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EFFICIENT ESTIMATION OF AGE-SPECIFIC SOCIAL CONTACT
RATES BETWEEN MEN AND WOMEN

BY JAN VAN DE KASSTEELE, JAN VAN EIJKEREN AND JACCO WALLINGA

National Institute for Public Health and the Environment (RIVM)

Social contact patterns reveal with whom individuals tend to socialize,
and therefore to whom they transmit respiratory infections. We infer highly
detailed age-specific contact rates between the sexes using a hierarchical
Bayesian model that smooths while simultaneously guaranteeing the inher-
ent reciprocity of contact rates. Application of this approach to social contact
data from a large prospective survey confirms a tendency that people, espe-
cially children and adolescents, mostly contact other people of their own age
and sex, and reveals that women have more contact with children than men.
These findings imply different exposure patterns between the two sexes for
specific age groups, which agrees with available observations.

1. Introduction. The incidence and severity of most human respiratory infec-
tions such as influenza, tuberculosis, measles, rubella, mumps, human parvovirus
B19 and cytomegalovirus depend on age and sex [Falagas, Mourtzoukou and Var-
dakas (2007), Klein et al. (2010), Holmes, Hausler and Nunn (1998), Borgdorff
et al. (2000), Neyrolles and Quintana-Murci (2009), Brown and Moss (2010),
Davis et al. (2010), Young and Brown (2004), Pass et al. (2009)]. For the plan-
ning and evaluating of vaccination programs against these infectious diseases, it
is necessary to know how an infection spreads among age groups and among
women and men. At-risk contacts for infection with respiratory pathogens are
typically assessed via proxy measures, such as having a conversation or touch-
ing [Edmunds, O’Callaghan and Nokes (1997), Wallinga, Teunis and Kretzschmar
(2006), Mossong et al. (2008), Kucharski et al. (2014)]. A quantitative understand-
ing of the different contact behavior of men and women of various ages will thus
contribute to a better understanding of how respiratory infections spread.

Even though sex differences in contact behavior have been a topic of general
interest, there is surprisingly little scientific evidence to quantify the stereotypical
gender roles of men and women [Mehl et al. (2007)]. Mossong et al. (2008) found
no evidence of the daily number of social contacts being different for men and
women when averaging over all ages. Further stratification by age revealed a strong
tendency of girls contacting girls rather than boys, and vice versa in elementary
schools [Cauchemez et al. (2011), Conlan et al. (2011)]. A recent study reported
strong evidence of within-sex preferential mixing for broad age groups [Dodd et al.
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(2016)]. However, to the best of our knowledge, there are no studies that offer
precise estimates of the numbers of contacts by age and sex for a representative
study population.

There is a large number of studies that collect data on at-risk contacts for in-
fection using proxy measures such as having a conversation or touching [e.g.,
Edmunds, O’Callaghan and Nokes (1997), Wallinga, Teunis and Kretzschmar
(2006), Mossong et al. (2008), Salathé et al. (2010), Read et al. (2012), Danon
et al. (2013), Kucharski et al. (2014), Kwok et al. (2014), Eames et al. (2015),
Dodd et al. (2016)]; for textbooks that cover this field see Vynnycky and White
(2010), Hens et al. (2012). Most of these studies follow the format of Mossong
et al. (2008) and collect data on social contact behavior stratified by age and sex.
These data have been used to infer contact rates that are relevant to the spread of a
respiratory infection that has been explored using mathematical modeling studies
[e.g., Medlock and Galvani (2009), Miller et al. (2010), Rohani, Zhong and King
(2010), Keeling and White (2011)]. In all cases, the estimation has been limited to
contact rates that are only age-specific, rather than age- and sex-specific.

The estimation of contact rates by both age and sex from these data sets has
proven to be statistically challenging for two reasons. First, the stratification by
age and sex of both the study participants and their contacts leads to a very large
number of contact rates (model parameters) to be estimated. For example, if we
would choose to estimate the contacts by men and women in 81 age cohorts (age 0–
80) to cover the age range in the general population, this would require estimating
(2 × 81)2 = 26,244 contact rates. Second, the contact rates should also meet a
reciprocity requirement. This requirement arises from the definition of a contact
as a reciprocal event where two individuals have a conversation or touch. At the
individual level, this implies that if John contacts Mary, Mary must have contacted
John. Both issues, the need for regularization of the number of parameters while
constraining to meet reciprocity, could result into computational problems.

