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CONSISTENCY OF THE TAKENS ESTIMATOR
FOR THE CORRELATION DIMENSION1

By S. Borovkova, R. Burton and H. Dehling
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University of Groningen

Motivated by the problem of estimating the fractal dimension of a
strange attractor, we prove weak consistency of U-statistics for station-
ary ergodic and mixing sequences when the kernel function is unbounded,
extending by this earlier results of Aaronson, Burton, Dehling, Gilat, Hill
and Weiss. We apply the obtained results to show consistency of the Takens
estimator for the correlation dimension.

1. Introduction. Estimation of the fractal dimension of a strange attrac-
tor from a chaotic time series has attracted considerable attention in the past
few years and has become one of the tools in the analysis of the underlying
dynamics. Though there are various notions of noninteger dimensions, most
attention has been devoted to the correlation dimension. This is mainly be-
cause this type of dimension is relatively easy to estimate, and it provides a
good measure of the complexity of the dynamics, that is, the number of active
degrees of freedom.

Suppose �X ;F ; µ;T� is a dynamical system, where X ⊆ Rp and Tx X →
X is a measurable transformation with invariant probability measure µ. We
define the correlation integral

Cµ�r� = �µ× µ���x;y�x �x− y� ≤ r�
for r ≥ 0. In many examples it turns out that there exists a constant α such
that

Cµ�r� ≈ const · rα as r→ 0:(1.1)

Then the exponent α is called the correlation dimension of µ. More formally,
one defines the correlation dimension by α x= limr→0 logC�r�/ log r, provided
this limit exists.

In most practical situations, the dynamical system and thus also the invari-
ant measure µ are unknown and one has to rely on (partial) observations of a
finite orbit �Tkω�0≤k≤n of the system. Most models assume that the actual ob-
servations are functions of the state. More precisely, one postulates existence
of a so-called read-out function fx X → R such that yn = f�Tnω� is observed
at time n. Of course, one cannot hope to get much information about the state
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ω by just observing f�ω�. This, however, changes completely if one replaces
f�ω� by the vector of observations f�Tiω� at q consecutive time points, that is,

Rec�ω� x= �f�ω�; f�Tω�; : : : ; f�Tq−1ω��:
The Takens reconstruction theorem [Takens (1981)] then assures that in
generic situations, Recx X → Rq defines an embedding, provided q ≥ 2p+ 1.
Consequently we can obtain information about the state space and the
dynamics of T by studying the process of reconstruction vectors

Xn = Rec�Tnω�; n ≥ 0:

Among other things, one can show that the correlation dimension of the invari-
ant measure µ coincides with that of the marginal distribution F of Xn, again
provided we are in the generic situation and q ≥ 2p + 1. For smaller values
of q, the correlation dimension of F will equal the embedding dimension.

It is thus of interest to estimate the correlation dimension of the marginal
distribution of a stationary stochastic process from a finite sampleX1; : : : ;Xn.
Note that the correlation integral can be written as

C�r� = CF�r� = P��X−X′� ≤ r�;
where X and X′ are independent copies of X1.

A number of procedures for estimating the correlation dimension has been
introduced in the literature. Here we concentrate our attention on the ap-
proach proposed by Takens (1985). Assume for a moment that in a neighbor-
hood of r = 0 an exact scaling law holds for the correlation integral, that is,

C�r� = const · rα; r ≤ r0(1.2)

for some r0 > 0. Then Takens first considered estimating α from i.i.d. re-
alizations Ri = �Xi − Yi� of the distance �X − Y�, where Xi and Yi are
independent with distribution µ. If (1.2) holds, the conditional distribution of
Ui x= Ri/r0 given Ri ≤ r0 is given by

P�Ui ≤ t�Ui ≤ 1� = tα for t ∈ �0;1�:
Then the (conditional) distribution of Si = − logUi is exponential with pa-
rameter α, that is, Si has density

g�s� = αe−αs1�0;∞��s�:
Given an i.i.d. sample S1; S2; : : : ; SN of exponentially distributed random
variables, the maximum likelihood estimator (MLE) of the parameter α is
given by

α̂ML =
N

∑N
i=1Si

:(1.3)

It turns out that the ML estimator is biased but that the variant, α̂ =
�N− 1�/∑N

i=1Si; is unbiased and actually the uniformly minimum variance
unbiased (UMVU) estimator. This is a simple consequence of the Lehman–
Scheffé lemma and the fact that

