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In recent years, it has become common practice in neuroscience to use
networks to summarize relational information in a set of measurements, typ-
ically assumed to be reflective of either functional or structural relationships
between regions of interest in the brain. One of the most basic tasks of in-
terest in the analysis of such data is the testing of hypotheses, in answer to
questions such as “Is there a difference between the networks of these two
groups of subjects?” In the classical setting, where the unit of interest is a
scalar or a vector, such questions are answered through the use of familiar
two-sample testing strategies. Networks, however, are not Euclidean objects,
and hence classical methods do not directly apply. We address this challenge
by drawing on concepts and techniques from geometry and high-dimensional
statistical inference. Our work is based on a precise geometric characteriza-
tion of the space of graph Laplacian matrices and a nonparametric notion of
averaging due to Fréchet. We motivate and illustrate our resulting method-
ologies for testing in the context of networks derived from functional neu-
roimaging data on human subjects from the 1000 Functional Connectomes
Project. In particular, we show that this global test is more statistically pow-
erful than a mass-univariate approach. In addition, we have also provided a
method for visualizing the individual contribution of each edge to the overall
test statistic.

1. Introduction. Functional neuroimaging data has been central to the ad-
vancement of our understanding of the human brain. Neuroimaging data sets are
increasingly approached from a graph-theoretical perspective using the tools of
modern network science [Bullmore and Sporns (2009)]. This has elicited the in-
terest of statisticians working in that area. At the level of basic measurements,
neuroimaging data can be said to consist typically of a set of signals (usually time
series) at each of a collection of pixels (in two dimensions) or voxels (in three di-
mensions). Building from such data, various forms of higher-level data represen-
tations are employed in neuroimaging. Traditionally, two- and three-dimensional
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images have, naturally, been the norm, but increasingly in recent years there has
emerged a substantial interest in network-based representations.

1.1. Motivation. Let G = (V ,E) denote a graph based on d = |V | vertices. In
this setting, the vertices v ∈ V correspond to regions of interest (ROIs) in the brain,
often predefined through considerations of the underlying neurobiology (e.g., the
putamen or the cuneus). Edges {u, v} ∈ E between vertices u and v are used to
denote a measure of association between the corresponding ROIs. Depending on
the imaging modality used, the notion of “association” may vary. For example,
in diffusion tensor imaging (DTI), associations are taken to be representative of
structural connectivity between brain regions. On the other hand, in functional
magnetic resonance imaging (fMRI), associations are instead thought to represent
functional connectivity, in the sense that the two regions of the brain participate
together in the achievement of some higher-order function, often in the context of
performing some task (e.g., counting from 1 to 10).

With neuroimaging now a standard tool in clinical neuroscience, and with the
advent of several major neuroscience research initiatives—perhaps most promi-
nent being the recently announced Brain Research Accelerated by Innovative Neu-
rotechnologies (BRAIN) initiative—we are quickly moving toward a time in which
we will have available databases composed of large collections of secondary data
in the form of network-based data objects. Faced with databases in which networks
are a fundamental unit of data, it will be necessary to have in place the statisti-
cal tools to answer such questions as, “What is the ‘average’ of a collection of
networks?” and “Do these networks differ, on average, from a given nominal net-
work?”, as well as “Do two collections of networks differ on average?” and “What
factors (e.g., age, gender, etc.) appear to contribute to differences in networks?”,
or finally, say, “Has there been a change in the networks for a given subpopula-
tion from yesterday to today?” In order to answer these and similar questions, we
require network-based analogues of classical tools for statistical estimation and
hypothesis testing.

While these classical tools are among the most fundamental and ubiquitous in
use in practice, their extension to network-based data sets, however, is not immedi-
ate and, in fact, can be expected to be highly nontrivial. The main challenge in such
an extension is due to the simple fact that networks are not Euclidean objects (for
which classical methods were developed)—rather, they are combinatorial objects,
defined simply through their sets of vertices and edges. Nevertheless, our work
here in this paper demonstrates that networks can be associated with certain natu-
ral subsets of Euclidean space, and furthermore demonstrates that through a com-
bination of tools from geometry, probability on manifolds and high-dimensional
statistical analysis it is possible to develop a principled and practical framework in
analogy to classical tools. In particular, we focus on the development of an asymp-
totic framework for one- and two-sample hypothesis testing.
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Key to our approach is the correspondence between an undirected graph G and
its Laplacian, where the latter is defined as the matrix L = D − W , with W de-
noting the d × d adjacency matrix of G and D a diagonal matrix with the ver-
tex degrees along the diagonal. When G has no self-loops and no multi-edges,
the correspondence between graphs G and Laplacians L is one-to-one. Our work
takes place in the space of graph Laplacians. Importantly, this requires working not
in standard Euclidean space R

n, but rather on certain subsets of Euclidean space
which are either submanifolds of Rn or submanifolds of Rn with corners. While
these subsets of Euclidean space have the potential to be complicated in nature, we
show that, in the absence of any nontrivial structural constraints on the graphs G,
the geometry of these subsets is sufficiently “nice” to allow for a straightfoward
definition of distance between networks to emerge.

Our goal in this work is the development of one- and two-sample tests for net-
work data objects that rely on a certain sense of “average.” We adopt the concept of
Fréchet means in defining what average signifies in our context. Recall that, for a
metric space, (X , ρ), and a probability measure, Q, on its Borel σ -field, under ap-
propriate conditions, the Fréchet mean of Q is defined as the (possibly nonunique)
minimizer

(1) μ := argmin
x∈X

∫
X

ρ2(x, y)Q(dy).

Similarly, for any sample of realizations from Q on X , denoted Y := {Y1, . . . , Yn},
the corresponding sample Fréchet mean is defined as

(2) μ̂n(Y ) := argmin
x∈X

1

n

n∑
i=1

ρ2(x,Yi).

Thus, the distance ρ that emerges from our study of the geometry of the space of
networks implicitly defines a corresponding notion of how to “average” networks.

Drawing on results from nonparametric statistical inference on manifolds, we
are then able to establish a central limit theory for such averages and, in turn, con-
struct the asymptotic distributions of natural analogues of one- and two-sample
z-tests. These tests require knowledge of the covariance among the edges of our
networks, which can be expected to be unavailable in practice. Nevertheless, we
show how recent advances in the estimation of large, structured covariance matri-
ces can be fruitfully brought to bear in our context, and provide researchers with
greater statistical power than a mass-univariate approach, which is the standard
approach in this field.