There are relatively few statistical approaches to inferring contact rates from
social contact data [see Hens et al. (2012), Chapter 15, for an overview]. Most sta-
tistical analyses of social contact data, such as the one presented in Mossong et al.
(2008), do not guarantee reciprocity, and therefore risk generating internally incon-
sistent outcomes. A straightforward regularization approach is to aggregate con-
tact data into wide age categories and apply a likelihood function with constraints
such as to guarantee reciprocity of contacts [Wallinga, Teunis and Kretzschmar
(2006)]. Aggregating age into a few categories results in coarse-graining, with an
inevitable loss of detail. A better regularization option is to use thin plate regression
splines with a smooth-then-constrain approach [Hens et al. (2009), Goeyvaerts
et al. (2010)]. But also in this case there is a considerable risk of losing details.

Recent developments in computational intensive statistical methods present us
the alternative possibility of using hierarchical Bayesian models. From a Bayesian
point of view, regularization techniques correspond to imposing certain prior distri-
butions on model parameters that give lower probability to more complex models.
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Here we estimate social contact rates by age and sex using an innovative estima-
tion scheme based on a Gaussian Markov Random Field (GMRF) in a hierarchical
Bayesian model, controlled by a few hyperparameters and with a non-Gaussian re-
sponse variable [Rue and Held (2005)]. A tailor-made construction of the precision
matrix of the GMRF prior allows us to impose smoothness in contact rates while
simultaneously accounting for the reciprocity of contacts. Such models are com-
putationally very efficient when using Integrated Nested Laplace Approximations
(INLA) [Rue, Martino and Chopin (2009)]. We apply this method to contact data
from a prospective survey of social contact patterns collected in the Netherlands
with 825 participants reporting 11,225 contacts. We show that it is possible to ex-
tract contact rates from this dataset at an unprecedented level of detail. Finally, we
explore the consequences for the spread of a respiratory infection via such contacts
and examine how men and women differ in their age-specific risk of infection.

2. Methodology.

2.1. Definitions and notation. In this section we present the notation that is
used to estimate the daily age- and sex-specific contact rates from a contact survey.
Following Mossong et al. (2008), we define a participant as someone who partici-
pated in the prospective contact survey. We define a contact as a conversation (i.e.,
at least one sentence) between a participant and another person at close physical
proximity or touching the other person’s skin (e.g., shaking hands or kissing). Fol-
lowing Hens et al. (2012), we use subscripts i as an index for a participant’s age,
where i = 1 and i = 81 corresponds to 0 and 80 years of age, respectively. Simi-
larly, j is used as an index for a contacted person’s age between j = 1 and j = 81.
We introduce superscripts MM as an index to refer to male-to-male contacts, FM
to refer to female-to-male contacts, MF to refer to male-to-female contacts, and
FF to refer to female-to-female contacts. Therefore, in total we have four blocks
of 81×81 contacts. Let us, for the moment, only consider male-to-female contacts
MF.

We denote the total number of unique individuals contacted by all participants
by random variable Y . Then we can define Y MF

ij as the total number of females
of age j that are contacted by all male participants of age i during one day. We
denote the total number of participants by t . Then we can define tMi as the total
number of male participants of age i in the contact survey. We denote the contact
intensity between two groups of individuals by m. Then we can define mMF

ij as the
mean number of females of age j that are contacted by one male participant of age
i during one day. It is given by

(2.1) mMF
ij = E(Y MF

ij )

tMi
.

We denote the total population size by w. Then we can define wM
i as the male

population of age i, and define wF
j as the female population of age j . Because
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contacts are reciprocal by nature, the total number of male-to-female contacts from
age i to age j should be equal to the total number female-to-male contacts from
age j to age i during one day:

(2.2) mMF
ij wM

i = mFM
ji wF

j .

We denote the contact rate between two groups of individuals by c. Then we can
define cMF

ij as the mean number of female individuals of age j that are contacted
by one male participant of age i during one day divided by the population number
of females of age j . This is given by

(2.3) cMF
ij = mMF

ij

wF
j

= E(Y MF
ij )

tMi wF
j

.

From equation (2.2) it follows that cMF
ij = cFM

ji . Similar arguments give cMM
ij =

cMM
ji and cFF

ij = cFF
ji ; that is, contact rates c are symmetric, contact intensities m

are not.