∑N
i=1Si is a complete, sufficient statistic.
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In general, independent realizations of the distances �X −Y� will not be
available and thus a modification of the estimator (1.3) becomes necessary.
Given a finite segmentX1; : : : ;Xn of an orbit, we can form n�n−1�/2 pairwise
distances �Xi −Xj�. Motivated by the ML estimator (1.3), Takens proposed
to use

α̂T = −
(

2
n�n− 1�

∑
1≤i<j≤n

log
�Xi −Xj�

r0

)−1

(1.4)

as estimator for the correlation dimension.
A completely different approach was suggested by Grassberger and Pro-

caccia (1983), actually in the same paper where they introduced the notion
of correlation dimension. The Grassberger–Procaccia procedure is motivated
by the approximately linear relationship logC�r� ≈ β + α log r, for r small,
obtained by taking logarithms on both sides of (1.1). Estimating now the cor-
relation integral by its empirical analogue,

Cn�r� =
2

n�n− 1�
∑

1≤i<j≤n
1��Xi −Xj� ≤ r�;(1.5)

for a vector of distances �r1; : : : ; rk�, Grassberger and Procaccia use least-
squares linear regression of logCn�ri� versus log ri to estimate α.

In the analysis of both the Grassberger–Procaccia and the Takens estimator,
the theory of U-statistics plays a central role. Let hx �Rq�m→ R be a measur-
able function that is symmetric in its arguments. Given a sample X1; : : : ;Xn

from a distribution functionF, define the associatedU-statistic of degreem by

Un =
(
n

m

)−1 ∑
1≤i1<···<im≤n

h�Xi1
; : : : ;Xim

�:

Note that Un�h� can be viewed as the empirical analogue of the parameter

θ�F� =
∫

Rqm
h�x1; : : : ; xm�dF�x1� · · ·dF�xm�:

It turns out that Un�h� is an unbiased estimator of θ�F� and, in the case
of an i.i.d. sample, even the UMVU estimator, provided the distribution is
completely unknown.

In order to establish consistency of the Takens estimator, we have to study
the U-statistic

2
n�n− 1�

∑
1≤i<j≤n

log �Xi −Xj�:(1.6)

For the Grassberger–Procaccia estimator, consistency of the U-statistic (1.5)
has to be investigated.

Halmos (1946) and Hoeffding (1948) independently introduced U-statistics.
In the case of i.i.d. observations �Xn�n≥1, their asymptotic behavior is well un-
derstood. The law of large numbers and the central limit theorem were already
established by Hoeffding (1948). Mainly motivated by the above-mentioned
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applications to dimension estimation, there has been in recent years consider-
able interest in U-statistics of stationary dependent observations. Early con-
tributions were Yoshihara’s (1976) central limit theorem for absolutely regular
processes and Denker and Keller’s (1983, 1986) CLT for certain Lipschitz func-
tionals of an absolutely regular process.

Surprisingly, the law of large numbers for U-statistics of stationary ergodic
sequences has not been investigated until the recent paper by Aaronson, Bur-
ton, Dehling, Gilat, Hill and Weiss (1996). They first showed, by means of a
simple counterexample, that the law of large numbers might fail unless extra
conditions on either the kernel or the process �Xn� are imposed. One of the
main results of Aaronson et al., which we state below, implies strong consis-
tency of Un�h� for bounded continuous kernels.

Theorem A [Aaronson et al. (1996)]. Let �Xn�n∈N be a stationary ergodic
sequence with marginal distribution F; and let hx Rqm→ R be a measurable,
bounded and Fm-a.e. continuous function. Then

Un

a:s:→ θ�F� as n→∞:

Stronger results can be obtained if the underlying process �Xn�n satisfies
some mixing conditions. In the context of U-statistics laws of large numbers,
absolute regularity turns out to be an important concept. Denote by M b

a the
σ-field generated by �Xi; a ≤ i < b�, where 0 ≤ a ≤ b ≤ ∞. We define the
mixing coefficients �βk�k≥0 by

βk = sup
a

E
{

sup
A∈M∞

a+k

�P�A�M a
1 � −P�A��

}
:

The process �Xn�n is called absolutely regular if βk→ 0 as k→∞.
For absolutely regular sequences, Aaronson et al. established a result sim-

ilar to Theorem A under milder conditions on the kernel function. Along a
different line, Yoshihara (1976) could show that U-statistics of absolutely reg-
ular sequences are asymptotically normal, provided certain extra assumptions
on the moments of h and on the rates �βk� hold.

