarity. Instead, we rely on the observation that record pairs with high similarity
have a higher chance of being duplicate records. That is, we assume that when two
entities Ri and Rj are similar in their attributes, it is more likely that they refer to
the same entities [Christen (2012)].5 We note that this probabilistic observation is
the weakest possible assumption, and almost always true for entity resolution tasks
because linking records by a similarity score is one simple way of approaching en-
tity resolution [Christen (2012), Fellegi and Sunter (1969), Winkler (2006)].

The similarity between entities (records) naturally gives us a notion of adap-
tiveness. One simple adaptive approach is to sample records pairs with probability
proportional to their similarity. However, as a prerequisite for such sampling, we
must compute all the pairwise similarities and associated probability values with
every edge. Computing such a pairwise similarity score is a quadratic operation
[O(M2)] and is intractable for large data sets. Fortunately, recent work has shown
that [Chen, Xu and Shrivastava (2018), Luo and Shrivastava (2018, 2017), Spring
and Shrivastava (2017b, 2017a)] it is possible to sample pairs adaptively in propor-
tion to the similarity in provably subquadratic time using LSH, which we describe
in the next section.

3.6.1. (K,L)-LSH algorithm and subquadratic adaptive sampling. We lever-
age a very recent observation associated with the traditional (K,L) parameterized
LSH algorithm. The (K,L) parameterized LSH algorithm is a popular similarity
search algorithm, which given a query q , retrieves element x from a preprocessed
data set in sublinear time [O(KL) � M] with probability 1 − (1 − J (q, x)K)L.

5The similarity metric that we use to compare sets of record strings is the Jaccard similarity.
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Here, J denotes the Jaccard similarity between the query and the retrieved data
vector x. Our proposed method leverages this (K,L)-parameterized LSH algo-
rithm, and we briefly describe the algorithm in this section. For complete details,
refer to Andoni and Indyk (2004).

Before we proceed, we define hash maps and keys. We use hash maps, where
every integer (or key) is associated with a bucket (or a list) of records. In a hash
map, searching for the bucket corresponding to a key is a constant time operation.
Please refer to algorithms literature [Rajaraman and Ullman (2012)] for details on
hashing and its computational complexity. Our algorithm will require several hash
maps, L of them, where a record Ri is associated with a unique bucket in every
hash map. The key corresponding to this bucket is determined by minwise hashes
of the record Ri . We encourage readers to refer to Andoni and Indyk (2004) for
implementation details.

More precisely, let hij , i = {1,2, . . . ,L} and j = {1,2, . . . ,K} be K × L min-
wise hash functions [equation (1)] with each minwise hash function formed by
independently choosing the underlying permutation π . Next, we construct L meta-
hash functions (or the keys) Hi = {hi,1, hi,2, . . . , hi,K}, where each of the Hi ’s is
formed by combining K different minwise hash functions. For this variant of the
algorithm, we need a total of K × L functions. With such L meta-hash functions,
the algorithm has two main phases, namely the data preprocessing and the sam-
pling pairs phases, which we outline below.

• Data Preprocessing Phase: We create L different hash maps (or hash tables),
where every hash values maps to a bucket of elements. For every record Ri in
the data set, we insert Rj in the bucket associated with the key Hi(Rj ), in hash
map i = {1,2, . . . ,L}. To assign K-tuples Hi (meta-hash) to a number in a fixed
range, we use some universal random mapping function to the desired address
range. See Andoni and Indyk (2004), Wang, Shrivastava and Ryu (2017) for
details.

• Sample Pair Reporting: For every record Rj in the data set and from each table
i, we obtain all the elements in the bucket associated with key Hi(Rj ), where
i = {1,2, . . . ,L}. We then take the union of the L buckets obtained from the L

hash tables, and denote this (aggregated) set by A. We finally, report pairs of
records (Ri,Rj ), where R ∈ A.

THEOREM 3. The (K,L)-LSH algorithm reports a pair (Ri,Rj ) with proba-
bility 1 − (1 −J (Ri,Rj )

K)L, where J (Ri,Rj ) is the Jaccard similarity between
record pairs (Ri,Rj ).