2.2. Inferring contact rates from reported contacts. We infer contact rates us-
ing a hierarchical Bayesian model with three levels. The first level, the observation
level, refers to the total number of contacts of any age- and sex-specific combina-
tion in the dataset. A reasonable assumption is to use a Negative Binomial distribu-
tion [Wallinga, Teunis and Kretzschmar (2006), Mossong et al. (2008), Goeyvaerts
et al. (2010)] with mean E(Y MF

ij ) and global dispersion parameter θ :

(2.4) Y MF
ij | E

(
Y MF

ij

)
, θ ∼ NegBin

[
E

(
Y MF

ij

)
, θ

]
.

At the second level, from equation (2.3) it follows that the mean of the total number
of contacts E(Y MF

ij ) is the product of a known denominator UMF
ij = tMi wF

j and the

unknown contact rate cMF
ij . The denominator represents the total number female

contacts that all male participants of age i would have if they contacted all female
individuals of age j in the population. Because contact rates are positive, it is
natural to use the log-link function:

(2.5) log
[
E

(
Y MF

ij

)] = log
(
UMF

ij

) + β + xMF
ij .

Hence, log(cMF
ij ) is modeled by β + xMF

ij , where we can interpret β as a global

intercept and xMF
ij as deviations from it. These deviations have a smooth and sym-

metric structure. In our approach xMM
ij , xMF

ij , xFM
ij and xFF

ij are considered a real-
ization of a zero mean two-dimensional Gaussian Markov Random Field (GMRF)
over the ages i and j and both sexes. A GMRF is a random field following a mul-
tivariate Normal (Gaussian) distribution with conditional (Markov) independence
assumptions [Rue and Held (2005)]. This conditional independence is defined by a
precision matrix Q = τR, where R is a sparse structure matrix that will be defined
more precisely in Section 2.3 and τ is the global precision parameter that controls
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the smoothness of the deviations. If we stack xMM
ij , xMF

ij , xFM
ij and xFF

ij in a vector
vec(x), then we can write

(2.6) vec(x) | τ ∼ Normal(0,Q).

At the third level, hyperpriors are specified for intercept, the precision (smoothing)
parameter of the GMRF and the dispersion parameter of the Negative Binomial
distribution. We place a Normal prior with mean 0 and precision 0.001 on the
parameter for the intercept β , a Gamma prior distribution with shape parameter 1
and rate parameter 0.0001 on precision parameter τ , and a Normal prior with mean
0 and precision 0.001 on the logarithm of the dispersion parameter θ :

β ∼ Normal(0,0.001),(2.7)

τ ∼ Gamma(1,0.0001),(2.8)

log(θ) ∼ Normal(0,0.001).(2.9)

The contact rates and parameters for these highly structured hierarchical
Bayesian models can be efficiently estimated by the recently established Integrated
Nested Laplace Approximations technique (INLA) [Rue, Martino and Chopin
(2009)]. The implementation can be found in the Supplementary Material [van
de Kassteele, van Eijkeren and Wallinga (2017)].

2.3. Smoothing while maintaining symmetry. A tailor-made construction of
the precision matrix Q of the GMRF prior allows us to impose smoothness in
contact rates while simultaneously accounting for the reciprocity of contacts. It is
essential that the contact rates are symmetric, such that cMM

ij = cMM
ji , cMF

ij = cFM
ji

and cFF
ij = cFF

ji . These symmetries for c imply a symmetry in the deviations x.
Figure 1 provides a schematic illustration for two sexes and n = 5 age groups: the
5 × 5 × 4 = 100 elements correspond to the 100 nodes in this graph; symmetry
in value for each element is guaranteed by forcing identical values in the lower
and upper triangular parts of the matrix. For example, data records 2 and 6 provide
information for node 2. Thus, 55 unique node values are inferred from the 100 data
records.

Smoothing is achieved by imposing the condition that neighboring node values
of x should be similar. The neighborhood structure is defined by the entries of the
structure matrix. Figure 1 provides a schematic illustration: the nonzero elements
of structure matrix R correspond to the edges in this graph. Only the nodes in the
lower triangular part of the matrix need to be linked; the values for the nodes in
the upper triangular part follow directly because of the imposed symmetry.