For stationary and ergodic sequences strong consistency of the estimator
(1.5) of the correlation integral follows from Theorem A if �F × F���x;y�x
�x − y� = r� = 0, that is, if r is a continuity point of the correlation integral
C�r�. If C�r� is continuous, convergence of Cn�r� to C�r� is even uniform in
r ∈ �0; r0�, as can be shown using monotonicity properties of Cn�r� and C�r�.
However, none of the theorems of Aaronson et al. (1996) is directly applicable
to obtain consistency of the Takens estimator, as log �x − y� is an unbounded
kernel. In the next section we will provide several counterexamples showing
that the Takens estimator can indeed be inconsistent. General consistency
results will be obtained in Section 3 under extra moment assumptions.

2. Counterexamples. A first simple counterexample to consistency of
the Takens estimator was already provided by Aaronson et al. (1996). We
include it here for completeness and reference.
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Example 1. Let W1;W2; : : : be i.i.d. random variables with a continuous
distribution function F, satisfying

E
(∣∣log �W1 −W2�

∣∣) <∞:(2.1)

Let Y1;Y2; : : : be i.i.d. Bernoulli random variables, independent of �Wn�n≥1,
with P�Yi = 1� = p (0 < p < 1). Define the process �Xn�n∈N by X1 =W1 and

Xn =Wn�1−Yn� +Xn−1Yn for n > 1:

This process is stationary and absolutely regular with marginal distribution
F. Observe that Xn = Xn−1 whenever Yn = 1. As the latter occurs infinitely
often, the U-statistics (1.6) diverges to −∞, almost surely, showing that the
Takens estimator (1.4) is not consistent.

It is instructive to analyze what went wrong in this example. The main
problem lies in the drastic difference between the product distribution F×F
and the two-dimensional joint distributions Pij induced by the pairs �Xi;Xj�.
For any pair �i; j� there is positive probability that Xi =Xj and hence

EPij

(∣∣log �Xi −Xj�
∣∣) = ∞:(2.2)

This is in contrast to EF×F�� log �Xi −Xj� �� < ∞; which is a consequence of
(2.1) and the fact that �Xn�n≥1 has marginal distribution F.

The previous example is quite crude in the sense that � log �Xi −Xj�� = ∞
with positive probability, and thus E� log �Xi −Xj�� = ∞ for all pairs �i; j�.
In our next example we consider a stationary sequence �Xn�n∈Z for which
pairs �Xi;Xj� have a bounded density with respect to Lebesgue measure and
E� log �Xi −Xj�� <∞, but

lim
n→∞

E
∣∣log �Xn −X1�

∣∣ = ∞

and for which the Takens estimator is inconsistent.

Example 2. Let �X̃n�n∈Z, �Yn�n∈Z and �Zn�n∈Z be three mutually indepen-
dent i.i.d. processes, with X̃n and Zn uniformly distributed on �0;1� and Yn

symmetric Bernoulli variables, that is, P�Yn = 0� = P�Yn = 1� = 1/2. Let
φ�k� x= exp�22k� and define a new process �Xn�n≥1 by

Xn =





1
2
X̃n−k +

Zn

φ�k� ; if Yn = 1; Yn−1 = · · · = Yn−k = 0; Yn−k−1 = 1;

1
2
X̃n; if Yn = 0:

By stationarity of the processes �X̃n�, �Zn� and �Yn�, also �Xn�n≥1 is station-
ary. In addition, one can show quite easily that �Xn�n≥1 is absolutely regular.
Moreover, �Xi −Xj� has a bounded density and hence E� log �Xi −Xj�� < ∞
for all pairs �i; j�.
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Define the event Ar x= �Yr = 1; Yr−1 = · · · = Y0 = 0; Y−1 = 1�, and note
that P�Ar� = 2−�r+2�. On Ar we have X0 = 1

2X̃0 and Xr = 1
2X̃0 + Zr/φ�r�

and thus

E
(∣∣log �X0 −Xr�

∣∣) ≥ E
(∣∣log �X0 −Xr�

∣∣ �Ar

)
2−�r+2�

= 2−�r+2�[E�− logZr� + logφ�r�
]

≥ 2−�r+2�22r = 2r−2:

Hence supi; jE� log �Xi − Xj� � = ∞. This result already suggests that the
corresponding U-statistic (1.6) might be divergent, and this is indeed the case
as we shall show now. We will make use of the following lemma.

