
The Annals of Applied Statistics
2007, Vol. 1, No. 1, 179–190
DOI: 10.1214/07-AOAS102
© Institute of Mathematical Statistics, 2007

CONTROL OF THE MEAN NUMBER OF FALSE DISCOVERIES,
BONFERRONI AND STABILITY OF MULTIPLE TESTING

BY ALEXANDER GORDON, GALINA GLAZKO, XING QIU

AND ANDREI YAKOVLEV1

University of Rochester and University of North Carolina at Charlotte, University
of Rochester, University of Rochester and University of Rochester

The Bonferroni multiple testing procedure is commonly perceived as be-
ing overly conservative in large-scale simultaneous testing situations such as
those that arise in microarray data analysis. The objective of the present study
is to show that this popular belief is due to overly stringent requirements that
are typically imposed on the procedure rather than to its conservative nature.
To get over its notorious conservatism, we advocate using the Bonferroni se-
lection rule as a procedure that controls the per family error rate (PFER). The
present paper reports the first study of stability properties of the Bonferroni
and Benjamini–Hochberg procedures. The Bonferroni procedure shows a su-
perior stability in terms of the variance of both the number of true discoveries
and the total number of discoveries, a property that is especially important in
the presence of correlations between individual p-values. Its stability and the
ability to provide strong control of the PFER make the Bonferroni procedure
an attractive choice in microarray studies.

1. Introduction. A recent explosion of statistical publications dealing with
multiple significance tests has been triggered by the needs of new high throughput
technologies in biology such as gene expression microarrays [Dudoit, Shaffer and
Boldrick (2003)]. This voluminous literature has been focused on various alter-
natives to the family-wise error rate (FWER) controlling procedures such as the
classical Bonferroni method, the latter having been considered as too conservative
for practical purposes.

The Bonferroni method was improved by Holm (1979) who proposed a step-
down multiple testing procedure (MTP) that has more power but still controls the
FWER at the same level. Furthermore, the Holm procedure is known to have strong
optimality properties [Lehmann and Romano (2005a), Chapter 9]. Another attempt
to gain more power by utilizing the dependence between test-statistics is due to
Westfall and Young (1993) who designed a step-down resampling algorithm that
provides strong control of the FWER and is consistent (i.e., the FWER approaches
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its nominal level in large samples) under the condition of subset pivotality. How-
ever, the resultant gain from both improvements is quite small, especially when
controlling the FWER at a low level. Whenever the FWER is small and the number
of hypotheses to be tested is large (e.g., of order 104 as in microarray studies), the
ability of any FWER controlling MTP to detect false null hypotheses is inevitably
limited. This observation drove statisticians to explore various possibilities with
less stringent criteria for guarding against Type 1 errors.

The quest for less conservative MTPs has resulted in many new concepts
of error rate, such as the false discovery rate (FDR) [Benjamini and Hochberg
(1995), Yekutieli and Benjamini (1999), Benjamini and Hochberg (2000), Reiner,
Yekutieli and Benjamini (2003)] and its local version [Efron (2003)], positive
FDR [Storey (2003)], generalized FWER [Victor (1982), Dudoit, van der Laan
and Pollard (2004), Korn et al. (2004)], tail probabilities for the proportion of
false positives [Dudoit, van der Laan and Pollard (2004), Lehmann and Romano
(2005b)] and some others. In particular, the beautiful mathematical idea behind
the Benjamini–Hochberg (BH) procedure, proposed as a method for controlling
the FDR, has attracted considerable attention of statisticians working in the field
of multiple testing. Several attempts have been made [Benjamini and Hochberg
(2000), Reiner, Yekutieli and Benjamini (2003), Storey, Taylor and Siegmund
(2004)] to further increase the “overall average power” within the concept of the
FDR. The empirical Bayes method [Efron (2003, 2004), Efron et al. (2001)], which
is based on another elegant mathematical idea, serves essentially the same purpose.
The two approaches are in a certain sense closely related as discussed in Efron
(2003). The motivation for introducing these new concepts and associated MTPs
has been, at least in part, the necessity to overcome the excessive conservatism of
the FWER controlling MTPs, including the Bonferroni procedure, in the presence
of a large number of hypotheses.

Numerous methodological publications on this subject have successfully
reached out to practitioners. The original BH step-up procedure and its more lib-
eral versions are frequently confronted with the Bonferroni method and the latter is
invariably declared a loser in such comparisons. As a result, the Bonferroni proce-
dure has been effectively disqualified and its practical application has been largely
discouraged. It is now difficult to find a published microarray study containing no
claim that the Bonferroni method of guarding against Type 1 errors is overly con-
servative, thereby justifying the need for an FDR controlling procedure in analysis
of a specific data set.