PROOF. Since all the minwise hashes are independent due to an independent
sampling of permutations, the probability that both Ri and Rj belong to the same
bucket in any hash table i is J (Ri,Rj )

K . Note from equation (1), each meta-hash
agreement has probability J (Ri,Rj ). Therefore, the probability that pair (Ri,Rj )
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is missed by all the L tables is precisely (1−J (Ri,Rj )
K)L, and thus, the required

probability of successful retrieval is the complement.
The probabilistic expression 1 − (1 −J (Ri,Rj )

K)L is a monotonic function of
the underlying similarity Sim(q, y) associated with the LSH. In particular, higher
similarity pairs have more chance of being retrieved. Thus, LSH provides the re-
quired sampling that is adaptive in similarity and is subquadratic in running time.

�

3.6.2. Computational complexity. The computational complexity for sam-
pling with M records is O(MKL). The procedure requires computing KL min-
wise hashes for each record. This step is followed by adding every record to L

hash tables. Finally, for each record, we aggregate L buckets to form sample pairs.
The result of monotonicity and adaptivity of the samples applies to any value of
K and L. We choose O(K × L) � O(M) such that we are able to get samples
in subquadratic time. We further tune K and L using cross-validation to limit the
size of our samples. In Section 5.3, we evaluate the effect of varying K and L in
terms of the recall and reduction ratio. [For a review of the recall and reduction
ratio, we refer to Christen (2012).] We address the precision at the very end of our
experimental procedure to ensure that the recall, reduction ratio, and precision of
our proposed unique entity estimation procedure are all as close to 1 as possible
while ensuring that the entire algorithm is computationally efficient. For example,
on the Syrian data set, we can generate 450,000 samples in less than 127 sec with
an adaptive sampling probability (recall) p as high as 0.83. [Note: the preprocess-
ing is of the order of data loading cost using the (K,L)-LSH algorithm]. On the
other hand, computing all pairwise similarities (63 billion) takes more than 8 days
on the same machine with 28 cores capable of running 56 threads in parallel. We
refer to Sadosky et al. (2015) regarding specific comparisons of traditional and ad-
vanced blocking methods. Specifically, Figures 1–3 illustrate variants of blocking,
which perform extremely poorly on the Syrian data set for two reasons. The first
is that the recall and the precision are both extremely low for entity resolution to
be practical. The second reason is that under further inspection the blocks sizes
are too large to manage for entity resolution problems at scale. Hence, our focus
in this paper is one the variant that we find works the best under standard entity
resolution evaluation metrics. Next, we describe how this LSH sampler is related
to the adaptive sampler described earlier in Section 3.3.

3.6.3. Underlying assumptions and connections with p. Recall that we can
efficiently sample record pairs Ri,Rj with probability 1 − (1 − J (Ri,Rj )

K)L.
Since we are not making any modeling assumptions, we cannot directly link this
probability to p, the probability of sampling the right duplicated pair (or linked
entities) as required by our estimator LSHE. In the absence of any knowledge, we
can get the estimate of p using a small set of labeled linked pairs L. Specifically,
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we can estimate the value of p by counting the fraction of matched pairs (true
edges) from L reported by the sampling process.

Note that in practice there is no similarity threshold θ that guarantees that two
record pairs are duplicate records. That is, it is difficult in practice to know a fixed
θ where J (Ri,Rj ) ≥ θ ensures that Ri and Rj are the same entities. However, the
weakest possible and reasonable assumption is that high similarity pairs (textual
similarity of records) should have higher chances of being duplicate records than
lower similarity pairs.

Formally, this assumption implies that there exists a monotonic function f

of similarity J (Ri,Rj ) such that the probability of any Ri,Rj being a dupli-
cate record is given by f (J (Ri,Rj )). Since our sampling probability 1 − (1 −
J (Ri,Rj )

K)L is also a monotonic function of J (Ri,Rj ), we can also write

f
(
J (Ri,Rj )

) = g
(
1 − (

1 −J (Ri,Rj )
K)L)

,

where g is f composed with h−1 which is the inverse of h(x) = 1 − (1 − xK)L.
Unfortunately, we do not know the form of f or g.