1.2. The 1000 Functional Connectomes Project. Our approach is motivated
by and illustrated with data from the 1000 Functional Connectomes Project (FCP).
This major MRI data-sharing initiative was launched in 2010 [Biswal et al. (2010)].
The impetus for the 1000 FCP was given by a need to make widely accessible
neuroimaging data, which are costly and time-consuming to collect [Biswal et al.
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(2010)]. This was conducted within the so-called “discovery science” paradigm,
paralleling similar initiatives in systems biology. The 1000 FCP constituted the
largest data set of its kind at the time of its release. As for the use of such large
data sets in genetics, it is believed that facilitating access to high-throughput data
generates economies of scale that are likely to lead to more numerous and more
substantive research findings.

The 1000 FCP describes functional neuroimaging data from 1093 subjects, lo-
cated in 24 community-based centers. The mean age of the participants is 29 years,
and all subjects were 18 years old or older. Each individual scan lasted between
2.2 and 20 minutes. The strength of the MRI scanner varied across centers, with
n = 970 scans at 3T and n = 123 at 1.5T. Voxel-size was 1.5–5 mm within the
plane; and slice thickness was 3–8 mm. The ethics committee in each contributing
data center approved the project; and the institutional review boards of the NYU
Langone Medical Center and of the New Jersey Medical School approved the dis-
semination of the data. This freely available data set has been extensively used in
the neuroimaging literature [Tomasi and Volkow (2010), Yan et al. (2013), Zuo
et al. (2012)].

The individual fMRI scans were parcellated into a set of 50 cortical and subcor-
tical regions using the Automated Anatomical Labeling (AAL) template [Tzourio-
Mazoyer et al. (2002)]. Note that the resulting connectivity networks are sensitive
to our particular choice of parcellation, and that the results in this paper need not
generalize to other templates [see Wang et al. (2009) for a review]. The voxel-
specific time series in each of these regions were aggregated to form mean regional
time series, as commonly done in the study of the human connectome [see, e.g.,
Achard et al. (2006)]. The resulting regional time series were then compared using
two different measures of association. We here considered the correlation coeffi-
cient since this measure has proved to be popular in the neuroimaging literature
[Ginestet and Simmons (2011), Micheloyannis et al. (2009), Pachou et al. (2008)].

Subjects in the 1000 FCP data can be subdivided with respect to sex. Several
groups of researchers have previously considered the impact of sex differences
on resting-state connectivity [Biswal et al. (2010), Tomasi and Volkow (2011)].
It is hypothesized that sexual dimorphism in human genomic expression is likely
to affect a wide range of physiological variables [Ellegren and Parsch (2007)]. In
particular, differences in hormonal profiles (e.g., estrogen) during brain develop-
ment are known to be related to region-specific effects [McEwen (1999)]. Thus, it
is of interest to compare the subject-specific networks of males and females in the
1000 FCP data set (see Figure 1). Observe that previous research in this field has
established local sex differences in connectivity by considering individual edge
weights [Biswal et al. (2010), Tomasi and Volkow (2011)]. By contrast, we are
here investigating the effect of sex differences on entire networks.

It is here useful to distinguish between these two types of network data analysis
in neuroimaging. While local analysis focuses on edge-specific statistics, global
analysis instead considers network topological properties such as the shortest-path
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FIG. 1. Descriptive statistics for the 1000 FCP data set. In panel (A), the group-specific mean
Laplacians for networks over 50 AAL vertices in females (nf = 555) and males (nm = 462). Sim-
ilarly, in panel (B), the age variable has been divided into three groups (n1 = 386, n2 = 297 and
n3 = 334), and the respective means are reported for each age group. The Laplacians have been
binarized with respect to the 75th percentile of the overall distribution of the entries in the full 1000
FCP database. (Black indicates entries greater or equal than that percentile.)

length. In this paper, we are extending the latter by providing a framework for
identifying the mean network and characterizing the space of all possible such
networks.

The organization of this paper is as follows. In Section 2, we describe the statis-
tical and mathematical background of this type of research question. In Section 3,
we provide a geometrical characterization of the space of networks under scrutiny.
In Section 4, we describe how certain central limit theorems can be adapted to
this space in order to construct a statistical inferential framework for network data.
A simulation study exploring the relationship between statistical power and vari-
ous aspects of neuroimaging data is reported in Section 5. In Section 6, we apply
this framework to the analysis of a subset of the data from the 1000 FCP. These re-
sults and the potential extensions of the proposed statistical tests are then discussed
in Section 7.

2. Related work. At the heart of the class of statistical problems we wish to
address is a desire to summarize and compare groups of network data objects in a
statistically principled manner. There are, of course, already a variety of numerical
devices available for carrying out certain descriptive summaries and comparisons.
Basic set-theoretic operations (e.g., union, intersection, symmetric difference) are
all well defined for graphs. More broadly, various metrics, such as the Hamming
distance, have been borrowed from other fields and applied to graphs. Currently,
the mainstay in the analysis of network data in neuroimaging is the mass-univariate
approach in which independent tests are conducted for every edge, adjusting for
multiple testing; see Ginestet, Fournel and Simmons (2014) for a survey of such
methods in the context of functional neuroimaging.

Such mass-univariate approaches, however, fail to draw inference about net-
works as a whole. In particular, it is unclear whether multiple local differences
necessarily lead to globally significant differences. One may tackle this problem
by treating network data objects as data points. What is lacking to achieve this,
however, is the necessary mathematical foundation—establishing a formal “space”
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of graphs, equipped with a formal metric with understood geometric and topolog-
ical properties so that a formal notion of probability and measure can be defined,
all underlying the desired theory and methods for the hypothesis testing problems
of interest here.

Networks are not the only data type for which standard Euclidean-based meth-
ods are insufficient. Statistical inference on manifolds—in particular on spheres
and shapes spaces—has a fairly long history. There is a substantial literature on
statistics on spheres, or so-called directional statistics, going back to a seminal pa-
per by R. A. Fisher in 1953 [Fisher (1953)], and works by Watson (1983), Mardia
and Jupp (2000), and Fisher, Lewis and Embleton (1987), among others. Statistical
analysis on shapes that are landmark-based was pioneered by Kendall (1977, 1984)
and Bookstein (1978). Inference in these settings takes various forms. Nonpara-
metric forms of inference typically employ a notion of averaging due to Fréchet
(1948), as we do in this paper. Nevertheless, little work has been pursued with man-
ifolds given as some general metric space—such as the spaces of networks that are
our main interest. The most related work seems to be due to Billera, Holmes and
Vogtmann (2001) and Barden, Le and Owen (2013), who study the metric geom-
etry of the space of phylogenetic trees and derive a central limit theorem for the
Fréchet mean in such spaces. Also, see the related work of Marron and colleagues
in the context of so-called object-oriented data analysis with trees [Aydin et al.
(2009), Wang and Marron (2007)].