We use the second order random walk prior (RW2) [Rue and Held (2005)],
which reflects the prior belief that the gradient of x varies smoothly and that sud-
den jumps between neighboring values of the gradient are unlikely, in other words,
regularize the difference of the differences. Other options include the RW1 prior,
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FIG. 1. Graphical representation of the construction of a smooth and symmetric contact matrix
stratified by age (n = 5 age groups) and sex. Contacts are categorized as male-to-male (bottom left
panel), female-to-male (bottom right panel), male-to-female (top left panel) and female-to-female
(top right panel). The horizontal axis of each panel gives the age of the participants; the vertical axis
gives the age of the contacts. The data records, indicated by superscripts, are numbered sequentially
1 to 100. The nodes, indicated by ellipses, are numbered sequentially 1 to 55 and ordered such
that symmetry between ages and sexes is guaranteed. For illustrative purposes, identical nodes are
indicated by identical colors. The edges denote the dependencies between triplets of nodes (RW2
prior).

which reflects the prior belief that sudden jumps between neighboring values are
unlikely, or higher order RW priors. For the RW2 prior in one dimension, a Normal
prior is put on the second order differences:

(2.10) �2xi = xi−1 − 2xi + xi+1 ∼ Normal(0, τ ).
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Let us for the moment consider the FM contacts with n = 5 age groups, as in the
lower right panel of Figure 1. Here xFM is a 5 × 5 matrix. In two dimensions,
smoothness is achieved by placing the RW2 prior on the rows and columns of xFM

simultaneously. We follow the approach by Currie, Durban and Eilers (2004) using
Kronecker products to construct a two-dimensional prior.

Let D0 be the matrix form of the one-dimensional difference operator in equa-
tion (2.10). For n = 5, it has size 3×5 because near the two boundaries it is impos-
sible to take second order differences. The difference operator matrix operating on
all rows and columns of xFM simultaneously can then be written as [D1 : D2]FM ,
with

(2.11) D1 = In ⊗ D0 and D2 = D0 ⊗ In.

D1 operates in horizontal direction along the age of the participants, while D2
operates in vertical direction along the age of the contacts. Both D1 and D2 have
size 15 × 25, and so [D1 : D2]FM has size 30 × 25 and operates on vec(xFM) =
(xFM

1,1 , xFM
2,1 , . . . , xFM

5,5 ) of length 25.
Next, we consider the MM contacts with n = 5 age groups, as in the lower left

panel of Figure 1. Using equation (2.11), we can construct a similar difference op-
erator matrix [D1 : D2]MM for vec(xMM). However, because of the imposed sym-
metry, we only need to estimate the lower triangular part (including the diagonal),
and so vec(xMM) is a vector of length 15. As it is impossible to take second order
differences near the boundaries of the triangle (the missing edges between nodes
2 and 6, and 13 and 14 in Figure 1), we can subsequently drop the corresponding
rows and columns of [D1 : D2]MM , which then reduces to a 12 × 15 matrix. The
same applies to the FF contacts. No difference operator matrix is needed for the
MF contacts because of the imposed symmetry.

The three resulting difference operator matrices are put together in one block
diagonal difference operator matrix D of size 54 × 55. This matrix operates on
all 55 elements in x simultaneously. The corresponding 55 × 55 structure matrix
R of the GMRF is given by DTD [Rue and Held (2005)]. The resulting prior is
improper because the precision matrix Q is not of full rank (rank deficiency is
3 × 2 × 2 = 12). The posterior, however, is proper. A similar principle applies
to n age groups and other RW priors. The implementation can be found in the
Supplementary Material [van de Kassteele, van Eijkeren and Wallinga (2017)].

2.4. Model choice and validation. We examine the effect of applying RW1,
RW2 and RW3 priors. The models are compared in terms of the Watanabe–Akaike
or widely applicable information criterion (WAIC) [Watanabe (2013)]. We com-
pute the probability integral transform (PIT) to check the validity of the models
[Dawid (1984)]. The sensitivity of the outcome to the particular choice of hyper-
priors is examined using the methodology described in Roos et al. (2015).

The WAIC closely approximates Bayesian cross-validation and can be viewed
as an improvement on the deviance information criterion (DIC) for Bayesian mod-
els [Gelman, Hwang and Vehtari (2014)]. The PIT can be used as a Bayesian
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“leave-one-out” predictive measure of fit or calibration check. If the observation is
drawn from the predictive distribution, the PIT has a standard uniform distribution.
The PIT is usually being visualized in histograms. We use the nonrandomized ver-
sion of the PIT that is suitable for count data [Czado, Gneiting and Held (2009)].
The sensitivity to the hyperpriors is examined by comparing the local change in
the posterior parameter distribution to the unmodified posterior in case the prior
distribution is modified in a standardized way. This can be done without rerunning
the model [Roos et al. (2015)]. The sensitivity is summarized by a single num-
ber, here the worst-case sensitivity, expressed as a percentage. Percentages above
100% indicate super-sensitivity.