Instead of deriving g (or f ), which requires additional implicit assumptions
on the form of the functions, our process estimates p directly. In particular, the
estimated value of p is a data dependent mean-field approximation of g, or rather,

p = E
[
g
(
1 − (

1 −J (Ri,Rj )
K)L)]

.

Crucially, our estimation procedure does not require any modeling assumptions
regarding the generation process of the duplicate records, which is significant for
noisy data sets, where such assumptions typically break.

3.6.4. Why LSH?. Although there are several rule-based blocking methodolo-
gies, LSH is the only one that is also a random adaptive sampler. In particular,
consider a rule-based blocking mechanism, for example, on the Syrian data set,
which might block on the date of death feature. Such blocking could be a very
reasonable strategy for finding candidate pairs. Note that it is still very likely that
duplicate records can have different dates of death because the information could
be different or misrepresented. In addition, such a blocking method is determinis-
tic, and different independent runs of the blocking algorithm will report the same
set of pairs. Even if we find reasonable candidates, we cannot up-sample the linked
records to get an unbiased estimate. There will be a systematic bias in the esti-
mates, which does not have any reasonable correction. In fact, random sampling
to our knowledge is the only known choice in the existing literature for an unbi-
ased estimation procedure; however, as already mentioned, random uninformative
sampling is likely to be very inaccurate.

LSH, on the other hand, can also be used as a blocking mechanism [Steorts et al.
(2014)]. It is, however, more than just a blocking scheme; it is a provably adaptive
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sampler. Due to randomness in the blocking, different runs of sampler lead to dif-
ferent candidates, unlike deterministic blocking. We can also average over multi-
ple runs to even increase the concentration of our estimates. The adaptive sampling
view of LSH has come to light very recently [Chen, Xu and Shrivastava (2018),
Luo and Shrivastava (2018, 2017), Spring and Shrivastava (2017b, 2017a)]. With
adaptive sampling, we get much sharper unbiased estimators than the random sam-
pling approach. To our knowledge, this is the first study of LSH sampling for
unique entity estimation.

3.7. Putting it all together: Scalable unique entity estimation. We now de-
scribe our scalable unique entity estimation algorithm. As mentioned earlier, as-
sume that we have a data set that contains a text representation of the M records.
Suppose that we have a reasonably sized, manually labeled training set T . We
will denote the set of sampled pairs of records given by our sampling process
as S . Note, each element of S is a pair. Then our scalable entity resolution al-
gorithm consists of three main steps, with the total computational complexity
O(ML + KL + |S| + |T |). In our case, we will always have |S| � O(M2) and
KL � M (in fact, L will be a small constant), which ensures that the total cost is
strictly subquadratic. The complete procedure is summarized in Algorithm 1.

1. Adaptively Sample Record Pairs [O(ML)]: We regard each record Ri as a
short string and replace it by an “n-grams” based representation. Then one com-
putes K × L minwise hashes of each corresponding string. This can be done in
a computationally efficient manner using the DOPH algorithm, which is done in
data reading time. Next, once these hashes are obtained, one applies the sampling
algorithm described in Section 3 in order to generate a large enough sample set,
which we denote by S . For each record, the sampling step requires exactly L hash
table queries, which are themselves O(1) memory lookups. Therefore, the com-
putational complexity of this step is O(ML + KL).