It is the intent of the present paper to show that the notorious conservatism
of the Bonferroni procedure is a misconception stemming from the traditionally
conservative choice of its parameter rather than from any solid evidence of its
conservative nature per se. We report the results of a comparative study of the
Bonferroni and the BH procedures to show that the outcomes of both procedures
are highly correlated when the requirements imposed on their error rates become
comparable. To reveal this fact, the threshold parameters of the two procedures
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need to be properly adjusted so that the comparison of their performance becomes
fair. This in turn calls for an extension of the Bonferroni method by focusing on
the mean number of false discoveries rather than on the probability of at least one
false discovery as a pertinent measure of the Type 1 error rate. The Bonferroni
procedure thus interpreted is compared with its natural rival (BH procedure) in
terms of random outcomes of multiple tests. The present paper reports the first
study of the variability of random outcomes of testing in conjunction with the
Bonferroni and BH procedures and this is its main thrust.

2. An extended interpretation of the Bonferroni method. The Bonferroni
procedure with parameter α (0 < α < 1), henceforth denoted by Bonf α , rejects
all hypotheses Hi , i = 1, . . . ,m, whose p-values satisfy the inequality pi ≤ α/m.
The procedure controls the FWER, defined as the probability of one or more false
rejections, at level α, thereby guaranteeing the probability of rejecting at least one
true hypothesis to be less than or equal to α for an arbitrary joint distribution of
p-values. Another measure of the abundance of Type 1 errors is the per family
error rate (PFER), defined as the expected number of false rejections. As noted by
Tukey [Tukey (1953)], who introduced the concepts of FWER and PFER, the two
error rates are almost indistinguishable when both of them are small, while FWER
≤ PFER in the general case. Bonf α controls the PFER at level α and, consequently,
it controls the FWER at the same level. That Bonf α controls the mean number of
Type 1 errors is a simple and well-known fact [Lee (2004)] and yet this procedure
has always been perceived only as an FWER-controlling procedure in practical
applications.

REMARK 1. Note that the PFER is related to the per comparison error rate
(PCER) via the formula PFER = mPCER.

We suggest that the current view of the Bonferroni procedure be changed by
switching the main focus to its ability to control the PFER. Adopting this extended
interpretation would eliminate the requirement that α be much smaller than 1. The
latter requirement is essential if α is interpreted as an upper bound for the prob-
ability of a rare event. By contrast, if α is interpreted as an upper bound for the
expected number of false rejections, this requirement becomes irrelevant and the
parameter α may be even greater than 1. To make a distinction between the two
interpretations, we introduce the notation Bonf γ for the Bonferroni procedure that
controls the PFER at the nominal level γ , which can be any number between 0
and m. Since this is essentially the old Bonferroni procedure, we see no reason to
change its name when allowing for a wider range of its parameter values. There-
fore, we will call Bonf γ the extended Bonferroni procedure. The MTP Bonf γ con-
trols the PFER at level γ under any dependence between p-values. More precisely,
PFER ≤ (m0/m)γ , where m0 is the number of true null hypotheses among the m
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hypotheses to be tested. Indeed, let T be the set of indices of true hypotheses and
ζ the number of false rejections, then the expectation of ζ is

Eζ = E
∑
i∈T

I{Pi≤γ /m} = ∑
i∈T

Pr{Pi ≤ γ /m} ≤ m0
γ

m
≤ γ,

where Pi , i = 1, . . . ,m, are observed p-values and IA denotes the indicator func-
tion of the event A. It is clear that PFER = (m0/m)γ if all p-values associated with
true null hypotheses are uniformly distributed on [0,1], which is a regular case for
continuous data. It follows that Bonf γ controls the FWER at level [(m0/m)γ ] ∧ 1.

REMARK 2. The procedure Bonf γ with γ being not necessarily small has
already been discussed in the literature. A single-step procedure considered by
Lehmann and Romano (2005b) is equivalent to Bonf kα , but it is interpreted as
a procedure controlling a generalized familywise error rate (k-FWER), defined
as the probability of ≥ k false rejections, at level α. Hence, the focus is still on
(small) probabilities rather than expectations. Korn et al. (2004) also mentioned
a procedure which is essentially identical to Bonf γ with γ = 10, but their main
focus was on concepts of error rate other than the PFER.

By way of illustration, consider the procedure Bonf 0.6. When interpreted in
the traditional way, this procedure guarantees that, with probability 0.4, there are
no false positives. This information is of little utility because the number 0.4 is
not close to 1. On the other hand, the requirement that the expected number of
false positives should not exceed 0.6 (in the presence of 40000 hypotheses, say)
is still quite stringent, whereas a gain in power (relative to Bonf 0.05, say) can be
substantial [Korn et al. (2004)].