In order to establish a formal characterization of a well-defined “space” of net-
works, it is natural to associate a network with a matrix. And while there are sev-
eral such matrices that might be used, we have found that the (combinatoral) graph
Laplacian is particularly appropriate. The Laplacian falls in the cone of symmetric
positive (semi)definite (PSD) matrices. A substantial amount of effort has been ex-
pended on uncovering the mathematical properties of he PSD cone [Bhatia (1997),
Moakher and Zéraï (2011)]. In addition, there has in recent yearst been quite a lot
of work exploring the various notions of “average” induced upon this manifold by
the underlying choices of geometry [Arsigny et al. (2007), Bonnabel and Sepulchre
(2009), Moakher (2005)]. Finally, depending on the choice of average adopted,
there are results establishing the probabilistic and statistical properties of aver-
ages through CLTs [Bhattacharya and Patrangenaru (2003, 2005), Bhattacharya
and Bhattacharya (2012), Kendall and Le (2011)]. Much of this research has been
motivated by shape analysis [Le (2001), Le and Kume (2000)], but many of these
results have been developed in other areas of applications where matrices play a
key role such as in DTI [Dryden, Koloydenko and Zhou (2009)].

However, the space of graph Laplacians forms a subset of the PSD cone and,
furthermore, by definition this subset intersects in a nontrivial fashion with the
boundary of this cone. Therefore, results for PSD matrices do not carry over im-
mediately to the space of graph Laplacians—the latter must necessarily be studied
in its own right. At present, while graph Laplacians as individual objects are well
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studied [see Chung (1997), who discusses discrete eigenvalue and isoperimetric es-
timates analogous to Riemannian estimates; see also Chavel (1984), Xia (2013)],
there appears to be no formal body of results to date establishing the properties of
the space of graph Laplacians—and certainly none that reflects the impact of what
have become established canonical properties of complex networks (e.g., sparse-
ness, small-world, etc.). The closest work of which we are aware is, for example,
recent work in the signal processing literature, characterizing subspaces of the PSD
cone corresponding to subsets of covariance matrices sharing certain simple struc-
tural properties such as rank or trace constraints [Krishnamachari and Varanasi
(2013)].

A certain notion of embedding is crucial to the mathematical and probabilistic
theory underlying our approach. There are, in fact, different uses of the term “em-
bedding.” Our work involves averaging or comparing different networks/graphs
via the distance between network Laplacians computed by first embedding (i.e.,
smoothly injecting) the set of Laplacian matrices into a Euclidean space; here
“embedding” is defined as in the differentiable topology literature [see Chapter 7
in Lee (2006)]. This seems to have advantages over comparing networks via, for
example, isometric embeddings of the graph itself into R

3, for which computation
of the types of distance functions that have been useful (e.g., Gromov–Hausdorff
distance) is impractical.

In addition, there is also the large literature on graph embedding, which
maps a graph onto a typically low-dimensional Euclidean space using eigenvec-
tor/eigenvalue information of the adjacency matrix or associated Laplacian [Fu
and Ma (2013), Linial (2002), Linial, London and Rabinovich (1995), Yan et al.
(2007)]. Graph embedding methods are very different from differentiable topol-
ogy techniques. In particular, the image of a graph embedding is often used as a
dimension-reduction tool. This map in general has some distortion, and so is not an
isometry. This change in the geometry from the domain space to the range space
implies that the precise inference framework for manifolds that we employ here, as
described below, cannot be applied to graph embeddings. Thus, there is no natural
notion of average and projection onto the image under a graph embedding, and in
fact such a projection may not exist. On the other hand, our notion of embedding,
which considers the spaces of Laplacians as a manifold, does not reduce dimen-
sion, preserves all the raw information in a specific graph, and allows analysis of
averages and projections by geometric methods.

3. Characterization of spaces of networks. In this section, we establish the
necessary mathematical properties associated with a certain notion of a “space” of
networks from which a natural notion of “averaging” emerges. In fact, we offer
several variations of a space of networks and, in doing so, illustrate how even rela-
tively simple constraints on network topology affect the geometry of these spaces.
The geometry is important when seeking to develop the corresponding probabilis-
tic behavior of averages of networks, as we do in Section 4, which also informs the
sampling distributions of the one- and two-sample test statistics that we develop.
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3.1. Main results. Let G = (V ,E,W) be a weighted undirected graph for
weights wij = wji ≥ 0, where equality with zero holds if and only if {i, j} /∈ E.
Assume G to be simple (i.e., no self-loops or multi-edges). We associate uniquely
with each graph G its graph Laplacian L = D(W) − W , where D is a diagonal
matrix of weighted degrees (also called vertex strengths), that is, Djj = dj (W) =∑

i �=j wij . We further assume in most of what follows that G is connected, in which
case L has one (and only one) zero eigenvalue and all the others are positive (and
hence L is positive semi-definite).

Under the assumption that G is simple, there is a one-to-one correspondence
between a graph G and its Laplacian matrix L. We therefore define our space of
networks using the corresponding space of Laplacians. In the following theorem,
we show that an initial notion of the space of graph Laplacians over d nodes admits
a relatively simple topology, which can be described as a convex subset of an affine
space in R

d2
.

THEOREM 1. The set Ld of d × d matrices A, satisfying

(1) Rank(A) = d − 1,
(2) symmetry, A′ = A,
(3) positive semi-definiteness, A ≥ 0,
(4) the entries in each row sum to 0,
(5) the off-diagonal entries are negative, aij < 0,

forms a submanifold of Rd2
of dimension d(d −1)/2. In fact, Ld is a convex subset

of an affine space in R
d2

of dimension d(d − 1)/2.

A proof of this theorem is in the supplemental article [Ginestet et al. (2017)].
The practical importance of this result is that Ld admits several Riemannian met-
rics [Arsigny et al. (2007)], which give rise to a restricted class of distance func-
tions. For example, any one of these metrics turns Ld into a length space in the
sense of Gromov (2007), that is, the distance between any two points A,B ∈ Ld is
the length of some path from A to B . Also, all the usual notions of curvature, and
its influence on variations of geodesics, come into play.

However, we note that the definition of Ld requires that every potential edge in
G be present, with edges only distinguishable in terms of the relative magnitude
of their weights. Consider the description of the 1000 FCP data in Section 1.2.
For the case where our network is defined to be, say, the matrix W of empirical
correlations of signals between pairs of ROIs, the space Ld is appropriate. On
the other hand, if we chose instead to work with a thresholded version of such
matrices, then it is important that we allow for both the presence/absence of edges
by allowing weights to be zero. The result of Theorem 1 can be extended to include
such networks, as described in the following corollary. This leads to a manifold that
possesses corners. A good introduction to manifolds with corners can be found in
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standard texts on smooth manifolds [see Chapter 14 in Lee (2006)]. Moreover, this
manifold is also a convex subset of Euclidean space.