Algorithm 1 LSH-Based Unique Entity Estimation Algorithm.
1: Input: Records R, Labeled Set T , Sample Size m

2: Output: LSHE
3: S = LSH Sampling (R) (Section 3.6.1)
4: Get Tmatch be the linked pairs (duplicate entities) in T
5: p = |Tmatch∩S|

|Tmatch|
6: Query every pair in S for match/mismatch (get actual labels). (Graph G′)
7: n′

1, n
′
2, n

′
3, . . . , n

′
M = Traverse(G′)

8: LSHE = equation (7) (p , n′
1, n

′
2, n

′
3, . . . , n

′
M )

FIG. 3. Overview of our proposed unique entity estimation algorithm.
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2. Query each Sample Pairs: Given the set of sampled pairs of records S from
Step 1, for every pair of records in S , we query whether these record pairs are a
match or nonmatch. This step requires, O(|S|), queries for the true labels. Here,
one can use manually labeled data if it exists. In the absence of manually labeled
data, we can also use a supervised algorithm, such as support vector machines or
random forests, that is trained on the manually labeled set T (Section 5).

(a) Estimate p: Given the sampled set of record pairs S , we need to know the
value of p, the probability that any given correct pair is sampled. To do so, we use
the fraction of true pairs sampled from the labeled training set T . The sampling
probability p can be estimated by computing the fraction of the matched pairs of
training set records Tmatch appearing in S . That is, we estimate p (unbiasedly) by

p = |Tmatch ∩ S|
|Tmatch| .

If T is stored in a dictionary, then this step can be done on the fly while generating
samples. It only costs O(T ) extra work to create the dictionary.

(b) Count Different Connected Components in G′ [O(M + |S|)]: The resulting
matched sampled pairs, after querying every sample for actual (or inferred) labels,
form the edges of G′. We now have complete information about our sampled graph
G′. We can now traverse G′ and count all sizes of connected components in G′ to
obtain n′

1, n′
2, n′

3 and so on. Traversing the graph has computational complexity
O(M + |S|) time using Breadth First Search (BFS).

3. Estimate the Number of Connected Components in G∗ [O(1)]: Given the
values of p, n′

1, n′
2, and n′

3 we use equation (7) to compute the unique entity
estimator LSHE.

4. Experiments. We evaluate the effectiveness of our proposed methodology
on the Syrian data set and three additional real data sets, where the Syrian data set
is only partially labeled, while the other three data sets are fully labeled. We first
perform evaluations and comparisons on the three fully labeled data sets, and then
give an estimate of the documented number of identifiable victims for the Syrian
data set.

• Restaurant: The Restaurant data set contains 864 restaurant records collected
from Fodor’s and Zagat’s restaurant guides.6 There are a total of 112 duplicate
records. Attribute information contains name, address, city, and cuisine.

• CD: The CD data set that includes 9763 CDs randomly extracted from freeDB.7

There are a total of 299 duplicate records. Attribute information consists of 106
total features such as artist name, title, genre, among others.

6Originally provided by Sheila Tejada, downloaded from http://www.cs.utexas.edu/users/ml/
riddle/data.html.

7https://hpi.de/naumann/projects/repeatability/datasets/cd-datasets.html.

http://www.cs.utexas.edu/users/ml/riddle/data.html
https://hpi.de/naumann/projects/repeatability/datasets/cd-datasets.html
http://www.cs.utexas.edu/users/ml/riddle/data.html
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TABLE 1
Important features of the four data sets. Domain reflects the variety of the data type we used in the
experiments. Size is the number of total records, respectively. # Matching Pairs shows how many

pair of records point to the same entity in each data set. # Attributes represents the dimensionality
of individual record. # Entities is the number of unique records

DBname Domain Size # Matching Pairs # Attributes # Entities

Restaurants Restaurant Guide 864 112 4 752
CD Music CDs 9763 299 106 9508
Voter Registration Info 324,074 70,359 6 255,447
Syria Death Records 354,996 N/A 6 N/A

• Voter: The Voter data has been scraped and collected by Christen (2014) begin-
ning in October 2011. We work with a subset of this data set containing 324,074
records. There are a total of 68,627 duplicate records. Attribute information con-
tains personal information on voters from North Carolina including full name,
age, gender, race, ethnicity, address, zip code, birth place, and phone number.