3. Study design and performance indicators. We generated two sets of sim-
ulated data to study the performance of different MTPs in a situation where the
“true” and “false” null hypotheses were known. In these simulations each set con-
sists of 500 independently generated pairs of samples of equal sizes. Each sample
includes n = 43 realizations of a random vector X with log-normal marginal dis-
tributions. The components of X represent expression levels of 1255 genes, while
each realization of X represents a single array. To model the presence of differ-
entially expressed genes in two-sample comparisons, the mean log-expression of
the first 125 genes is set to be equal to 1 in one sample and to 0 in another. The
variance of log-expressions is kept equal to 1 in both samples. The log-expressions
of the remaining 1130 genes in both samples are generated from a standard normal
distribution. The first set of simulated data, denoted by SIM43, represents an ideal
case where expression levels of all the genes are stochastically independent. The
second set, denoted by SIM43CORR, is generated from a joint log-normal distrib-
ution with exchangeable correlation structure as described in [Qiu, Klebanov and
Yakovlev (2005)]. In this set of correlated data, all pairwise correlation coefficients



MEAN NUMBER OF FALSE DISCOVERIES AND BONFERRONI 183

are set equal to ρ = 0.4, which is deemed quite moderate in view of its typical val-
ues estimated from actual microarray data [Almudevar et al. (2006)]. The marginal
distributions of log-expressions are identical to those for SIM43. Since our focus
is only on proof of principle, the choice of n and ρ is of little consequence to the
objectives of this study. We also conducted simulations with an increased effect
size with log-expression levels of 125 “different” genes generated from a normal
distribution with mean 2 and unit variance. The results are similar and we do not
present them here.

We used the standard t-test throughout the study. The two MTPs under com-
parison are the Bonferroni Bonf γ and the Benjamini–Hochberg procedure with
parameter β . The latter procedure, denoted by BHβ , is known to control the
FDR defined as the expected proportion of false discoveries among all discov-
eries. More specifically, let R be the total number of rejected hypotheses and
V the number of true nulls among them. Then the FDR is the expectation of
the random variable η :η = V/R if R > 0, η = 0 if R = 0. To make the two
procedures comparable, we adjust the levels γ and β so that the nonparametri-
cally estimated true (actual) values of either PFER or FDR, denoted by P̂FER
and F̂DR, respectively, become approximately equal for both procedures. This is
done in our simulations by finding such values of γ and β for which the lev-
els of either P̂FER or F̂DR are roughly the same when both procedures are re-
peatedly applied to 500 simulated samples with their results being averaged to
produce the mean values of the said estimators. To generate correspondence ta-
bles for P̂FER and F̂DR values, we first form a grid of values for the parame-
ter γ . This grid is not uniform: it has a finer partition at the low end, while tend-
ing to be coarser for larger possible values of γ . The thresholds were chosen
as follows: γi = 0.01,0.02, . . . ,1 for i = 1,2, . . . ,100, γi = 1.1,1.2, . . . ,10 for
i = 101,102, . . . ,190 and γi = 11,12, . . . ,100 for i = 190,191, . . . ,280. In an
effort to provide a more uniform accuracy of the correspondence table, we formed
a pertinent nonlinear grid of β’s as follows: βj = γj

a+γj
for j = 1,2, . . . ,280, where

a = 125 is the number of true alternatives. Each MTP is run at each threshold level
to obtain the observed PFER and FDR from each of the 500 samples, yielding the
estimates P̂FER and F̂DR as the corresponding sample means over the simulations.
Then a pair of entries in the correspondence table can be found to indicate those γi

and βj on the two grids that provide approximately the same level of either P̂FER
or F̂DR. For example, when starting with BHβj at different values of βj and using
F̂DR as the equalizer, we define parameters γ ∗

j for the corresponding Bonferroni
procedure as

γ ∗
j = arg min

1≤i≤280
|F̂DR

BHβj − F̂DRBonf γ i |, j = 1, . . . ,280.

A similar algorithm is designed to equalize the estimated PFER, in which case it
is Bonf γi that produces a set of the estimates P̂FERBonf γ i for finding the adjusted
thresholds β∗

i for BHβi .
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The adjusted parameters γ ∗
j and β∗

i were used to run both competing MTPs
on an independent control set of 500 samples generated in exactly the same way
as described above. One performance indicator for the procedures thus adjusted
was the standard deviation of the number of true discoveries—this is the most
important characteristic related to the power of a given MTP, providing the cor-
responding mean value is fixed. The overall stability of each of the two MTPs,
characterized by the standard deviation of the total number of discoveries, is an-
other performance indicator of practical importance. For specific combinations of
βj and γ ∗

j , scatterplots were produced in order to compare random outcomes of
the two procedures. The results were largely similar when the training sample was
used to assess the performance of Bonf γ and BHβ .