3. Application.

3.1. Contact survey data. We use data from a prospective survey of social con-
tact patterns to illustrate our method. Data were collected within the POLYMOD
multi-country study. The goal of this study was to quantify contact behavior rel-
evant for the spread of infections by the respiratory or close-contact route. A de-
tailed description of the study design has been provided in Mossong et al. (2008).
Because of differences in data collection between countries, we only use data from
the Netherlands, in which 825 participants recorded characteristics of 11,225 con-
tacts with unique individuals during one day. As the multi-country dataset was
published while data collection was still going on in the Netherlands, only 269 of
these 825 Dutch participants were included in the study published by Mossong
et al. (2008). The additional 556 participants have been included in our analysis.
Data collection took place in 2006 and 2007.

Participants were asked to complete a diary on one assigned day on the indi-
viduals with whom they had contact, as defined in Section 2.1. Participants were
asked to record their own age and sex, as well as the age and sex of each contacted
person. There were three different types of diaries: one for children (age 0–8),
which was completed by their parents; one for teens (age 9–17); and one for adults
(age 18+).

Some participants reported the age of contacts as a range. We multiple imputed
(10 times) these records by uniformly sampling an age from that range. From age
20 onward, the reported age of contacts showed a preference at ages that were mul-
tiples of five. To prevent spurious results, we corrected these ages by uniformly
redistributing the peak in an age range between two years younger and two years
older. The additional uncertainty associated with the multiple imputations is in-
cluded in all results.

Because only 22 participants reported the maximum number of contacts of 45,
we ignored possible right censoring of the number of contacts. We only analyzed
the reported contacts and ignored the missed contacts [see the Supplementary Ma-
terial, van de Kassteele, van Eijkeren and Wallinga (2017)]. Four participants re-
ported not having any contacts. We excluded records where there was no informa-
tion on the age or sex of participants or contacts. We also excluded contacts older
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than 80 years because only individuals of age 0–80 participated in the contact sur-
vey. For these reasons, in total 53 participants and 1037 contacts were excluded.

The total observed number of contacts of any age- and sex-specific combination,
yMM
ij , yFM

ij , yMF
ij and yFF

ij , is found by cross tabulation of the participant ID’s in the
data set, stratified by participant age, contact age, participant sex and contact sex.
The total number of participants of any age- and sex-specific combination, tMi and
tFi , is found by tabulation of the number of unique participant ID’s, stratified by
participant age and sex. The age- and sex-specific population numbers wM

j and
wF

j with reference date January 1, 2007, are obtained from Statistics Netherlands
[StatLine (2015)].

The three observables y, t and w are assembled into one large dataset. For each
record the denominator Uij is calculated. The value of the denominator, which is
typically O(106), is scaled by dividing the value by one million contacts. If there
are no participants of age i, the number of contacts yij is set to a missing value
and the value of Uij is set to 1. In that way, these records do not contribute to
the likelihood in the estimation procedure. Details are found in the Supplementary
Material [van de Kassteele, van Eijkeren and Wallinga (2017)].

3.2. Crude and smoothed contact rates. The crude age- and sex-specific con-
tact rates c are shown in Figure 2. With “crude” we mean contact rates that are
directly calculated from the data without applying any regularization. They are
obtained by equation (2.3), where E(Y ) is replaced by y. There are no male par-
ticipants of age 25 and 80, and no female participants of age 80, resulting in white
vertical lines (not visible at age 80). The values of the crude contact rates fluctuate,
are often equal to zero and are not necessarily symmetric.

Figure 3 shows the age- and sex-specific contact rates after smoothing while
accounting for reciprocity, using the approach as described in Section 2, using the
RW2 prior. Reciprocity of contact imposes symmetry on the four panels, with the
axis of symmetry running diagonal from the bottom left to the top right. The figure
reveals highly structured contact rates that strongly depend on age. Higher rates
occur along the diagonals. This indicates that contacts are mostly assortative with
respect to age: people contact other people of their own age. Children and adoles-
cents have the highest rates. The assortative pattern with respect to age continues
in adults, although contacts rates become lower and more diffuse with respect to
age. For children and adolescents, contacts are also assortative with respect to sex:
children and adolescents contact other children and adolescents of their own sex.
For adults the assortative pattern with respect to sex disappears: adults contact
other adults regardless of their sex. Disassortative patterns are also present. Chil-
dren have more contact with adults who are approximately 30 years older than
with adults. Women have higher contact rates with children than men.