• Syria: The Syria data set comprises data from the Syrian conflict, which cov-
ers the same time period, namely, March 2011–April 2014. This data set is not
publicly available and was provided by HRDAG. The respective data sets come
from the Violation Documentation Centre (VDC), Syrian Center for Statistics
and Research (CSR-SY), Syrian Network for Human Rights (SNHR), and Syria
Shuhada website (SS). Each database lists a different number of recorded vic-
tims killed in the Syrian conflict, along with available identifying information
including full Arabic name, date of death, death location, and gender.8 We show
several death records in the Syrian data set from the VDC in Figure 4, which
allows for public access to some of the data. The other respective data sets —
CSR-SY, SNHR, and SS – are similiar to our illustrative example.

The above data sets cover a wide spectrum of different varieties observed in
practice. For each data set, we report summary information in Table 1.

4.1. Evaluation settings. In this section, we outline our evaluation settings.
We denote Algorithm 1 as the LSH Estimator (LSHE). We make comparisons to
the nonadaptive variant of our estimator (PRSE), where we use plain random sam-
pling (instead of adaptive sampling). This baseline uses the same procedure as our
proposed LSHE, except that the sampling is done uniformly. A comparison with
PRSE quantifies the advantages of the proposed adaptive sampling over random
sampling. In addition, we implemented the two other known sampling methods, for

8These databases include documented identifiable victims and not those who are missing in the
conflict. Hence, any estimate reported only refers to the data at hand.
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FIG. 4. Several death records in Syrian data set from VDC, which allows for public access to some
of the data. All of the three records belong to the same entity, labeled by human experts. Record 1
and 2 are similar in all attributes while Record 1 and 3 are very different. Due to the variation in
the data, records that are very similar are likely to be linked as the same entity, however, it is more
difficult to make decisions when records show differences, such as records 1 and 3. This illustrates
some of the limitations from deterministic blocking methods discussed in Section 3.6.4.

connected component estimation, proposed in Frank (1978) and Chazelle, Rubin-
feld and Trevisan (2005). For convenience, we denote them as Random Subgraph
based Estimator (RSGE), and BFS on Random Vertex based Estimator (BFSE),
respectively. Since the algorithms are based on sampling (adaptive or random), to
ensure fairness, we fix a budget m as the number of pairs of vertices considered by
the algorithm. Note that any query for an edge is a part of the budget. If the fixed
budget is exhausted, then we stop the sampling process and use the corresponding
estimate, using all the information available.

We briefly describe the implementation details of the four considered estimators
below:

1. LSHE: In our proposed algorithm, we use the (K , L) parameterized LSH al-
gorithm to generate samples of record pairs using Algorithm 1, where recall K and
L control the resulting sample size (Section 5.3). Given K , L as an input to Algo-
rithm 1, we use the sample size as the value of the fixed budget m. Table 2 gives
different sample budget sizes (with the corresponding K and L) and corresponding
values of p for selected samples in three real data sets.

2. PRSE: For a fair comparison, in this algorithm, we randomly sample the
same number of record pairs used by LSHE. We then perform the same estimation
process as LSHE but instead use p = 2m

M(M−1)
, which corresponds to the random

sampling probability to get the same number of samples, which is m.

TABLE 2
Part of the sample sizes (in % in TOTAL) for different sets of samples generated by Min-Wise

Hashing and their corresponding p in all three data sets

Restaurant CD Voter

Size 1.0 2.5 5.0 10 0.005 0.01 0.02 0.04 0.002 0.006 0.009 0.013
p 0.42 0.54 0.65 0.82 0.72 0.74 0.82 0.92 0.62 0.72 0.76 0.82
K 1 1 1 1 1 1 1 1 4 4 4 4
L 4 8 12 20 5 6 8 14 25 32 35 40
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3. RSGE [Frank (1978)]: This algorithm requires performing breadth first
search (BFS) on each randomly selected vertices. BFS requires knowing all edges
(neighbors) of a node for the next step, which requires M − 1 edge queries. To
ensure the fixed budget m, we end the traversal when the number of distinct edge
queries reaches the fixed budget m.

4. BFSE [Chazelle, Rubinfeld and Trevisan (2005)]: This algorithm samples a
subgraph and observes it completely. This requires labeling all the pairs of records
in the sampled subgraph. To ensure same budget m, the sampled subgraph has
approximately

√
2m vertices.