Lemma 1. Suppose that �Yn�n≥1 is an i.i.d. sequence of nonnegative random
variables with E�Y1�1/2 = ∞. Then

lim sup
n→∞

1
n2

n∑
i=1

Yi = ∞ almost surely:

Proof. Since all Yi’s are positive,

lim sup
n→∞

1
n2

n∑
i=1

Yi ≥ lim sup
n→∞

Yn

n2
;

and the fact that the r.h.s. of this inequality is infinite is a consequence of the
following line of equivalent statements, valid for all ε > 0:

E�Y1�1/2 = ∞ ⇐⇒
∞∑
n=1

P�Yn > εn
2� = ∞ ⇐⇒ P�Yn > εn

2 i.o.� = 1;

which follow from the Borel–Cantelli lemma. 2

Note that

− 2
n�n− 1�

∑
1≤i<j≤n

log �Xi −Xj�

≥ 2
n�n− 1�

[ ∑

Xi= 1
2 X̃i;Xj= 1

2 X̃j

− log �Xi −Xj�

+
∑

i; jxXi= 1
2 X̃i;Xj= 1

2 X̃i+Zj/φ�j−i�
− log �Xi −Xj�

]

= 2
n�n− 1�

[ ∑

Xi= 1
2 X̃i;Xj= 1

2 X̃j

− log �Xi −Xj�

+
∑

i; jxXi= 1
2 X̃i;Xj= 1

2 X̃i+Zj/φ�j−i�
− logZj

+
M∑
m=1

logφ�Rm�
]
;

(2.3)
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where R1; : : : ;RM are lengths of full zero-blocks of Yi contained in the sample
of size n. An application of the ergodic theorem yields that M/n → 1

4 as
n→∞. The last term in (2.3) is divergent a.s. according to Lemma 1, because

1
n2

M∑
m=1

logφ�Rm� =
(
M

n

)2 1
M2

M∑
m=1

logφ�Rm�

and

E�logφ�Rm��1/2 =
∑
r

�logφ�r��1/22−r =
∑
r

1 = ∞:

So the Takens estimator is not consistent for this example as well.

In the last section we shall give a numerical example which illustrates
the divergence of the Takens estimator in the case of infinite expectation in
(2.2), while the Grassberger–Procaccia approach gives a reasonable estimate
of the correlation dimension. However, in general, the Takens estimator has
advantages, such as computational efficiency, over the Grassberger–Procaccia
method. It also turns out that if one imposes some additional conditions on
the expectations in (2.2), this leads to the weak consistency of the Takens
estimator in the case of absolutely regular and stationary ergodic processes.
This is the consequence of more general results on the weak consistency of
U-statistics, which we present in the next section.

3. Weak consistency of U-statistics. This section contains the main
theoretical results of the present paper. We prove two consistency results for
U-statistics of stationary ergodic, respectively, absolutely regular sequences.
Compared with the results of Aaronson et al. (1996), we replace their condition
that the kernel h�x;y� be bounded by a uniform integrability requirement on
h�Xi;Xj�, i; j ≥ 1. For simplicity we formulate and prove our theorems here
only for U-statistics of degree m = 2 and with one-dimensional inputs Xi,
that is, q = 1. Nonetheless the results continue to hold for general m and q.

Theorem 1. Let �Xn�n≥1 be a stationary ergodic process with marginal dis-
tribution F, and let hx R×R→ R be measurable and �F×F� - a.e. continuous.
Suppose moreover that the family of random variables �h�Xi;Xj�x i; j ≥ 1�
is uniformly integrable. Then, as n→∞,

Un→ θ�F� in probability.(3.1)

In particular this holds, if supi; jE�h�Xi;Xj��1+δ <∞ for some δ > 0.