COROLLARY 1. In Theorem 1, if condition (5) is replaced by

(5′) the off-diagonal entries are nonpositive, aij ≤ 0,

then the corresponding matrix space L′
d is a manifold with corners of dimension

d(d − 1)/2. Furthermore, L′
d is a convex subset of an affine space in R

d2
of di-

mension d(d − 1)/2.

A proof of this corollary is also provided in the supplemental article [Ginestet
et al. (2017)]. Importantly, the above theorem and its corollary indicate that the
Euclidean metric (i.e., the Frobenius distance on the space of d × d matrices with
real-valued entries) is a natural choice of distance function on our spaces of Lapla-
cians. The metric space of interest is therefore composed of, for example, (L′

d, ρF ),
where ρF is the Frobenius distance

ρF (X,Y ) := ‖X − Y‖2
F =

d∑
i,j

(xij − yij )
2

for any pair of matrices X,Y ∈ L′
d . As we shall see momentarily below, in Sec-

tion 4, the concept of a Fréchet mean and its sample-based analogue, as detailed in
equations (1) and (2), may now be brought to bear, yielding a well-defined sense
of an average of networks.

3.2. Extensions: Implications of constraints on network topology. In ending
this section, we note that our definition of a “space of networks” is intentionally
minimal in lacking constraints on the topology of the networks. However, one of
the most fundamental results that has emerged from the past 20 years of complex
network research is the understanding that real-world networks typically (although
not exclusively) tend to possess a handful of quite marked structural characteris-
tics. Examples include sparseness (i.e., number of edges scaling like the number of
vertices), heavy-tailed degree distributions and the presence of cohesive subgraphs
(aka communities); see Chapter 8 in Newman (2010), for example, for details and a
more comprehensive summary. In the context of neuroimaging, it can be expected
that the networks of interest will be sparse due to a trade-off between wiring cost
and topological complexity [Bullmore and Sporns (2012)]. Importantly, this fact
suggests that the appropriate differential or metric measure geometry of the “space
of all networks”—or, more formally, the space of Laplacians corresponding to such
networks—depends on the constraints imposed on these networks/Laplacians.

While a detailed study of these implications are beyond the scope of this pa-
per, we illustrate them through the following theorem, which extends the previous
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results to the more general case of graphs composed of different numbers of con-
nected components. In particular, we can generalize Theorem 1 to spaces of Lapla-
cians representing graphs with a fixed number of components, �. (Recall that the
rank of a Laplacian is equal to d minus the number of communities in that graph.)

THEOREM 2. The set L� of d × d matrices E, satisfying

(1�) Rank(E) = �,
(2) E is symmetric,
(3) E is positive semidefinite,
(4) the sum of the entries of each column is zero,
(5) each off-diagonal entry is negative,

forms a submanifold of Rd2
of dimension d� − �(� + 1)/2.

A proof of this theorem is in the supplemental article [Ginestet et al. (2017)].
Intuitively, this result is stating that the number of connected components of the
average of two graphs can be smaller than the number of components of each
graph, but it cannot be larger; that is, the average of two graphs may decrease the
number of communities, but it cannot increase that number. Indeed, when taking
the Euclidean average of several graphs with non-negative edge weights, we can
only maintain existing edges or create new edges.

4. Statistical inference on samples of networks. Having characterized a
space of networks, it becomes possible to construct an inferential framework for
comparing one or more samples of networks. We here describe some analogues
of the classical one- and two-sample t-statistics in this setting. These are obtained
by first selecting a notion of averaging and deriving a central limit theorem for
sequences of network averages, next appealing to Wald-like constructions of test
statistics, and, finally, utilizing recent results on high-dimensional covariance esti-
mation.

4.1. A central limit theorem. Let G1, . . . ,Gn denote n graphs, each simple
and assumed to have the same number of vertices d; and let L1, . . . ,Ln be the cor-
responding combinatorial Laplacians. The Li ’s are assumed to be independent and
identically distributed according to a distribution Q. In the context of neuroimag-
ing, for example, these might be the correlation networks from resting-state fMRI
images obtained from a group of human subjects matched for various demographic
characteristics (e.g., age, gender) and health status (e.g., clinical manifestation of
a given neurodegenerative disease).

The results of the previous section tell us that an appropriate sense of distance
between pairs of networks is given by the Euclidean distance between their cor-
responding Laplacians. Combining these results with the definition of average in
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equations (1) and (2), indicates that a principled way in which to define the aver-
age of n networks is through elementwise averaging of the entries of their Lapla-
cians (and hence their adjacency matrices). Such an average is, of course, easily
computed. However, this is not always the case when computing averages on man-
ifolds; see, for instance, Chapter 6 in Bhatia (2007) for an illustration of the dif-
ficulties that may arise, when computing the matrix mean in the cone of positive
definite symmetric matrices with respect to the geodesic distance on that manifold.

In the context of the 1000 FCP database, we wish to compare networks with
respect to the sex of the subjects and over different age groups. It is thus necessary
to compute the means in each subgroup of networks. This was done, for example,
in Figure 1, by constructing the Euclidean mean of the Laplacians for each group
of subjects in different age groups. Such group-specific mean Laplacians can then
be interpreted as the mean functional connectivity in each group.

The sample Fréchet mean L̂n is a natural statistic upon which to build our hy-
pothesis tests about the average of networks or groups of networks. In order to do
so, we require an understanding of the behavior of L̂n as a random variable. Un-
der broad regularity conditions, L̂n → � almost surely; that is, the sample Fréchet
mean, L̂n, is a consistent estimator of the true mean � [see Ziezold (1977)]. In
addition, under further assumptions, we can also derive a central limit theorem
for the sample Fréchet mean of Laplacians, with respect to the half-vectorization
map, φ.

THEOREM 3. If the expectation � := E[L] does not lie on the boundary of
L′

d , and P[U ] > 0, where U is an open subset of L′
d with � ∈ U and L′

d defined
as Corollary 1, and under some further regularity conditions [see supplemental
article Ginestet et al. (2017)], we obtain the following convergence in distribution:

n1/2(
φ(L̂n) − φ(�)

) −→ N(0,�),

where � := Cov[φ(L)] and φ(L) denotes the half-vectorization of L.

Theorem 3 assumes that the true Fréchet mean does not lie on the boundary of
the parameter space, which requires that all of its off-diagonal entries are nonzero.
This potentially conflicts with the fact that neuroimaging networks are often hy-
pothesized to be sparse [Bullmore and Sporns (2012)]. Note, however, that we are
only requiring such entries to be nonzero in expectation. Thus, any positive value
would suffice to ensure that the true Fréchet mean is away from the boundary, al-
though structural zeros (i.e., zeros in the true Fréchet mean) would be problematic.