REMARK. To the best of our knowledge, there have been no experimental
evaluations of the two algorithms of Frank (1978) and Chazelle, Rubinfeld and
Trevisan (2005) in the literature. Hence, our results could be of independent inter-
est in themselves.

We compute the relative error (RE), calculated as

RE = |LSHE−n|
n

,

for each of the estimators, for different values of the budget m. We plot the RE
for each of the estimators, over a range of values of m, summarizing the results in
Figure 5.

All the estimators require querying pairs of records compared to labeled ground
truth data for whether they are a match or a nonmatch. As already mentioned, in
the absence of full labeled ground truth data, we can use a supervised classifiers
such as SVMs as a proxy, assuming at least some small amount of labeled data
exists. By training an SVM, we can use this as a proxy for labeled data as well. We

FIG. 5. The dashed lines show the RE of the four estimators on the three real data sets, where the
y-axis is on the log-scale. Observe that LSHE outperforms all other three estimators in one to two
orders of magnitude. The standard deviation of the RE for LSHE is also shown in the plots with the
red error bars, which is with respect to randomization of hash functions. In particular, the PRSE
performs unreliable estimation on the CD and Voter data sets. The dashed and solid black lines
represent RE of LSHE using ground truth labels and a SVM classifier (y-axis is on the log scale). We
discuss the LSHE + SVM estimator in Section 5 (solid black line).
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use such a proxy in the Syrian data set because we are not able to query every pair
of records to determine whether they are true duplicates or not.

We start with the three data sets where fully labeled ground truth data exists.
For LSHE, we compute the estimation accuracy using both the supervised SVM
(Section 5) as well as using the fully labeled ground truth data. The difference in
these two numbers quantifies the loss in estimation accuracy due to the use of the
proxy SVM prediction instead of using ground truth labeled data. In our use of
SVMs, we take less than 0.01% of the total number of the possible record pairs as
the training set.

4.2. Evaluation results. In this section, we summarize our results regarding
the aforementioned evaluation metrics by varying the sample size m on the three
real data sets (see Figure 5).9 We notice that for the CD and Voter data sets, we
cannot obtain any reliable estimate (for any sample size) using PRSE. Recall that
plain random sampling almost always samples pairs of records that correspond
to nonmatches. Thus, it is not surprising that this method is unreliable because
sampling random pairs is unlikely to result in a duplicate pair for entity resolution
tasks. Even with repeated trials, there are no edges in the specified sampled pairs
of records, leading to an undefined value of p. This phenomenon is a common
problem in random sampling estimators over sparse graphs. Almost all the sampled
nodes are singletons. Subsampling a small subgraph leads to a graph with most
singleton nodes, which leads to a poor accuracy of BFSE. Thus, it is expected that
random sampling will perform poorly. Unfortunately, there is no other baseline for
unbiased estimation of the number of unique entities.

From Figure 5, observe that the RE for proposed estimator LSHE is approxi-
mately one to two orders of magnitude lower than the other considered methods,
where the y-axis is on the log-scale. Undoubtedly, our proposed estimator LSHE
consistently leads to significantly lower RE (lower error rates) than the other three
estimators. This is not surprising from the analysis shown in Section 3.5. The vari-
ance of random sampling based methodologies will be significantly higher.

Taking a closer look at LSHE, we notice that we are able to efficiently generate
samples with very high values of p (see Table 2). In addition, we can clearly see
that LSHE achieves high accuracy with very few samples. For example, for the CD
data set, with a sample size less than 0.05% of the total possible pairs of records
of the entire data set, LSHE achieves 0.0006 RE. Similarly, for the Voter data set,
with a sample size less than 0.012% of the total possible pairs of records of the
entire data set, LSHE achieves 0.003 RE.