Proof. A well-known result in ergodic theory states that, given a sta-
tionary ergodic process �Xn�n≥1 with marginal distribution F, one has for all
measurable sets A;B that

1
n

n∑
k=1

P�X1 ∈ A; Xk ∈ B� → F�A�F�B�
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as n→∞. Denoting by µk the joint distribution of �X1;Xk�, this implies that
�1/n�∑n

k=1 µk converges weakly to the product measure F×F.
We now define the truncated kernel hK�x;y� = h�x;y�1��h�x;y��≤K�, where

K is such that �F × F���x;y�x �h�x;y�� = K� = 0. As hK�x;y� is bounded
and F × F-a.e. continuous, we get

∫
�hK�x;y��d��1/n�

∑n
k=1 µk��x;y� →∫

�hK�x;y��dF�x�dF�y� and thus
∫
�hK�x;y��dF�x�dF�y� = lim

n→∞

∫
�hK�x;y��d

(
1
n

n∑
k=1

µk

)
�x;y�

= lim
n→∞

1
n

n∑
k=1

E�hK�X1;Xk��

≤ lim sup
n→∞

1
n

n∑
k=1

E�h�X1;Xk��

≤ sup
k

E�h�X1;Xk��:

By uniform integrability of �h�Xi;Xj�x i; j ≥ 1�, the right-hand side is finite.
Hence we may conclude that

∫
�h�x;y��dF�x�dF�y� <∞, that is h is F×F-

integrable.
Moreover, hK�x;y� satisfies all the conditions of Theorem A, and hence

1
n�n− 1�

∑
1≤i6=j≤n

hK�Xi;Xj�

→
∫ ∫

hK�x;y�dF�x�dF�y� a.s. as n→∞:
(3.2)

By F×F-integrability of h we obtain
∣∣∣∣
∫ ∫

h�x;y�dF�x�dF�y� −
∫ ∫

hK�x;y�dF�x�dF�y�
∣∣∣∣→ 0(3.3)

as K→∞. Uniform integrability of �h�Xi;Xj�; i; j ≥ 1� implies

sup
i; j

E�hK�Xi;Xj� − h�Xi;Xj�� = sup
i; j

E�h�Xi;Xj��1��h�Xi;Xj��>K�→ 0

as K→∞. This implies that

E
∣∣∣∣

1
n�n− 1�

∑
1≤i6=j≤n

hK�Xi;Xj� −
1

n�n− 1�
∑

1≤i6=j≤n
h�Xi;Xj�

∣∣∣∣→ 0;(3.4)

as K→∞. Combining now (3.2), (3.3) and (3.4), the statement of the theorem
follows. 2

In case of an absolutely regular process, we can drop the continuity condi-
tion on the kernel, as the next theorem shows. Absolute regularity of a process
implies that the sequence of long segments of this process, separated by short
ones, can be perfectly coupled with another sequence of long segments, which
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are independent and have the same distribution as those of the original pro-
cess. This is stated precisely in the following result of Philipp (1986).

Lemma 2 [Theorem 3.4 in Philipp (1986)]. If �Xn�n∈N is stationary and
absolutely regular with mixing coefficients βk, then for every m;N > 0 there
exists an i.i.d. sequence of N-dimensional random vectors ξ′1; ξ

′
2; : : : ; such that

for all k = 1;2; : : : ;

P�ξk = ξ′k� = 1− βm;(3.5)

where ξk = �X�k−1��N+m�+1; : : : ;XkN+�k−1�m�, and the vectors ξk and ξ′k have
the same marginal distributions.

Theorem 2. Let �Xn�n∈N be a stationary and absolutely regular process
with marginal distribution F, and let hx R2 → R be measurable. Suppose
moreover that the family of random variables �h�Xi;Xj�x i; j ≥ 1; i 6= j� is
uniformly integrable. Then, as n→∞,

Un→ θ�F� in L1;

and hence also in probability.

Proof. Let ε>0 be given. By uniform integrability of �h�Xi;Xj�x i; j≥1;
i 6= j� there exists a δ > 0 such that

E�h�Xi;Xj��1B ≤ ε(3.6)

holds for all measurable sets B with P�B� < δ. The same holds if �Xi;Xj� is
replaced by an independent pair �X′i;X′j�. To see this, note first that absolute
regularity of the process �Xi�i≥1 implies that the joint distribution of �X1;Xn�
converges in total variation norm to the product measure F×F. Thus for the
truncated kernels hK�x;y� = h�x;y�1��h�x;y��≤K� we get

∫ ∫
�hK�x;y��dF�x�dF�y� = lim

n→∞
E�hK�X1;Xn��

≤ sup
n
E�h�X1;Xn�� <∞:

Letting K→∞, we find that h is F×F-integrable, and hence we can find a
δ > 0 such that