Another way to assess the performance of the extended Bonferroni procedure
is to apply it to a large-scale “spike-in” microarray dataset where the identities of
all null and alternative hypotheses are known exactly. However, no high quality
datasets of this type are currently available. We explored the possibility of using a
recently published “spike-in” control dataset for the Affymetrix Drosophila high-
density oligonucleotide arrays [Choe et al. (2005)] for this purpose but found it to
be of little value. In addition to the extremely small sample size (n = 3 per group),
the experimental design behind the study by Choe et al. appears to have many
flaws [see Dabney and Storey (2006) for discussion]. Another point that should
be mentioned is that spike-in data do not represent a good experimental model of
the actual correlation structure of microarray data. These are the reasons why we
used real microarray data on a group of patients with childhood leukemia [Yeoh
et al. (2002)] to simulate an artificial spike-in dataset, while preserving the actual
correlation structure in the same way as defined by the subset pivotality condition
[Westfall and Young (1993)]. The description of this data set and its analysis is
given in “Supplementary Material 1.”

4. Analysis of simulated data. The requirements imposed on Bonf γ and
BHβ were made comparable by equalizing their estimated true error rates (FDR or
PFER) as described in Section 3. A training set of 500 pairs of simulated vectors
was used for this purpose. The performance of both procedures was assessed on
an independently generated control set of 500 pairs of such vectors. Presented in
this section are the results obtained by equalizing the estimated FDR, while sim-
ilar results pertaining to the PFER are given in “Supplementary Material 2.” The
multiple testing procedure BHβ was applied to the control sample with various
thresholds βj , following which the adjusted thresholds γ ∗

j were used to run Bonf γ

on the same sample. In order to make sure that the equalizing procedure does a
good job, we first compared the mean power of the two procedures at adjusted pa-
rameter values. As one would expect, both procedures have, on average, the same
power when their estimated FDRs are approximately equal (Figures 1A and 1B).
This pattern was observed in both independent and correlated data. The same holds
true for the median values (Figures 1C and 1D).



MEAN NUMBER OF FALSE DISCOVERIES AND BONFERRONI 185

FIG. 1. The mean (A, B) and median (C, D) of the number of true discoveries produced by Bonf γ

and BHβ with F̂DR as the equalizer. A—independent data, B—correlated data, C—independent
data, D—correlated data, solid line: Bonf γ , dashed line: BHβ .

Since the mean lengths of the lists of rejected hypotheses are forced to be equal
by the equalizing procedure, we should focus on other characteristics of the ran-
dom outcomes of both procedures. The cut-offs of both procedures are functions
of observed p-values and can be quite dissimilar across samples even if their mean
values are the same. Therefore, our focus is on the variability of those outcomes
that can be observed in simulation experiments. The standard deviation of the num-
ber of true positives appears to be higher for the BH procedure than for Bonf γ

(Figures 2A and 2B). This advantage of Bonf γ is also seen when its stability is as-
sessed in terms of the standard deviation of the total number of rejected hypotheses
(Figures 2C and 2D). Scatterplots of the total number of discoveries for specific
combinations of adjusted parameters show a high correlation between outcomes of
the two MTPs. Shown in Figure 3A is one such scatterplot for independent data.
Closed circles represent those pairs of outcomes that occur in at least ten simulated
samples. The equalizing value of F̂DR is 0.0399 with approximately the same stan-
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FIG. 2. The standard deviation of true discoveries (A, B) and total discoveries (C, D) pro-
duced by Bonf γ and BHβ with F̂DR as the equalizer. A—independent data, B—correlated data,
C—independent data, D—correlated data, solid line: Bonf γ , dashed line: BHβ .

dard error of 0.0008 for both procedures. In 425 out of the 500 simulated samples,
both procedures resulted in an identical number of rejected hypotheses. The Bon-
ferroni procedure rejected more hypotheses than the BH procedure in 34 samples,
while the reverse situation was observed in 41 samples. The sample correlation
coefficient between the numbers of rejected hypotheses is equal to 0.991 for the
data presented in Figure 3A.