Also, note the small values of K and L parameters required to achieve the
corresponding sample size. K and L affect the running time, and small val-
ues KL � O(M2) indicate significant computational savings as argued in Sec-
tion 3.6.2

9For using the fasthash package for unique entity estimation, please see our reproducible code with
a tutorial that corresponds with our paper.

https://github.com/resteorts/fasthash
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As mentioned earlier, we also evaluate the effect of using SVM prediction as a
proxy for actual labels with our LSHE. The dotted plot shows those results. We
remark on the results for LSHE + SVM in Section 5.

5. Documented identifiable deaths in the Syrian conflict. In this section,
we describe how we estimate the number of documented identifiable deaths for
the Syrian data set. As noted before, we do not have ground truth labels for all
record pairs, but the data set was partially labeled with 40,000 record pairs (out of
63 billion). We propose an alternative (automatic) method of labeling the sample
pairs, which is also needed by our proposed estimation algorithm. More specifi-
cally, using the partially labeled pairs, we train an SVM. In fact, other supervised
methods could be considered here, such as random forests, Bayesian Adaptive Re-
gression Trees (BART), among others, however, given that SVMs perform very
well, we omit such comparisons as we expect the results to be similar if not worse.

To train the SVM, we take every record pair and generate k-grams represen-
tation for each record. Then we split the partially labeled data into training and
testing sets, respectively. Each training and testing set contains a pair of records
xk = [Ri,Rj ]. In addition, we can use a binary label indicating whether the record
pair is a match or nonmatch. That is, we can write the data as {xk = [Ri,Rj ], yk}
as the set difference of the k-grams of the strings of pairs of records Ri and Rj ,
respectively. Observe that yk = 1 if the Ri and Rj is labeled as match and yk = −1
otherwise. Next, we tune the SVM hyper-parameters using 5-fold cross-validation,
and we find the accuracy of SVM on the testing set was 99.9%. With a precision
as high a 0.99, we can reliably query an SVM and now treat this as an expert label.

To understand the effect of using SVM prediction as a proxy to label queries
in our proposed unique entity estimation algorithm, we return to observing the
behavior in Figure 5. We treat the LSHE estimator on the other three real data sets
as our baseline and compare to LHSE with the SVM component, where the SVM
prediction replaces the querying process (LSHE + SVM). Observe in Figure 5, that
the plot for LSH (solid black line) and LSH + SVM (dotted black line) overlap
indicating a negligible loss in performance. This overlap is expected given the high
accuracy (high precision) of the SVM classifier.

5.1. Running time. We briefly highlight the speed of the sampling process
since it could be used for on the fly or online unique entity estimation. The to-
tal running time for producing 450,000 sampled pairs (out of a possible 63 billion)
used for the LSH sampler (Section 3.6.1) with K = 15 and L = 10 is 127 seconds.
The preprocessing cost is included in the 127 seconds. The preprocessing is of the
order of data loading cost using DOPH. [For further details on the benchmarking
performance of DOPH compared with other LSH methods, please see Wang, Shri-
vastava and Ryu (2017)]. On the other hand, it will take approximately take 8 days
to compute all pairwise similarities across the 354,996 Syrian records. Computing
the pairwise similarities is just the first step for any known adaptive sampling over
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pairs based on similarity assuming that we do not use the LSH sampler. [Note:
there are other ways of blocking [Christen (2012), Sadosky et al. (2015)], how-
ever, as mentioned in Section 3.6.4 they are mostly deterministic (or rule-based)
and do not provide an estimate of the unique entities.]

5.2. Unique number of documented identifiable victims. In the Syrian data
set, with 354,996 records and possibly 63 billion (6.3 × 1010) pairs, our moti-
vating goal was to estimate the unique number of documented identifiable victims.
Specifically, in our final estimate, we use 452,728 sampled pairs that are given by
LSHE + SVM (K = 15, L = 10) which has approximately p = 0.83 based on
the subset of labeled pairs. The sample size was chosen to balance the computa-
tional runtime and the value of p. Specifically, one wants high values of p (for a
resulting low variance of our estimate) and, to balance running time, we limit the
sample size to be around the total number of records O(M), to ensure a near linear
time algorithm. (Such settings are determined by the application, but as we have
demonstrated they work for a variety of real entity resolution data sets.) We chose
the SVM as our classifier to label the matches and nonmatches. The final unique
number of documented identifiable victims in the Syrian data set was estimated
to be 191,874 ± 1772, very close to the 191,369 documented identifiable deaths
reported by HRDAG 2014, where their process is described in Appendix A [Chen,
Shrivastava and Steorts (2018)].