A proof of this theorem and the full set of assumptions are provided in the sup-
plemental article [Ginestet et al. (2017)]. The argument is a specialization of a
general result due to Bhattacharya and Lin (2017). The result stated in the theo-
rem has fundamental significance regarding our goal of developing analogues of
classical testing strategies for the analysis of network data objects. It is an asymp-
totic result stating that, given a sufficient number of samples from a population of
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networks, an appropriately defined notion of sample average behaves in a classi-
cal manner: It possesses a statistical distribution that is approximately multivariate
normal, centered on the population mean μ and with covariance �. Note that this
population covariance is assumed to be positive definite, even though its sample
estimate needs not be positive definite, as we will see in our examples. In such
cases, we will estimate that covariance matrix using a method due to Schäfer and
Strimmer (2005).

Theorem 3 can be straightforwardly extended in order to select specific entries
in the Laplacians under scrutiny. Such submatrices would correspond to certain
subgraphs of interest. In particular, given an orthogonal projection matrix, �, and
using the fact that such central limit results are preserved under linearity, we obtain
the following generalization of Theorem 3:

(3) n1/2(
�φ(L̂n) − �φ(�)

) −→ N
(
0,���′).

In the context of neuroimaging, this may allow to identify subnetworks of spe-
cific interest, such as the so-called default mode network, for instance [Greicius
et al. (2003)]. We will study the properties of this neuroanatomical network in the
sequel.

4.2. One-sample, two-sample and k-sample tests. As an immediate conse-
quence of this central limit theorem, we can define natural analogues of classical
one- and k-sample hypothesis tests. Consider, for example, the null hypothesis that
the expectation � = E[L] is equal to some prespecified value, that is, H0 : � = �0.
In the context of neuroimaging, the choice of �0 might correspond to a reference
connectivity pattern, derived from a large study, such as the 1000 FCP, for instance.
In addition to the conditions stated in Theorem 3, let us now assume that the true
covariance matrix, �, is nonsingular. Moreover, it is also assumed that the target
Laplacian, �0, is known.

COROLLARY 2. Under the assumptions of Theorem 3, and under the null hy-
pothesis H0 : E[L] = �0, the test statistic,

T1 := n
(
φ(L̂) − φ(�0)

)′
�̂−1(

φ(L̂) − φ(�0)
)
,

converges to a χ2-distribution with p := (d
2

)
degrees of freedom, and where �̂ :=

1/(n − 1)
∑n

i=1(φ(Li) − φ(L̂))(φ(Li) − φ(L̂))′ denotes the sample covariance.

See Theorem 5.2.3 of Anderson (2003) for a proof. Similarly, one can also con-
struct a statistical test for two independent samples using the same framework.
Assume that we have two independent sets of Laplacians of dimension d × d ,
and consider the problem of testing whether these sets have in fact been drawn
from the same population. Each sample of Laplacians has the form, Linj

, where
i = 1, . . . , nj for every j = 1,2. The population means are denoted �j , while the
sample means of these sets of Laplacians are denoted by L̂j . Then, as a direct
corollary to Theorem 3, we also have the following asymptotic result.
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COROLLARY 3. Assume that every �j does not lie on the boundary of L′
d , and

that P[U ] > 0, where U is an open subset of L′
d , such that Lj ∈ U for each j =

1,2. Moreover, also assume that nj/n → pj for every sample, with n := ∑2
j=1 nj

and 0 < pj < 1. Then, under the null, H0 : �1 = �2, we have

T2 := n1n2

n1 + n2

(
φ(L̂1) − φ(L̂2)

)′
�̂−1(

φ(L̂1) − φ(L̂2)
) −→ χ2

p,

where L̂j denotes the j th sample mean, and �̂ := (
∑2

j=1 nj �̂j )/(n1 + n2 − 2) is
the pooled covariance estimate, with the �̂j ’s denoting the individual covariance
matrices of each subsample.

Finally, we can also derive a test statistic Tk to test that H0 : �1 = · · · = �k is
true. This can be performed using an analogue of Wilks’s statistic, by partitioning
the variance of interest, using the asymptotic result in Theorem 3.

4.3. Covariance estimation. We note that, in order to use any of the above
results in a practical setting, we must have knowledge of the covariance matrix
� = Cov[φ(L)]. It can be expected that we must use a sample-based estimate.
However, because the dimension of this matrix is O(d2) × O(d2), and the sample
size n is potentially much smaller than O(d2), the traditional sample covariance �̂

is likely to be numerically unstable, and is not guaranteed to be positive definite.
Fortunately, the development of estimators of � in such low-sample/high-

dimension contexts has been an active area of statistical research over the past few
years. Typically, borrowing regularization strategies from the field of nonparamet-
ric function estimation, optimization of a cost function combining the Frobenius
norm or penalized maximum likelihood with a regularization term yields a con-
vex optimization problem that can be solved efficiently. Generally, the choice of
a regularization term is linked to the assumed structure of the covariance matrix,
for example, assumptions of banding [Bickel and Levina (2008b)] or sparseness
[Bickel and Levina (2008a), Cai and Liu (2011), El Karoui (2008)]. There is also
a substantial recent literature on the closely related problem of estimating the in-
verse covariance matrix �−1; see Cai, Liu and Luo (2011) for a recent example
and associated citations.

In our context, there is little understanding of how the covariance matrices of
the off-diagonal entries of graph Laplacians should behave. Accordingly, as an
alternative to the sample covariance, we have adopted a shrinkage estimator due
to Schäfer and Strimmer (2005) which is particularly well suited to large data
sets. The method of Schäfer and Strimmer (2005) is a popular generic method for
high-dimensional covariance estimation, which works through shrinkage toward
substructures. This was deemed sufficiently flexible for our purpose.

Moreover, since in finite samples the estimator �̂ may not necessarily be a
positive definite matrix, we have therefore adopted an algorithm due to Higham
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(2002) in order to locate the nearest positive definite matrix in the Frobenius norm
[see also Cheng and Higham (1998)]. The resulting matrix, say �̃PD, is then used
in place of �̂ in the test statistics described in the previous section.

4.4. Visualization of differences. The contribution of each node to the test
statistics in the one- and two-sample tests can be visualized through a linear de-
composition of the above test statistics. Consider, for example, the one-sample
statistic, T1. By taking the square root of the inverted covariance matrix, this
particular quantity admits the following decomposition: T1/n = λ̂′̂λ, in which
λ̂ := �−1/2(φ(L̂) − φ(�0)). Consequently, we can reformulate this one-sample
test as a sum of squares, T1 = n

∑p
i=1 λ̂2

i , with p := (d
2

)
. The square of the ith entry

of λ̂ can then serve as an indicator of the contribution of the ith edge to the value
of T1.