E�h�X′i;X′j��1B ≤ ε(3.7)

holds for all measurable sets B with P�B� < δ.
Then choose m;N so big that 2βm < δ and m/N < ε. Define integers

nk = �k− 1��m+N� and consider the blocks

ξk = �Xnk+1; : : : ;Xnk+N�:
Observe that given the sample size n, the index of the last block ξk fully
contained in �X1; : : : ;Xn� is p = �n/�N+m��. By Lemma 2 there exists
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a sequence of independent N-dimensional vectors ξ′1; ξ
′
2; : : : with the same

marginal distribution as �ξk� such that (3.5) holds.
In the rest of the proof we will show that the random variables in the small

separating blocks of length m can be neglected and that the error introduced
by replacing ξi by ξ′i is negligible. The main term will then be a U-statistic
with independent vector valued inputs �ξ′i� that can be treated by Hoeffding’s
classical U-statistic law of large numbers. To this end we define a new kernel
Hx RN ×RN → R by

H�ξ;η� x= 1
N2

∑
1≤i; j≤N

h�xi; yj�;

where ξ = �x1; : : : ; xN� and η = �y1; : : : ; yN�. From (3.6) we can infer that,
for k 6= l,

E�H�ξk; ξl��1B ≤ ε(3.8)

for all sets B with P�B� < δ. The same holds if �ξk�k is replaced by �ξ′k�, by
(3.7).

Independence of ξ′k and ξ′l implies that

EH�ξ′k; ξ′l� =
∫ ∫

h�x;y�dF�x�dF�y� = θ�F� for all k 6= l:

Thus by the U-statistics law of large numbers for independent observations,

1
p�p− 1�

∑
1≤k6=l≤p

H�ξ′k; ξ′l� → θ�F�(3.9)

almost surely and in L1. By construction of �ξ′k�, we have P�ξk 6= ξ′k or ξl 6=
ξ′l� ≤ 2βm < δ and thus by (3.8),

E�H�ξk; ξl� −H�ξ′k; ξ′l�� = E�H�ξk; ξl� −H�ξ′k; ξ′l��1�ξk 6=ξ′k or ξl 6=ξ′l� ≤ 2ε:

Hence,

E

∣∣∣∣
1

p�p− 1�
∑

1≤k6=l≤p
H�ξk; ξl� −

1
p�p− 1�

∑
1≤k6=l≤p

H�ξ′k; ξ′l�
∣∣∣∣ ≤ 2ε:(3.10)

Moreover,
∣∣∣∣

1
p�p− 1� −

N2

n�n− 1�

∣∣∣∣ ≤
2ε

p�p− 1�
for p large enough, and thus

E

∣∣∣∣
1

p�p− 1�
∑

1≤k6=l≤p
H�ξk; ξl� −

N2

n�n− 1�
∑

1≤k6=l≤p
H�ξk; ξl�

∣∣∣∣ ≤ 2C0ε;

where C0 = supi; jE�h�ξi; ξj��. This last estimate, together with (3.9) and
(3.10), shows that for n large enough,

E

∣∣∣∣
N2

n�n− 1�
∑

1≤k6=l≤p
H�ξk; ξl� − θ�F�

∣∣∣∣ ≤ Cε:(3.11)
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Now, decompose the original U-statistics as follows:

∑
1≤i6=j≤n

h�Xi;Xj� =
∑

1≤k6=l≤p

nk+N∑
i=nk+1

nl+N∑
j=nl+1

h�Xi;Xj�

+
p∑
k=1

∑
nk+1≤i6=j≤nk+N

h�Xi;Xj�

+ 2
∑

1≤k; l≤p

nk+1∑
i=nk+N+1

nl+N∑
j=nl+1

h�Xi;Xj�

+
∑

1≤k6=l≤p

nk+1∑
i=nk+N+1

nl+1∑
j=nl+N+1

h�Xi;Xj�

+
p∑
k=1

∑
nk+N+1≤i6=j≤nk+1

h�Xi;Xj�

+
n∑

i=np+N+1

n∑
j=1

h�Xi;Xj�

+
np+N∑
i=1

n∑
j=np+N+1

h�Xi;Xj�:

A careful study of the index set shows that

E

∣∣∣∣
∑

1≤i6=j≤n
h�Xi;Xj� −

∑
1≤k6=l≤p

nk+N∑
i=nk+1

nl+N∑
j=nl+1

h�Xi;Xj�
∣∣∣∣

≤ C0�pN2 + 2p2mN+ p2mN+ p2m2 + 2n�m+N��;

where C0 = supi; jE�h�Xi;Xj��. As p ≤ n/N and m ≤ εN, the r.h.s. of the
above inequality is bounded by C�ε+N/n�n2 and hence,