Figure 4 shows cross-sections of Figure 3 for a male participant at age 10 and a
female participant at age 40. The figure illustrates the uncertainties associated with
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FIG. 2. Crude age- and sex-specific contact rates. Similar to Figure 1, contacts are categorized
as male-to-male (bottom left panel), female-to-male (bottom right panel), male-to-female (top left
panel) and female-to-female (top right panel). The horizontal axis of each panel gives the age of
the participants; the vertical axis gives the age of the contacts. The color scale indicates the relative
values of the contact rates from low (yellow) to high (red).

the estimates. Contact rates for a 10-year-old male with other males and females of
different ages increase rapidly with age, having a sharp maximum with 10-year-old
males and females (classmates) and reaching another peak with 45-year-old males
(fathers) and 40-year-old females (mothers). Contact rates for a 40-year-old female
with other males and females of different ages show a more gradual pattern. Note
the discontinuity in the gradient at contact age 10 (10-year-old males) and contact
age 40 (40-year-old females) as a result of the tailor-made prior distribution.
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FIG. 3. Estimated smooth and symmetric age- and sex-specific contact rates. The color scale indi-
cates the relative values of the contact rates from low (yellow) to high (red); the contour lines are the
absolute values of the contact rates per 106.

3.3. Model choice and validation. Table 1 shows the WAIC and effective
number of parameters for models with three different RW priors. The RW2 prior
resulted in the lowest WAIC, and is therefore to be preferred. The RW1 prior im-
plies the least regularization and highest effective number of parameters, and the
RW3 prior implies the most regularization, the smoothest surface and lowest ef-
fective number of parameters.

Figure 5 shows the PIT histograms for three models with different RW priors.
In particular, the histograms for the models with RW2 and RW3 prior are nearly
uniform, indicating a good model fit, that is, the observations are drawn from the
predictive distribution.
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FIG. 4. Cross-sections of Figure 3 showing the contact rates per 106 for a male participant at
age 10 having contact with males (bottom left panel) and females (top left panel), and a female
participant at age 40 having contact with males (bottom right panel) and females (top right panel).
Shaded areas indicate 95% credible intervals.

The worst-case sensitivity estimates of the hyperparameters were 13% for the
log-transformed precision parameter τ and 0.25% for the log-transformed disper-
sion parameter θ . These values indicate that the posterior distributions for the con-
tact intensities are insensitive to the choice of the prior parameter values.

3.4. Differences in projected age-specific risk of infection between the sexes.
The estimated contact rates could result in relevant differences between the sexes
with respect to the age-specific risk of acquiring respiratory infections. To explore
whether such differences occur, the posterior contact rates are converted into con-
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TABLE 1
Comparison of three different priors for smoothing

the contact rates, with the widely applicable
information criterion WAIC and effective number
of parameters peff. The lowest value of the WAIC

indicates the most parsimonious model

Prior WAIC peff

RW1 32,505.5 1620.0
RW2 32,431.3 479.3
RW3 32,660.0 261.6

tact intensities by applying equation (2.3), for example, for male-to-female con-
tacts mMF

ij = cMF
ij wF

j , and assemble contact intensities into a block matrix. This
matrix is called the next generation matrix. In our notation of this matrix, the index
i refers to the characteristics of the infectors and the index j to the characteristics
of the infected. The right dominant eigenvector of this matrix can be interpreted as
the age- and sex-specific risk of an infection that is transmitted via close contacts
or respiratory droplets when a new emerging infection spreads in a completely sus-
ceptible population [Wallinga, van Boven and Lipsitch (2010)]. Here we use this
right dominant eigenvector to quantify possible differences between the sexes to
the age-specific risk of infection.

The resulting normalized age-specific risk of infection shows differences be-
tween the sexes [Figure 6(a)]. The infection risk increases at a young age, from a
relatively low risk for infants to a high risk for teenagers. There is a sharp decrease
in infection risk for young adults, followed by a modest rise in risk around the
age of 40. For older ages the risk decreases again. The ratio between infection risk
of females and males shows that between ages 18–38 women have a significantly

FIG. 5. PIT histograms for three models with different RW priors. The histograms show the prob-
ability integral transform of the observed total number of contacts relative to the model predictions.
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FIG. 6. Projected risk of infection, based on the estimated contact rates. (a) Relative incidence of
infection when a new emerging infection spreads in a completely susceptible population. (b) Inci-
dence ratio between females and males; above the dotted horizontal line females have higher inci-
dence compared to males. Shaded areas indicate 95% credible intervals.

higher infection risk than men, and between ages 50–65 women have a lower risk
than men [Figure 6(b)].