Similarly, this visualization strategy can be extended to the comparison of two
groups; that is, the statistic T2 in Corollary 3 can be represented as (n1 + n2)/

(n1n2)T2 = ∑2
j=1 λ̂′

j λ̂j , where the two p-dimensional vectors, λ̂1 and λ̂2, are de-

fined as λ̂j := �̂−1/2(φ(L̂j ) − φ(L̂)) for j = 1,2. Consequently, we can decom-
pose the weighted version of T2 as a sum of p terms of the form

n1 + n2

n1n2
T2 =

2∑
j=1

λ̂′
j λ̂j =

2∑
j=1

p∑
i=1

λ̂2
ij =

p∑
i=1

( 2∑
j=1

λ̂2
ij

)
=:

p∑
i=1

κ̂i ,

in which λ̂ij stands for the ith element of λ̂j , and κ̂i := ∑2
j=1 λ̂2

ij . Therefore, as for
T1, each κ̂i can be treated as the specific contribution of the ith edge to the value
of T2.

In the sequel, we will plot the κ̂i’s in order to provide a fine-grained visualization
of the differences between the families of networks under scrutiny. The empirical
distribution of the edgewise contributions, κ̂i’s, to the estimate of the statistic T2
will be computed; and we will report all values above a certain threshold. In Fig-
ure 4, for instance, we have plotted the edgewise contributions above the 85th and
95th percentiles of the distribution of the κi’s. Since each κ̂i is positive, our strat-
egy consists in partitioning T2 into a sum of positive values, and the plotted κ̂i’s in
Figure 4 represent the largest such values.

5. Simulation studies. In this empirical study, we evaluate the statistical
power of the two-sample test T2 for Laplacians under different choices of number
of vertices and for increasing sample sizes. We simulate network-based data for
n subjects in each group, and focus our attention on two-sample experimental de-
signs. Motivated by the neuroimaging application underlying the methodological
development just described, the data-generating process relies on (i) the selection
of a network topology and the construction of an associated covariance matrix,
(ii) the generation of multivariate time series for each network model, and (iii) the
construction of subject-specific Laplacians based on the covariance matrices.
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5.1. Network topologies. In these simulations, we consider two types of net-
work topology, specified through binary matrices, A1 and A2, of order d ×d . First,
we consider a block-diagonal structure A1, which represents the grouping of sev-
eral vertices into two homogeneous communities,

A1 :=
(
X R

R Y

)
,

where X and Y are square matrices of dimensions 
d/2� and �d/2, respectively.
The elements of X and Y are given a value of 1 according to independent Bernoulli
variates with proportion p1 := 4/d , whereas the elements of R take a value of 1
with a probability of p2 := 1/(2d). These choices of p1 and p2 ensure that the
corresponding block models are sparse in the sense that their number of edges are
proportional to their number of vertices as d grows.

Second, we specify a small-world network structure, A2, by constructing a reg-
ular network with a ring topology, whose number of edges is taken to be pro-
portional to d , which again enforces sparsity. The edges of this network are then
randomly rewired [Watts and Strogatz (1998)]. The choice of Ne—the number of
edges—is here motivated by a desire to maintain some level of comparison be-
tween the block-diagonal model and the small-world topology. Using such Ne’s,
we ensure that both types of networks have approximately the same number of
edges. These two families of network topologies are illustrated in Figure 2 for
simulated networks of size d = 50.

For both of these models, we generated mean covariance matrices, Sgm’s, where
g = 1,2 denoting the group of subjects, and m = 1,2 denoting the block model and
small-world model, respectively. These were constructed using a mixture model
based on the binary matrices, Am’s. The S2m’s were expressed as a function of the
S1m’s. For the diagonal elements of the S1m’s,

Saa,1m
i.i.d.∼ exp(λ), a = 1, . . . , d,

whereas the off-diagonal elements of the S1m’s are constrained by the correspond-
ing off-diagonal elements in the adjacency matrices, Am’s, as follows:

Sab,1m|Aab,m
ind.∼ ∣∣Aab,mN

(
μ1, σ

2) + (1 − Aab,m)N
(
μ2, σ

2)∣∣

FIG. 2. Simulated matrices over d = 50 vertices. In panels (A) and (B), matrices with a block-di-
agonal structure and a small-world topology are respectively represented.
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for every a �= b, and where the parameters of the mixture model are given the fol-
lowing values, λ := 4, μ1 = 1, μ2 = 0 and σ 2 = 0.2 for all simulation scenarios,
thereby producing a high signal-to-noise ratio, permitting to distinguish between
the different types of entries in the matrices, S1m’s. Note that none of the simulation
scenarios guarantees that the resulting S1m’s are positive definite. Consequently,
we projected the resulting matrices to the nearest positive definite matrices in the
Frobenius norm, using the method described in Section 4.3. Once the S1m’s were
obtained, they were fixed for each scenario, and used to generate the covariance
matrix in the second group as follows: S2m := C(η − 1)S1m, where η controlled
the distance between the two population means, which was interpreted as the ef-
fect size, and the constant C was set to a small value, C := 0.03, throughout the
simulations.

5.2. Noise models. Resting-state or default-mode brain networks have been
investigated by a large number of researchers in neuroimaging [Beckmann et al.
(2005), Thirion et al. (2006)]. The main difficulty in simulating these networks
stems from the absence of a prior to produce such resting-state patterns of activities
[Kang et al. (2012), Leon et al. (2013)]. For each subject, we here constructed a
set of d sequences of T realizations, where d represents the number of ROIs, and
T denotes the total number of time points. These sequences of realizations were
drawn from a multivariate Gaussian, such that, for every subject, i = 1, . . . , n, the
random vectors, Xitgm ∈ R

d , were given by

Xitgm
i.i.d.∼ Nd(0, Sgm) ∀t = 1, . . . , T ,

where g = 1,2 denotes group affiliation, and m = 1,2 denotes the choice of the
underlying adjacency matrix: block-diagonal model and small-world model.

5.3. Simulation results. Four main factors were made to vary in this set of
simulations. In line with the subsequent real-data analysis, we considered sample
sizes of n = 100,200,300 and 400 per group. This was deemed representative of
the number of subjects found in most neuroimaging studies. Second, we varied
network sizes, with d taking values 10,20,30 and 40. This range of network sizes
allowed us to identify the effect of network size on the statistical power of our test.
Larger dimensions were expected to decrease power.

In each of these scenarios, we computed the statistical power of the two-sample
tests using different effect sizes. Here, the effect size was defined with respect to
the value of the parameter η. Recall that η controlled the distance between the two
population means, such that S2m := C(η − 1)S1m. For each set of conditions, the
simulations were repeated 100 times in order to obtain an empirical estimate of
the theoretical power of the two-sample test statistic for Laplacians under these
conditions.