E

∣∣∣∣
1

n�n− 1�
∑

1≤i6=j≤n
h�Xi;Xj� −

1
n�n− 1�

∑
1≤k6=l≤p

N2H�ξk; ξl�
∣∣∣∣ ≤ Cε

for n large enough. This, together with (3.11), proves the theorem. 2

4. Application to the Takens estimator. By Theorem 2, consistency
of the Takens estimator for an absolutely regular sequence X1;X2; : : : of
q-dimensional random vectors follows if, for some δ > 0,

sup
i; j

E
∣∣log �Xi −Xj�

∣∣1+δ <∞:(4.1)

In this section we will briefly indicate some conditions on the distribution of
the process �Xn� that imply (4.1).
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Observe first that for any bounded domain A ⊂ Rq we have, for all δ > 0,
∫
A

∫
A

∣∣log �x− y�
∣∣1+δ dxdy <∞:

Now suppose that Xi takes values in A and that the joint density fij�x;y� of
�Xi;Xj� is bounded, say by C. Then

E
∣∣log �Xi −Xj�

∣∣1+δ =
∫ ∫ ∣∣log �x− y�

∣∣1+δfij�x;y�dxdy

≤ C
∫
A

∫
A

∣∣log �x− y�
∣∣1+δ dxdy <∞

and the condition (4.1) is satisfied.
On the other hand, if the distribution of the distances Ri; j = �Xi −Xj�

has a density pij�x�, then the expectation in (4.1) can also be expressed as

E
∣∣log �Xi −Xj�

∣∣ =
∫ r0

0
� log r�1+δpij�r�dr:

This integral is bounded for all δ > 0, for example, if supi; jpij�x� = O�x−α�
as x → 0 for some α < 1. Thus in this case the condition (4.1) is fulfilled as
well.

5. Numerical example. In this section we apply both the Takens estima-
tor and the Grassberger–Procaccia method to the stationary ergodic process
�Xn�n∈N, defined by

Xn+1 =
{
�Xn + exp�−1/Yn+1��mod 1; if Yn+1 < 1/2;

X̃n; otherwise;

where �Yn�n∈N, �X̃n�n∈N are i.i.d. sequences of uniformly �0;1�-distributed
random variables and X0 is uniform �0;1�.

This process is absolutely regular and has the Lebesgue measure as its
marginal distribution, so the correlation dimension in this case is α =1.

We generated a sample of the size 1000 of this process. In Figure 1 the
delay map Xn+1 versus Xn is shown.

Note that for this process,

E
∣∣log �Xn −Xn+1�

∣∣ ≥ 1
2

∫ 1/2

0

dy

y
= ∞;

and, according to the results above, we expect the Takens estimator to diverge.
And, indeed, computing α̂T as in (1.4) gives us extremely low values of the
estimate, such as

α̂T = 8 · 10−3;

that is, the reciprocal of α̂T indeed diverges due to the pairs �Xn;Xn+1� which
are close to the diagonal.
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Fig. 1. Delay map xn+1 versus xn.

On the other hand, this is no danger for the Grassberger–Procaccia estima-
tor (1.5). In Figure 2 we plotted logCn�r� versus log r for a number of small
r, together with estimated confidence bounds for logCn�r�. The straight line
fit is good and it gives the value of the estimate for the correlation dimension

α̂GP = 0:89:

The problem of small distances in the Takens estimator can be attacked in
the following way: introduce not only an upper (r0), but also a lower cutoff
distance r1 > 0, which still can be very close to 0, and consider only those dis-
tances between points in the orbit which lie between r1 and r0. This certainly
brings a bias into the estimate, but it keeps the estimator from diverging.
[Such an estimator for the correlation dimension was first suggested by Ellner
(1988).] For our numerical example it gives the values of the estimate (when
the lower cutoff distances were taken r�1�1 = 10−3, r�2�1 = 10−4, r�3�1 = 10−5)

α̂T;r
�1�
1 = 0:98;

α̂T;r
�2�
1 = 0:96;

α̂T;r
�3�
1 = 0:95;

which is closer to the real value than the Grassberger–Proccacia estimate.
Moreover, this “cutoff” Takens estimator has the same advantage over least-
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Fig. 2. Linear regression, logCn�r� versus log r.

squares as the original Takens estimator, that is, it is computationally more
efficient.
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