We compared these contrasting age-specific infection risks for men and women
to observations on influenza related mortality during the 1957 influenza pandemic
in the Netherlands. We calculated the age- and sex-specific fraction of deaths due to
the 1957 influenza pandemic relative to total number of deaths in the Netherlands
[Polak (1959)]. Mortality rates were modeled by a Poisson generalized additive
model using penalized splines for age. The mortality rates increase at a young
age, from low rates for infants to high rates for teenagers. The broad pattern is
similar to that of the projected infection risk: there is a decrease in infection risk
for young adults, followed by a leveling off at the age of 40. For older ages the risk
decreases further [Figure 7(a)]. The ratio between mortality rates of females and
males shows that between the ages 20–30 women have a significantly higher risk
than men [Figure 7(b)]. Figure 6 compared to Figure 7 shows that the differences
in infection risk between the sexes, as expected from the observed age- and sex-
specific social contact patterns, could account to a large extent for the differences
in mortality risk due to infection, as observed in mortality statistics.

4. Discussion and conclusions. We have estimated social contact rates at an
unprecedented level of detail for men and women of all ages. The estimation of
contact rates requires smoothing while at the same time enforcing consistency with
reciprocal nature of contacts. We achieve smoothing by a Gaussian Markov Ran-
dom Field approach where we impose a random walk prior in two dimensions
directly on the logarithm of the age-specific contact rates.
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FIG. 7. Observed risk of death upon infection during the 1957 influenza pandemic in the Nether-
lands. (a) Risk of death due to influenza relative to all-cause mortality by age and sex. (b) Mortality
ratio between females and males.

The proposed approach has important advantages over existing alternatives.
First, the proposed approach makes it possible to increase the resolution up to
81-year age cohorts and stratification by sex. This is a significant improvement
over existing methods for statistical analysis of social contact data that aggregate
the entire age range in six crude age classes [Wallinga, Teunis and Kretzschmar
(2006)] or 16 age classes [Mossong et al. (2008)], and ignore sex. Second, we are
able to explicitly specify the reciprocity constraints. This is a significant improve-
ment over existing methods that do not guarantee reciprocity and risk inconsistent
outcomes [Mossong et al. (2008)]. Third, the amount of smoothing is directly es-
timated from the amount of information in the data, and we can specify where the
borders of smooth surfaces are located—at the boundaries and along the diagonal
of the contact matrix—therefore preventing undesired artifacts such as smoothing
across the diagonal. This is a significant improvement over existing methods that
use a smoothing tensor spline with constraints [Goeyvaerts et al. (2010)]. Fourth,
the proposed approach allows for fast and efficient estimation of contact rates. One
model run takes a few minutes on a standard desktop computer.

The estimated social contact patterns require a critical checking with respect
to model choice, validity and prior sensitivity. The patterns also require a critical
checking with respect to plausibility to patterns of disease transmission. We will
briefly look at each of these aspects in turn.

We have described the total number of contacts by a Negative Binomial distri-
bution that is parameterized with a mean and a dispersion parameter. The mean
is allowed to vary by age and sex. In this study we focus on the expected contact
rates, and therefore we treat the dispersion parameter θ and precision or smoothing
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parameter τ as nuisance parameters. If these parameters would be of direct inter-
est, then they can be varied by age and sex, although this would be computationally
challenging. We believe that it is a reasonable assumption that the dispersion and
rate of change between ages for the contact process between men, between men
and women, and between women are the same for all sexes.

Based on the WAIC, the RW2 prior is the preferred prior. In frequentist statistics
it is common use to penalize the second derivative of the curve [Wood (2006)]. Par-
ticularly in P-spline smoothing it is a common use to put a discrete second order
penalty on the spline coefficients [Eilers and Marx (1996)]. In a Bayesian con-
text, this is exactly the same as putting a RW2 prior on the coefficients [Lang and
Brezger (2004)]. Our 2-dimensional RW2 prior is based on the work by Currie,
Durban and Eilers (2004), where second order differences in both the horizontal
and vertical dimension are taken simultaneously. Our approach is a simple and
intuitive way of constructing a smoother in two dimensions for triangular shaped
grids. To develop some intuition, for the proposed 2-dimensional RW2 prior simu-
lated realizations for a specified marginal prior variance and prior correlations for
n = 81 and a fixed τ reveal that the prior variance is the largest near the boundaries
and along the diagonal of the grid and that prior variance decreases toward the in-
terior parts. The prior correlation between some given node and its surrounding
nodes decreases with node distance. There are alternative approaches possible for
a prior. A 2-dimensional RW2 prior could be constructed by applying the bihar-
monic operator, a discrete analogue of thin plate splines [Rue and Held (2005)].
Adapting this prior to a triangular grid as required here is challenging.