5.3. Effects of L, K , on sample size and p. In this section, we discuss the
sensitivity of our proposed method as we vary the choice of L, K , the sample size
M , and p.

We want both KL � M and the number of samples to be � M2, for the process
to be truly subquadratic. For accuracy, we want high values of p, because the vari-
ance is monotonic in p, which is also the recall of true labeled pairs. Thus, there
is a natural trade-off. If we sample more, we get high p but more computations.

K and L are the basic parameters of our sampler (Section 3.6.1), which provide
a tradeoff between the computationally complexity and accuracy. A large value of
K makes the buckets sparse exponentially), and thus, fewer pairs of records are
sampled from each table. A large value of L increases the repetition of hash tables
(linearly), which increases the sample size. As already argued, the computational
cost is O(MKL).

To understand the behavior of K , L, p, and the computational cost, we perform
a set of experiments on the Syrian dataset. We use n-gram of 2–5, we vary L from
5–100 by steps of 5 and K takes values 15, 18, 20, 23, 25, 28, 30, 32, 35. For all
these combinations, we then plot the recall (also the value of p) and the reduction
ratio (RR), which is the percentage of computational savings. A 99% reduction
ratio means that the original space has been reduced to only having to look at a
only 1% of total sampled pairs. Figure 6 shows the tradeoffs between reduction
ratio and recall (or value of p). Every dot in the figure is one whole experiment.
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FIG. 6. For shingles 2–5, we plot the RR versus the recall. Overall, we see the best behavior for a
shingle of 3, where the RR and recall can be reached at 0.98 and 1, respectively. We allow L and K
to vary on a grid here. L varies from 5–100 by steps of 5; and K takes values 15, 18, 20, 23, 25, 28,
30, 32, and 35.

Regardless of the n-gram variation from 2–5, the recall and reduction ratio (RR)
are close to 1 as illustrated in Figure 6. We see that an n-gram of 3 overall is most
stable in having a recall and RR close to 0.99. We observe that K = 15 and L = 10
gives a high recall of around 83% with less than half a million pairs (out of 63
billion possible) to evaluate (RR ≥ 0.99999).

6. Discussion. Motivated by three real entity resolution tasks and the ongo-
ing Syrian conflict, we have proposed a general, scalable algorithm for unique
entity estimation. Our proposed method is an adaptive LSH on the edges of a
graph, which in turn estimates the connected components in sub-quadratic time.
Our estimator is unbiased and has provably low variance in contrast to other such
estimators for unique entity estimation in the literature. In experimental results, it
outperforms other estimators in the literature on three real entity resolution data
sets. Moreover, we have estimated the number of documented identifiable deaths
to be 191,874 ± 1772, which very closely matches the 2014 HRDAG estimate,
completed by hand-matching. To our knowledge, we have the first estimate for the
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number of documented identifiable deaths with a standard error associated with
such an estimate. Our methods are scalable, potentially bringing impact to the hu-
man rights community, where such estimates could be updated in near real time.
It could lead to further impact in public policy and transitional justice in Syria and
other areas of conflict globally.
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SUPPLEMENTARY MATERIAL

Supplementary Material for “Unique entity estimation with application to
the Syrian conflict” (DOI: 10.1214/18-AOAS1163SUPP; .pdf). This supplement
consists of two parts. It offers more details about: (A) the Syrian data set and (B)
our unique entity estimation proofs. In (A), we give details regarding the Syrian
data set and the training data that is used. In (B), we give detailed proofs that our
proposed estimator that is unbiased and has has provable low variance compared
to random sampling. Refer to Chen, Shrivastava and Steorts (2018) for details.
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