The effect of correlations on the performance of both procedures is quite strong.
The standard deviation of the number of true discoveries produced by both proce-
dures is about 5 times larger in the presence of correlation, as moderate as it is
in our experiments, than in the independent case (Figures 2A and 2B). The same
applies equally to the total number of discoveries (Figures 2C and 2D).

Figure 3B displays the corresponding scatterplot for correlated data. The equal-
izing value of F̂DR is 0.0385 with the standard errors of 0.0031 and 0.0033 for
Bonf γ and BHβ , respectively. In 331 out of the 500 simulated samples, both pro-
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FIG. 3. The scatterplot of the total number of discoveries for Bonf γ versus BHβ with F̂DR as the
equalizer. A—independent data, B—correlated data, solid line: Bonf γ , dashed line: BHβ . Closed
circles represent those outcomes that occur in at least ten simulated samples.

cedures resulted in an identical number of rejected hypotheses. The Bonferroni
procedure rejected more hypotheses than the BH procedure in 145 samples, while
the reverse situation was observed only in 24 samples. However, as evidenced from
Figure 3B, when BHβ and Bonf γ differ it is often that BHβ gives “much larger”
numbers of rejected hypotheses. The correlation coefficient between the numbers
of rejected hypotheses is equal to 0.979 in this case.

The results obtained by using P̂FER as the equalizer are quite similar as shown
in “Supplementary Material 2.”

5. Discussion. Since Bonf γ and BHβ are designed to control the conceptu-
ally different error rates, it is difficult to compare their power by fixing the “test
size” as in the traditional single-test situation. One way around this difficulty is to
choose such γ and β that enforce the same expected level of Type 1 errors for both
procedures in accordance with either of the two concepts of error rate. The true
error rates (FDR or PFER) for prechosen γ and β are unknown and can be esti-
mated only if the “true” and “false” null hypotheses are known exactly, which is the
case either in simulations or in model experiments such as spike-in microarrays.
In the reported study, we used nonparametric estimates of the FDR and PFER as
the equalizers to compare higher order characteristics of the power of Bonf γ with
those of BHβ . The same expedient can be employed in power comparisons of any
alternative multiple testing procedures.

The results of our study show that the extended Bonferroni procedure Bonf γ

can be made as powerful as the BHβ procedure by a proper choice of its parame-
ter, a conclusion consonant with that made by Korn et al. (2004). Investigators may
prefer one or the other procedure depending on what qualities they perceive as be-
ing more important. A distinct advantage of the BH procedure is that its parameter
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β is dimensionless as it represents an upper bound for the expected proportion
of false positives. Therefore, there is no need to change this parameter when the
total number m of hypotheses changes. This makes the BH procedure intuitively
appealing. In contrast, the PFER is not scale invariant as it is measured in “items”
(hypotheses). Hence, it may be a problem to choose the parameter γ for Bonf γ

unless an investigator has a clear idea of how many, on average, false positives can
be tolerated. In other words, the two procedures serve different purposes. If, for
example, the practitioner decides that, on the average, he/she can afford two false
positives per experiment, then it is natural to use the Bonferroni procedure with
the nominal level of the PFER equaling 2. If, on the other hand, the practitioner
wants, on the average, the proportion of false positives among all positives not to
exceed 10%, he/she can use the BH procedure with the nominal level of the FDR
equaling 0.1.

The main virtue of Bonf γ is its higher stability in terms of the variance of the
total number of discoveries, a property that becomes increasingly important with
the strength of correlation in the data [Qiu, Klebanov and Yakovlev (2005), Qiu
et al. (2006)]. Yet another advantage of Bonf γ is its simplicity. This procedure
provides strong control of the PFER at the nominal level γ under an arbitrary
dependency structure of individual p-values. Furthermore, the nominal level is
attained under the complete null hypothesis. As for BHβ , the only proven fact
of this nature is that the FDR is controlled to be less than or equal to β under
the condition of positive regression dependence [Benjamini and Yekutieli (2001)].
In the general case, only a much more conservative version of BHβ is available
[Benjamini and Yekutieli (2001)].

A very interesting observation is that the standard deviation of the total number
of rejections for both procedures has a minimum when considered as a function
of the corresponding threshold parameter (Figures 2C and 2D). The minimum is
attained when the mean number of rejections becomes close to the total number of
true alternative hypotheses. This is not an entirely unexpected phenomenon if one
thinks loosely of testing outcomes as a Bernoulli trial. What is important, however,
is that the position of this minimum does not change much in the presence of
correlations. The curves shown in Figure 2D can be estimated from real microarray
data by resampling [Qiu, Klebanov and Yakovlev (2005)] and may be instrumental
in estimating a minimal number of differentially expressed genes. This idea and
its practical implications invite a special investigation.
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