The results of these simulations are reported in Figure 3. The power of the two-
sample test for Laplacians was found to be empirically well behaved for all the
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FIG. 3. Power curves for the simulated two-sample tests using the covariance estimation procedure,
under a multivariate Gaussian model, with error bars based on one standard error from the mean.
The y-axis indicates the probability of rejecting the null hypothesis when it is false, whereas the
x-axis is a proxy measure of effect size (see Section 5.3). These results are presented for networks on
d = 10,20,30 and 40 vertices, with different sample sizes and over T = 50 time points, and based
on 100 iterations per condition with respect to the block (top row) and small-world (bottom row)
topologies. A horizontal line has been added to indicate a power of 0.05.

scenarios considered. In particular, this was true for both the block-diagonal and
small-world topologies, as illustrated in the first and second row in Figure 3. As
expected, the power of the test tended to increase with larger sample sizes, albeit
that increase was mitigated by the size of the underlying networks.

6. Analysis of the 1000 FCP data set. Different aspects of the 1000 FCP data
set were considered. First, we used a one-sample test for comparing the Laplacian
mean to a subsample of the data. We then tested for sex and age differences us-
ing the two- and k-sample tests for Laplacians. Finally, we analyzed differences
in subnetworks, including the default-mode network (DMN). After excluding sub-
jects for which demographics data were incomplete, we obtained a sample size of
n = 1017.

6.1. Inference on full data set. As described in Section 1.2, the 1000 FCP
data provides a unique opportunity for neuroscientists to extract a reference tem-
plate of human connectivity. We tested the reliability of that template using a one-
sample Laplacian test for some random subsample of the data. We computed the
reference mean Laplacian over the full FCP sample, which is here treated as a
population parameter, �0. This was compared with a large random subsample
of 917 subjects, that is, after removing 100 subjects from the original FCP data.
We then tested for the null hypothesis that the sample mean, L̂1, was equal to
the reference mean �0. As expected, the test failed to reject the null hypothesis
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FIG. 4. Comparison of edgewise differences using either a standard mass-univariate analysis or
our proposed multivariate method. In panel (A), mass-univariate analyses were conducted to test for
local differences in connectivity due to sex in the full FCP data set (n = 1017). In each case,

(50
2

)
tests

were performed independently for each of the off-diagonal entries in the Laplacians. The first ma-
trix denotes the entries that were found to be significantly different between the groups at α = 0.05,
whereas the second matrix represents the significant entries after Bonferroni correction. Black de-
notes significant entries. In panel (B), the same edgewise effects are reported for our multivariate
approach using the visualization method described in Section 4.4. The edges whose contribution to
the T2-statistic is greater than the 85th and 95th percentiles (of the distribution of such individual
contributions) have been plotted in black in the third and fourth panels, respectively.

[T1 = 926,df = (50
2

)
,p ≈ 1], since the sample and reference means were drawn

from the same population.
The partitioning of the 1000 FCP data set by sex is provided in Figure 1(A).

This consists of nf = 555 female and nm = 462 male subjects. We tested whether
such sex differences were significant using the two-sample test for Laplacians. The
null hypothesis of no group differences was rejected with high probability [T2 =
1689.5,df = (50

2

)
,p < 0.001]. These results should be compared with the use of a

mass-univariate approach, in which a single hypothesis test is run for each voxel.
The significant voxel-level differences detected using a mass-univariate approach
for sex is reported in Figure 4.

Subjects in the 1000 FCP database can also be grouped according to age. In Fig-
ure 1(B), we have divided the FCP sample into three subgroups of approximately
equal sizes, with 386, 297 and 334 subjects, for subjects younger than 22, between
22 and 32, and older than 32, respectively. The k-sample Laplacian test (or Wilks’s
Lambda) was performed to evaluate the hypothesis stating that these k = 3 groups
were drawn from the same population. The null hypothesis was also rejected with
high probability in this case [� = 0.106, n = 1017,df = (40

2

)
,p < 0.001]. (For

computational convenience, we here restricted our attention to networks with 40
nodes, which yielded invertible sample covariance matrices for the Wilks’s test.)

6.2. Inference on partial data set. The results of the previous section were
compared with another analysis based on a small subset of connectomes. The 1000
FCP data set is indeed exceptionally large for the field of neuroimaging. By con-
trast, most papers using MRI data tend to report results based on smaller data sets,
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commonly containing between 20 and 100 subjects. Here, we have replicated the
various statistical tests described in the last section for such small sample sizes in
order to produce an analysis more reflective of what might be performed by, say, a
single lab.

The conclusions of the network-level tests for the different hypotheses of in-
terest were found to be robust to a large decrease in sample size. As for the full
data set, sex differences remain close to significance [T2 = 836.76,df = (40

2

)
,p =

0.077], when solely considering 100 female and 100 male subjects. Note, however,
that our proposed global test failed to reject the null hypothesis when considering
smaller data sets. Indeed, we restricted our attention to smaller subsets of sub-
jects, composed of 20 cases in each group, and such a test did not reject the null
hypothesis [T2 = 514.96,df = (40

2

)
,p ≈ 1].

These results should be contrasted with the use of a mass-univariate approach.
We compared the conclusions of a network-level Laplacian test for sex with the
ones of a mass-univariate approach based on 100 female and 100 male subjects.
No local differences were here found after correcting for multiple comparisons,
and solely one edge out of

(40
2

)
was found to significantly differ between groups

at a threshold of 0.001. This highlights one of the important advantages of using
a global test in this context. While the mass-univariate approach fails to detect
any sex differences at the local level, our proposed global test, by contrast, had
sufficient power to reject the null hypothesis at a global level.

6.3. Default-Mode Network. The Default-Mode Network (DMN) is a widely
studied portion of the functional network characterizing brain activity in both hu-
mans and animals [Buckner, Andrews-Hanna and Schacter (2008), Greicius et al.
(2003)]. This network tends to be active when an individual is not engaged in a
cognitive task. The DMN is composed of a set of hubs that include the precuneus,
posterior cingulate, medial prefrontal cortex and angular gyri, as well as prefrontal
cortices, temporo-parietal junctions, the hippocampi and the parahippocampi. In
the parcellation template used in this paper, these regions corresponded to d = 24
AAL areas.

We tested for the effect of sex in the full FCP sample by applying the projection
method described in equation (3). The hypothesis of no difference between males
and females was not rejected for the DMN network [T2 = 1128,df = (24

2

)
,p ≈ 1].

(The mean Laplacians for these subnetworks are reported in Figure 5.) This
demonstrates that such multivariate methods also tend to lose power when re-
stricted to subnetworks.

7. Discussion. In this paper, we have analyzed a large neuroimaging data set
using a novel framework for network-based statistical testing. The development of
this framework is grounded in a formal asymptotic theory for network averages,
developed within the context of a well-defined notion of the space of graph Lapla-
cians. Importantly, we have showed that using the global tests that result from our
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FIG. 5. Descriptive statistics for Default-Mode Network (DMN) in the 1000 FCP data set. In panels
(A) and (B), we have provided the mean Laplacians after dividing the sample according to sex and
age, respectively. As before, the Laplacians have been binarized with respect to the 75th percentile
in the distribution of the FCP database.

framework may provide the researcher with decidedly more statistical power than
when using a mass-univariate approach, which is the standard approach in the field.