The validity of the model was checked using PIT histograms [Czado, Gneiting
and Held (2009)]. The model accurately reflects the contact data as reported by
the survey participants. We have examined prior sensitivity using the methodology
described in Roos et al. (2015). The results indicated that the posterior distributions
are insensitive to the choice of the prior hyperparameter values.

We checked the relevance of the estimated contact intensities as a proxy mea-
sure for transmission of infection by comparing the project risk of infection to
actual risk of mortality upon infection with influenza during the 1957 influenza
pandemic. We chose the 1957 pandemic as it was the last large epidemic of a
respiratory infection that hit an almost completely susceptible population in the
Netherlands, and therefore provided the closest comparison with the model pro-
jections. As we cannot rule out any differences in age-dependent mortality rates
between the sexes, and as the study population for the contact survey was not
representative for the general population in 1957, this test does suggest that the
estimated age- and sex-specific contact intensities sexes could provide a parsimo-
nious explanation for much of the observed difference in mortality between the
sexes. This contrasts with an implicit, but dominating assumption in the study of
infectious diseases that risk of respiratory infection is determined by age, and that
sex-differences in risk of infection are negligible [Klein et al. (2010)]. Our find-
ings suggest that, within each age group, much of the observed variation risk of
infection within age groups might be due to sex-specific differences.
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Additionally, we checked whether the findings can be repeated with similar data
sets, for instance, contact data collected in several different European countries in
the POLYMOD study [Mossong et al. (2008)], and with these data stratified even
further by day of the week and by contact setting (home, school, work, leisure,
transport and other). We found a very similar overall contact pattern with respect to
age and sex. Even though this additional analysis has some inconsistencies because
the reciprocity of contacts, which holds true by definition over all settings, may
become questionable for contacts within settings, its outcome strongly suggests
that the estimated patterns are very plausible, and not specific to the particular
contact data we have used here.

The observed differences in the contact pattern of adult men and women indicate
that sex differences in infection risk only come into play when there is significant
risk of infection for adults. This is the case for vaccine-preventable diseases where
a high vaccination coverage increased the age at infection, such as measles, mumps
and rubella; for diseases that are poorly transmissible, such as human parvovirus
B19 [Young and Brown (2004)], and diseases that cause repeated infections, such
as influenza A, B [Klein et al. (2010)] and cytomegalovirus [Pass et al. (2009)].
Furthermore, detailed social contact patterns help to improve the parameterization
of mathematical models used to design and evaluate control strategies, allowing for
models that are more realistic. In particular, the highly detailed age-specific con-
tacts are relevant for evaluating vaccination schedules aimed at protecting infants
against diseases such as pertussis or pneumococcal infections, and sex-specific
contacts are relevant for evaluating vaccination schedules aimed to protect against
infections that complicate pregnancy or may lead to spontaneous abortion, such as
rubella virus, human parvovirus B19 or cytomegalovirus.

Social contact intensities between men and women of all ages can be estimated
using a hierarchical Bayesian modeling approach with an underlying Gaussian
Markov Random Field. A tailor-made construction of the precision matrix of the
GMRF prior allows us to regularize the estimates by smoothing while at the same
time enforcing consistency with the reciprocal nature of contacts. Estimation can
be done efficiently using Integrated Nested Laplace Approximations. Application
of this approach to social contact data from a large prospective survey revealed
that social contact patterns, as a rule, are assortative: people, especially children
and adolescents, mostly contact other people of their own age and sex. Relevant
exceptions are that children have more contact with adults who are approximately
30 years older than with other adults, and women have more contact with children
than men. These social contact patterns result in exposure patterns that signifi-
cantly differ between sexes. For an emerging respiratory infection that spreads in
a susceptible population, we would expect the risk of infection to vary for three
broad age categories: for children, the risk of infection is similarly high for both
sexes; for younger adults, women are at higher risk of infection; for older adults,
men are at higher risk of infection.
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SUPPLEMENTARY MATERIAL

Supplementary material: Efficient estimation of age-specific social contact
rates between men and women (DOI: 10.1214/16-AOAS1006SUPP; .zip). In the
Supplementary Material we describe the data pre-procession steps, the construc-
tion of the node IDs and structure matrix, and how the model is implemented in
INLA. We further describe how to aggregate the contact intensities and rates. All
are accompanied by R code. A table is provided with age- and sex-specific contact
intensities and rates.
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