To the best of our knowledge, we are the first to ascribe a notion of a “space” to
the collection of graph Laplacians and to describe the geometrical properties of this
space. While we have found it convenient for the purposes of exposition simply to
summarize these results in the main body of the paper, and to collect details in
the appendices, it is important to note that this initial step is crucial in allowing
us to bring to bear recent probabilistic developments in the field of shape analysis
to produce our key central limit theorem, upon which the distribution theory for
our tests lies. We note too that the framework we offer is quite general and should,
therefore, as a result be quite broadly applicable. Nevertheless, this initial work
also has various limitations, and furthermore sets the stage for numerous directions
for extensions, which we describe briefly below.

7.1. Limitations. It can be expected that there be a trade-off in the perfor-
mance of our tests between sample size n and the dimension d of the networks
in the sample. This expectation is confirmed in our simulations, where one can
observe that, for a given sample size n, the rate of type I error increases beyond
the nominal rate as d increases. Since our test can be seen to be equivalent to a
Hotelling T 2 on the off-diagonal elements of the Laplacians, it follows that sam-
ple sizes of order O(d2) would be required to control for this increase in type I
error rate. For the analysis of the full FCP data set, this condition was approxi-
mately satisfied, since this data set contains more than 1000 subjects, and we were
here comparing networks with 50 vertices. In their current forms, such global sta-
tistical tests may therefore be most applicable to very large data sets or to relatively
small networks. However, our analysis of the smaller subsets of the FCP data (i.e.,
mimicking analysis at the level of a single lab) suggests that even at low sam-
ple sizes the test is well powered against the alternative of differences in network
group averages.

Computationally, the method employed in this paper was also challenging since
the application of the Laplacian test required the inversion of a large covariance
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matrix. We have here resorted to different methods to facilitate this process, in-
cluding the use of modern shrinkage estimation techniques [Schäfer and Strimmer
(2005)], as well as the modification of the resulting sample covariance matrix esti-
mates in order to force positive definiteness [Cheng and Higham (1998), Higham
(2002)]. Practically, however, such methods remain computationally expensive,
and may therefore limit the size of the networks that one may wish to consider
when using such Laplacian tests.

Finally, observe that the networks of interest in this paper have been constructed
using fMRI data. This preliminary step necessitated the estimation of covariance
matrices for each subject, and such estimation has not been directly taken into ac-
count in the final analysis. Further research may therefore need to adopt a global
modeling strategy in which the uncertainty at the first level of the analysis is prop-
agated to the second level, in which we compare groups of subject-specific net-
works.

7.2. Extensions. In our work here (specifically, as described in Section 3) we
show that the “space” of networks—without any structural constraints—behaves
“nicely” from the mathematical perspective, and therefore we are able to develop a
corresponding probability theory and statistical methods for one- and two-sample
assessment of network data objects. However, one of the most fundamental results
that has emerged from the past 20 years of complex network research is the under-
standing that real-world networks typically (although not exclusively) in fact tend
to possess a handful of quite marked structural characteristics. For example, most
networks are relatively sparse, in the sense that the number of edges is on the same
order of magnitude as the number of vertices. Other common key properties in-
clude heterogeneous degree distributions, cohesive subgraphs (aka communities)
and small-world behavior [see Newman (2010), Chapter 8].

The ubiquity of such characteristics in real-world networks has been well es-
tablished. Importantly, this fact suggests that the appropriate (differential or metric
measure) geometry of the “space of all networks”—or, more formally, the space
of Laplacians corresponding to such networks—depends both on the constraints
imposed on these networks/Laplacians and the geometry chosen for the larger
space P of PSD matrices. In our case, it is natural to choose a Euclidean geome-
try rather than geometries associated to P as a homogeneous space. In particular,
other choices of network constraints can lead to metric geometry problems em-
bedded inside Riemannian geometry problems. For examples, imposing sparse-
ness on a network or allowing for directed edges lead to nontrivial geometries.
The Euclidean average of two sparse networks/matrices need not be sparse, and
apart from simple scalings, one expects the set L of sparse matrices, properly de-
fined, to be a discrete subset of the manifold of positive semi-definite matrices
(PSD), and hence far from convex. Thus, it is natural to define the average of two
sparse matrices to be the sparse matrix closest to the Euclidean average, but this
may be computationally unappealing. Moreover, the Riemannian measure on PSD



746 C. E. GINESTET ET AL.

does not determine a measure on L, and so computing Fréchet means becomes
problematic. Of course, one can impose a uniform distribution on L, but this risks
losing all geometric relations between L and PSD. Hence, there are a variety of
open problems to be studied examining the implications of network structural con-
straints on the space L.

Furthermore, since the asymptotic theory we exploit from shape analysis relies
heavily on the topological and geometrical properties of the space within which
they are brought to bear, we can expect that different network constraints will re-
quire different levels of effort in producing central limit theorems. More precisely,
while a general asymptotic distribution theory for Fréchet means in metric spaces
has recently been derived by Bhattacharya and Lin (2017), this theory requires
that a number of conditions be satisfied, the verification of which can be expected
to become increasingly difficult as the geometry of the space becomes compli-
cated. Thus, accompanying the various extensions in geometry described above
are likely to be corresponding challenges in probability theory and shape analysis.
Some progress in this direction has been spearheaded by Bhattacharya et al. (2011)
and Hotz et al. (2013), who have considered stratified spaces and sticky CLTs for
open books, respectively. Moreover, similar data object analyses have been con-
ducted using phylogenetic trees [Skwerer et al. (2014)]. In object data analysis, the
approach adopted in this paper would be regarded as extrinsic, in the sense that it
embeds the manifold of interest in an ambient space. Further research may also
investigate intrinsic approaches to study the set of graph Laplacians.

Finally, while the 1000 FCP data set is unique in its magnitude and richness,
which in turn has allowed us to pose and answer a good number of questions rel-
evant to neuroscience in the analyses using our proposed testing framework, there
remains much additional empirical work to be done applying our methods in or-
der to more fully establish both their capabilities and their limitations. We would
anticipate that with the recently started BRAIN initiative, and other endeavors like
it, that within five years there will be a plethora of databases of network-based
objects in neuroscience, providing more than ample motivation not only for the
further testing of methods like the ones we have proposed here, but also for ex-
tending other tools from classical statistics to network data.
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SUPPLEMENTARY MATERIAL

Proofs of theorems (DOI: 10.1214/16-AOAS1015SUPP; .pdf). Therein we
here provide detailed proofs of the main results in this paper.
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